The Qualia Research Institute (QRI) is excited to announce the launch of three Non-Ordinary States of Consciousness (NSCs) Art Contests: Immerse, Innovate, and Inspire with submissions accepted until 5/17/2023. Examples of non-ordinary states of consciousness are psychedelic experiences, meditative experiences like the jhanas, and near-death experiences.
Our objective is to highlight the reciprocal relationship between art and consciousness research, enabling artists to create lifelike representations of non-ordinary states of consciousness, and contribute to the development of consciousness studies and psychedelic science.
About the Qualia Research Institute
The Qualia Research Institute is a non-profit organization dedicated to advancing our understanding of consciousness. Its mission is to:
Develop a precise mathematical language for describing subjective experience
Map out the full range of possible conscious experiences
Build technologies to improve the lives of sentient beings
Replication Contest (Immerse): Entries will be judged based on transparent and interpretable qualities that accurately capture the low-level subjective effects experienced in non-ordinary states of consciousness.
Psychedelic Cryptography Contest (Innovate): Artists are invited to create encodings of sensory information that are only meaningful when experienced on psychedelics in order to show the specific information-processing advantages of those states.
For the sake of transparency and to benefit the community as a whole, QRI reserves the right to publish the winning submissions made by contestants on its website. Artists retain their intellectual property rights, allowing them control over their artwork’s use and distribution. However, QRI would appreciate permission to showcase participants’ art on our website or use it in potential research publications with proper citations and links to the artists’ work.
Disclaimer
We understand that the replication contest may not capture the full complexity and nuances of psychedelic experiences, and that there are concerns about the potential harm associated with the use of psychedelics. Participation in these contests does not require the use of psychedelics, and we encourage all participants to prioritize their safety and well-being.
We welcome feedback and suggestions for future contests at hello@qri.org. We look forward to exploring these topics responsibly and respectfully.
Replication Contest
The Replication Contest seeks to celebrate the artistic capabilities of participants in accurately depicting and interpreting the low-level subjective effects experienced in non-ordinary states of consciousness (NSCs), with a particular emphasis on (1) valence effects and (2) geometric transformations.
Valence effects focus on demonstrating how the shape of the experience can reveal whether a person is having a clean and blissful experience or a mixed affect experience. The transition between feeling normal and feeling blissful might involve changes to the shape of the visual experience. Rather than focusing on the semantic content (e.g. seeing an angel) here the point is to visualize the texture, shape, and dynamics that bring about this change (e.g. harmonizing flow by reducing turbulence).
Geometric transformations such as rotations, reflections, glides, affine transformations, and so on often feature in psychedelic experiences. Can this be rendered in a realistic way? We suggest that you consider how symmetry and geometry are two sides of the same coin in order to better appreciate this quality of psychedelic experiences. When the geometry of phenomenal space changes, so do the symmetries within it. Can this be expressed artistically in an accurate way?
To participate, artists should create a piece of art that embodies the subjective effects they have researched or encountered during NSCs, emphasizing the two highlighted areas.
Familiarize yourself with the concept of algorithmic reduction (cf. our glossary), where the complex zoo of effects is interpreted as emerging out of a few core effects interacting with each other. See also the different subjective effects cataloged at effectindex.com, and draw inspiration from the QRI videos on psychedelic epistemology and the tracer tool. Additionally, explore the r/replications subreddit to see some remarkable replications.
Example ways to explore (1) and (2)
Showcase how more smooth, symmetrical, regular, and soft visual features express pleasant qualities of the experience (cf. valence structuralism, Michael Johnson’s Symmetry Theory of Valence).
Visualize an annealing process where the video contains blinking lights driven by metronomes that can sync up with each other until the whole scene is shining in a coherent way (cf. Neural Annealing).
Show how bouba vs. kiki imagery highlight different emotional tones during a psychedelic experience (cf. CDNS in Quantifying Bliss), where spiky feelings tend to be harsh and disquieting, whereas bubbly and round features tend to be calming and welcoming (extra points if these features emerge out of some kind of annealing process, or if you find counterexamples to this general pattern).
Visualize how wallpaper symmetry groups transform textures into repeating patterns.
Show waves interacting with each other in order to construct psychedelic interference patterns (cf. non-linear wave computing)
Use hyperbolic minimal surfaces in order to exemplify how sensations aggregate on DMT.
Show how the Reverse-Grassfire Algorithm can create 3D crystals (cf. Harmonic Gestalt).
Show a 2D Euclidean grid becoming hyperbolic by adding additional nodes and edges in order to demonstrate a change of geometry (cf. world-sheet).
Model the the experience of achieving a DMT breakthrough level experience using a physical instability (such as Kelvin-Helmholtz).
These are just some suggestions and there are many other ways of connecting technical descriptions of the phenomenology of NSE and visual replications. It helps if you can ground the effects visualized on paradigms and explanations presented by QRI, but it is not necessary to win the contest. What matters is that you can create realistic yet interpretable visualizations that hint at the underlying processes that are generating these experiences. What we are after is insight. In other words, we want to be able to discover new, meaningful, and non-trivial explanations for why NSEs manifest in the way they do. Hence, being able to describe how the replication effects are achieved is highly beneficial.
Entries will be judged based on the number and precision of replicated subjective effects, with special attention given to valence effects and geometric transformations.
The Psychedelic Cryptography Contest invites artists to create unique encodings of sensory information that are only meaningful when experienced on psychedelics. The goal is to challenge participants to develop innovative methods of encoding sensory information in such a way that an encoded secret is only apparent on a NSC. The contest encourages the exploration of how sensory information can be modulated and presented in a way that reveals hidden patterns or messages when experienced under the influence of psychedelics.
Entries will be judged based on the difficulty of the encryption method used and the clarity of the message or pattern when experienced on psychedelics.
The Inspirational Piece Contest seeks to highlight the powerful connection between art and consciousness research by encouraging artists to create pieces that exemplify this relationship. The focus of this contest is on originality, creativity, inspiration, impact, quality, and execution. Artworks submitted for this contest should evoke a sense of wonder and curiosity about the nature of consciousness and the vast landscape of possible experiences.
Entries will be judged based on originality, creativity, inspiration, impact, quality, and execution, with winners determined by a public poll.
Participants can submit their entry in the form of a video or image.
The submission should be original and created specifically for the contest.
Participants can submit up to three entries per contest.
Submissions will be accepted starting on March 17th 2023 and must be submitted by May 17th 2023. Winners will be announced on June 1st 2023.
We encourage artists from the psychedelic and visionary art communities to participate and explore the connection between art and consciousness research. Good luck to all participants!
QRI’s Resources for Technical and Artistic Inspiration
Why it’s helpful: This article presents 8 models of art: 4 common ones, and 4 that connect it to consciousness studies. The overall frameworks of 8 models might help us arrive at methods to create innovative aesthetic qualia from first principles. We think that artists participating in any of the contests might benefit from the vocabulary introduced in these models to create innovative and meaningful pieces that explore the relationship between art and consciousness research. In particular, taking into account the energy parameter, efficient state-space exploration, annealing effects, and the vision of a meta-aesthetic all provide a unique lens for how psychedelics and art are so connected.
Why it’s helpful: This article discusses possible methods of communication that can be understood primarily by individuals under the influence of LSD and other tracer-inducing psychoactives. This may serve as inspiration for artists to think about novel ways to encode information or create unique experiences tailored to specific states of consciousness.
Why it’s helpful: This article provides a detailed analysis of how the visual effects of psychedelics might be understood and replicated using algorithmic processes. It can serve as a foundation for artists attempting to replicate the visual aspects of non-ordinary states of consciousness in their artwork, or as inspiration to propose alternative algorithmic reductions that capture effects that are currently unaccounted for.
Why it’s helpful: This article explores the connection between the subjective effects of DMT experiences and hyperbolic geometry, various possible algorithmic reductions to explain this connection, as well as detailing the progression of an experience through the DMT levels. Artists participating in the Replication Contest may find inspiration and insights into replicating specific visual patterns and structures often encountered in DMT experiences.
Why it’s helpful: The Psychophysics Toolkit and accompanying article are collections of resources and tools designed to help researchers and artists explore the intersection of perception, consciousness, and the physical world. It includes a variety of resources and interface tools that can aid artists in understanding the principles of psychophysics used to measure subjective experience and applying them to their work. This can be particularly useful for participants in all three contests, as it can provide insights into the ways that sensory information is processed during both ordinary and non-ordinary states of consciousness, and how this can be utilized in creating innovative and impactful art pieces.
Why it’s helpful: This video introduces new epistemological frameworks for studying and understanding non-ordinary states of consciousness induced by psychedelic substances. By incorporating these paradigms into their creative process, artists can develop a deeper understanding of the nature of these experiences and their potential implications for human knowledge. This enhanced understanding can help artists create innovative and thought-provoking pieces that capture the essence of exotic states of consciousness.
Why it’s helpful: This article provides a detailed explanation of the concept of phenomenal time and how it relates to the structure of conscious experiences. Understanding this concept could help artists in the contest to better represent the perception of time in non-ordinary states of consciousness and incorporate these insights into their artwork.
Why it’s helpful: This article explores the concept of wireheading and how it could be applied responsibly to maximize pleasure without causing psychological harm. Artists participating in the contest might find this article helpful in inspiring their work, particularly in the Inspirational Piece Contest, by envisioning a future where technology is used to enhance well-being and explore the state-space of consciousness responsibly.
Why it’s helpful: This video explores the concept of state-space neighborhoods, where specific aspects of conscious experiences are clustered together. By understanding the structure and dynamics of these neighborhoods, artists can create pieces that more accurately represent the nuances of different non-ordinary states of consciousness, leading to a more immersive and impactful experience for the audience.
Why it’s helpful: This article provides a comparative analysis of the experiences induced by 5-MeO-DMT and N,N-DMT. By understanding the unique characteristics of each substance’s effects, artists can draw inspiration for their artwork and more accurately replicate specific psychedelic experiences in the Replication Contest.
Acknowledgements
We would like to express our profound gratitude to the donors of the Qualia Research Institute. Your unwavering support has been invaluable in making our work possible. Your investment in our research has not only inspired a growing number of individuals to take our approach to consciousness research seriously but has also led to an expansion in our collaborations. As a result, we have seen the integration of our insights into the work of others, building upon the foundation we have established thus far.
First and foremost, we would like to extend our appreciation to Loka Vision for inspiring the contest. Their dedication to the Psychedelic/Visionary Art community, as demonstrated through their Psychedelic Replication Masterclass, has shown us the immense potential this community holds in furthering our understanding of consciousness.
Thank you Andrés Gómez Emilsson for offering technical insights that will enable artists to create life-like replications of the low-level subjective effects experienced on NSCs and incepting the idea of psychedelic cryptography as a viable field of research.
A thank you goes to Josie Kins of effectindex.com for their open-source approach to developing psychedelic art through generative AI, as well as their support of and feedback on the Replication contest and insights into the visionary/psychedelic art community.
Additional thanks to Scry, Marcin, gydravlik.eth, PsyNFT, and Ferociously Amused for their invaluable feedback on the contest and their contributions to our understanding of the visionary/psychedelic art community and thank you Maggie and Anders Wassinge for your unwaivering support.
[Context: 4th in a series of 7-video packages. See the previous three packages: 1st, 2nd, and 3rd]
Cognitive Sovereignty: How Do You Incentivize Genuinely New Thoughts? (link)
Genuinely new thoughts are actually very rare. Why is that? And how can we incentivize the good side of smart people to focus their energies on having genuinely new thoughts for the benefit of all? In order to create the conditions for that we need to strike the right balance between many complementary forces.
I offer a new ideal we call “Cognitive Sovereignty”. This ideal consists of three principles working together in synergy: (1) Freedom of Thought and Feeling, (2) Idea Ownership, and (3) Information Responsibility.
(1) Freedom of Thought and Feeling is the cultivation of a child-like wonder and positive attitude towards the ideas of one another. A “Yes And” approach to idea sharing.
“On the topic of liberty of mind, we may reflect that inhibitory mechanisms are typically strong within groups of people. As is the case within minds of individuals. In minds it’s this tip of the iceberg which gets rendered as qualia and is the end result of unexperienced hierarchies of powerfully constraining filters. It’s really practical for life forms to function this way and for teams made up of life forms to function similarly, but for making grand improvements to the very foundations of life itself, you need maximum creativity instead of the default self-organizing consensus emergence.
“There is creativity-limiting pressure to conform to ‘correctness’ everywhere. Paradigmatic correctness in science, corporate correctness in business, social correctness, political correctness, and so on. As antidotes to chaos these can serve a purpose but for exceptional intellectual work to blossom they are quite counterproductive. There is something to be said for Elon Musk’s assertion that ‘excellence is the only passing grade’.
“The difference to the future wellbeing of sentient entities between the QRI becoming something pretty much overall OK-ish, and the QRI becoming something of great excellence, is probably bigger than between the corresponding outcomes for Tesla Motors.
“The creativity of the team is down to this exact thing: The qualia computing of the gut feeling getting to enjoy a haven of liberty all too rare elsewhere.”
On (2) we can say that to “be the adult in the room” is also equally important. As Michael Johnson puts it, “it’s important to keep track of the metadata of ideas.” One cannot incentivize smart people to share ideas if they don’t feel like others will recognize who came up with them. While not everyone pays close attention to who says what in conversation, we think that a reasonable level of attention on this is necessary to align incentives. Obviously too much emphasis on Idea Ownership can be stifling and generate excessive overhead. So having open conversations about (failed) attribution while assuming the best from others is also a key practice to make Idea Ownership good for everyone.
And finally, (3) is the principle of “Information Responsibility”. This is the “wise old person” energy and attitude that deeply cares about the effects that information has on the world. Simple heuristics like “information wants to be free” and the ideal of a fully “open science” are pleasant to think about, but in practice they may lead to disasters on a grand scale. From gain of function research in virology to analysis of water pipes in cities, cutting-edge research can at times encounter novel ways of causing great harm. It’s imperative that one resists the urge to share them with the world for the sake of signaling how smart one is (which is the default path for the vast majority of people and institutions!). One needs to cultivate the wisdom to consider the long-term vision and only share ideas one knows are safe for the world. Here, of course, we need a balance: too much emphasis on information security can be a tactic to thwart other’s work and may be undully onerous and stifling. Striking the right balance is the goal.
The full synergy between these three principles of Cognitive Sovereignty, I think, is what allows people to think new thoughts.
I also cover two new key ideas: (a) Canceling Paradise and (b) Multi-level Selection and how it interacts with Organizational Freedom.
Towards an Enlightened Phenomenology of Scent: What’s an Aromatic Fougère at the Deepest Level? (link)
In this talk we analyze the perfume category called “AromaticFougère” in order to illustrate the aesthetic of “Qualiacore” in its myriad manifestations.
Definition: The Qualiacore Aesthetic is the practice and aspiration to describe experiences in new, meaningful, and non-trivial ways that are illuminating for our understanding of the nature of consciousness.
At a high-level, we must note that the classic ways of describing the phenomenology of scents tend to “miss the target”. Learning about the history, cultural imports, associations, and similarities between perfumes can be fun to do but it does not advance an accurate phenomenological impression of what it is that we are talking about. And while reading about the “perfume notes” of a composition can place it in a certain location relative to other perfumes, such note descriptions usually give you a false sense of understanding and familiarity far removed from the complex subtleties of the state-space of scent. So how can we say new, meaningful, and non-trivial things about a smell?
Note-wise, Aromatic Fougères are typically described as the combination of herbs and spices (the aromatic part) with the core Fougère accord of oak moss, lavender/bergamot, geranium, and coumarin. In this video I offer a qualiacore-style analysis of how these “notes” interact with one another in order to form emergent gestalts. Here we will focus on the phenomenal character of these effects with an emphasis on bringing analogies from dynamic system behavior and energy-management techniques within the purview of the Symmetry Theory of Valence.
In the end, we arrive at a phenomenological fingerprint that cashes out in a comparison to the psychoactive effect of “Calvin Klein” (cocaine + ketamine*), which blends both stimulation and dissociation at the same time – a rather interesting effect that can be used to help you overcome awkwardness barriers in everyday life. “Smooth out the awkwardness landscape with Drakkar Noir!”
I also discuss the art of perfumery in light of QRI’s 8 models of art:
Art as family resemblance (Semantic Deflation)
Art as Signaling (Cool Kid Theory)
Art as Schelling-point creation (a few Hipster-theoretical considerations)
Art as cultivating sacred experiences (self-transcendence and highest values)
Art as exploring the state-space of consciousness (ϡ☀♘🏳️🌈♬♠ヅ)
Art as something that messes with the energy parameter of your mind (ꙮ)
Art as puzzling valence effects (emotional salience and annealing as key ingredients)
Art as a system of affective communication: a protolanguage to communicate information about worthwhile qualia (which culminates in Harmonic Society).
Are Others Conscious? Solving the Problem of Other Minds with Mindmelding and Phenomenal Puzzles (link)
How do you know for sure that other people (and non-human animals) are conscious?
The so-called “problem of other minds” asks us to consider whether we truly have any solid basis for believing that “we are not alone”. In this talk I provide a new, meaningful, and non-trivial solution to the problem of other minds using a combination of mindmelding and phenomenal puzzles in the right sequence such that one can gain confidence that others are indeed “solving problems with qualia computing” and in turn infer that they are independently conscious.
This explanatory style contrasts with typical “solutions” to the problem of other minds that focus on either historical, behavioral, or algorithmic similarities between oneself and others (e.g. “passing a Turing test”). Here we explore what the space of possible solutions looks like and show that qualia formalism can be a key to unlock new kinds of understanding currently out of reach within the prevailing paradigms in philosophy of mind. But even with qualia formalism, the radical skeptic solipsist will not be convinced. Direct experience and “proof” is necessary to convince a hardcore solipsist since intellectual “inferential” arguments can always be mere “figments of one’s own imagination”. We thus explore how mindmelding can greatly increase our certainty of other’s consciousness. However, skeptical worries may still linger: how do you know that the source of consciousness during mindmelding is not your brain alone? How do you know that the other brain is conscious while you are not connected to it? We thus introduce “phenomenal puzzles” into the picture: these are puzzles that require the use of “qualia comparisons” to be solved. In conjunction with a specific mindmelding information sharing protocol, such phenomenal puzzles can, we argue, actually fully address the problem of other minds in ways even strong skeptics will be satisfied with. You be the judge! 🙂
~Qualia of the Day: Wire Puzzles~
Many thanks to: Everyone who has encouraged the development of the field of qualia research over the years. David Pearce for encouraging me to actually write out my thoughts and share them online, Michael Johnson for our multi-year deep collaboration at QRI, and Murphy-Shigematsu for pushing me over the edge to start working on “what I had been putting off” back in 2014 (which was the trigger to actually write the first Qualia Computing post). In addition, I’d like to thank everyone at the Stanford Transhumanist Association for encouraging me so much over the years (Faust, Karl, Juan-Carlos, Blue, Todor, Keetan, Alan, etc.). Duncan Wilson for the beautiful times discussing these matters. Romeo Stevens for the amazing vibes and high-level thoughts. And of course everyone at QRI, especially Quintin Frerichs, Andrew Zuckerman, Anders and Maggie, and the list goes on (Mackenzie, Sean, Hunter, Elin, Wendi, etc.). Likewise, everyone at Qualia Computing Networking (the closed facebook group where we discuss a lot of these ideas), our advisors, donors, readers, and of course those watching these videos. Much love to all of you!
“Tout comprendre, c’est tout pardonner” – To understand all is to forgive all.
Paradigm-Shifting Qualia Research Methods: How to Take Exotic States of Consciousness Seriously (link)
“New scientific paradigms essentially begin life as conspiracy theories, noticing the inconsistencies the previous paradigm is suppressing. Early adopters undergo a process that Kuhn likens to religious deconversion.” – Romeo Stevens
The field of consciousness research lacks a credible synthesis of what we already know about the mind. One key thing that is holding back the science of consciousness is that it’s currently missing an adequate set of methods to “take seriously” the implications of exotic states of consciousness. Imagine a physicist saying that “there is nothing about water that we can learn from studying ice”. Silly as it may be, the truth is that this is the typical attitude about exotic consciousness in modern neuroscience. And even with the ongoing resurgence of scientific interest in psychedelics, outside of QRI and Ingram’s EPRC there is no real serious attempt at mapping the state-space of consciousness in detail. This is to a large extent because we lack the vocabulary, tools, concepts, and focus at a paradigmatic level to do so. But a new paradigm is arriving, and the following 8 new research methods and others in the works will help bring it about:
Taking Exotic States of Consciousness Seriously (e.g. when a world-class phenomenologist says that 3D-printed Poincaré projections of hyperbolic honeycombs make the visual system “glitch” when on DMT the rational response is to listen and ask questions rather than ignore and ridicule).
High-Quality Phenomenology: Precise descriptions of the phenomenal character of experience. Core strategy: useful taxonomies of experience, a language to describe generalized synesthesia (multi-modal coherence), and a rich vocabulary to convey the statistical regularities of textures of qualia (cf. generalizing the concept of “mongrels” in the neuroscience of visual perception to all other modalities).
Phenomenology Club: Critical mass of smart and rational psychonauts.
Psychedelic Turk for Psychophysics: Real-time psychedelic task completion.
Generalized Wada Test: What happens when half of your brain is on LSD and the other half is on ketamine?
Resonance-Based Hedonic Mapping: You are a network of coupled oscillators. Act like it!
Pair Qualia Cartography: Like pair programming but for exploring the state-space of consciousness with non-invasive neurostimulation.
Cognitive Sovereignty: Furthering a culture that has a “Yes &” approach to creativity, keeps track of meta-data, and takes responsibility for the information it puts out.
Are Higher Dimensions Real? From Numerology to Precision Xenovalence – 4 5 6 8 10 12 16 20 24 32 (link)
Many people report experiencing “higher dimensions” during deep meditation and/or psychedelic experiences. Vaporized DMT in particular reliably produces this effect in a large percentage of users. But is this an illusion? Is there anything meaningful to it? What could possibly be going on?
In this video we provide a steel man (or titanium man?) of the idea that higher dimensions are *real* in a new, meaningful, and non-trivial sense.
We must emphasize that most people who believe that DMT experiences are “higher dimensional” interpret their experiences within a direct realist framework. Meaning that they think they are “tuning in” to other dimensions, that some secret sense organ capable of perceiving the etheric realm was “activated”, that awareness into divine realms became available to their soul, or something along those lines. In brief, such interpretations operate under the notion that we can perceive the world directly somehow. In this video, we instead work under the premise that we live in a compact world-simulation generated by our nervous system. If DMT gives rise to “higher dimensional experiences”, then such dimensions will be phenomenological in nature.
We thus try to articulate how it can be possible for an *experience* to acquire higher dimensions. An important idea here is that there is a trade-off between degrees of freedom and geometric dimensions. We present a model where degrees of freedom can become interlocked in such a way that they functionally emulate the behavior of a *virtual* higher dimension. As exemplified by the “harmonograph”, one can indeed couple and interlock multiple oscillators in such a way that one generates paths of a point in a space that is higher-dimensional than the space inhabited by any of the oscillators on their own. More so, with a long qualia decay, one can use such technique to “paint” entire images in a *virtual* high dimensional canvas!
High-quality detailed phenomenology of DMT by rational psychonauts strongly suggests that higher virtual dimensions are widely present in the state. Also, the unique valence properties of the state seem to follow what we could call a “generalized music theory” where the “vibe” of the space is the net consonance between all of the metronomes in it. We indeed see a duality between spatial symmetry and temporal synchrony with modality-specific symmetries (equivariance maps) constraining the dynamic behavior.
This, together with the Symmetry Theory of Valence (Johnson), makes the search for “special divine numbers” suddenly meaningful: numerological correspondences can illuminate the underlying makeup of “heaven worlds” and other hedonically-loaded states of mind!
I conclude with a discussion about the nature of “highly-meaningful experiences”. In light of all of these frameworks, meaning can be understood as a valence effect that arises when you have strong consonance between abstract (narrative and symbolic), emotional, and sensory fields all at once. A key turning point in your life combined with the right emotion and the right “sacred space” can thus give rise to “peak meaning”. The key to infinite bliss!
Thumbnail Image Source: Petri G., Expert P., Turkheimer F., Carhart-Harris R., Nutt D., Hellyer P. J. and Vaccarino F. 2014 Homological scaffolds of brain functional networks J. R. Soc. Interface.112014087320140873 – https://royalsocietypublishing.org/doi/full/10.1098/rsif.2014.0873
Solving the Phenomenal Binding Problem: Topological Segmentation as the Correct Explanation Space (link)
How can a bundle of atoms form a unified mind? This is far from a trivial question, and it demands an answer.
The phenomenal binding problem asks us to consider exactly that. How can spatially and temporally distributed patterns of neural activity contribute to the contents of a unified experience? How can various cognitive modules interlock to produce coherent mental activity that stands as a whole?
To address this problem we first need to break down “the hard problem of consciousness” into manageable subcomponents. In particular, we follow Pearce’s breakdown of the problem where we posit that any scientific theory of consciousness must answer: (1) why consciousness exists at all, (2) what are the set of qualia variety and values, and what is the nature of their interrelationships, (3) the binding problem, i.e. why are we not “mind dust”?, and (4) what are the causal properties of consciousness (how could natural selection recruit experience for information processing purposes, and why is it that we can talk about it). We discuss how trying to “solve consciousness” without addressing each of these subproblems is like trying to go to the Moon without taking into account air drag, or the Moon’s own gravitational field, or the fact that most of outer space is an air vacuum. Illusionism, in particular, seems to claim “the Moon is an optical illusion” (which would be true for rainbows – but not for the Moon, or consciousness).
Zooming in on (3), we suggest that any solution to the binding problem must: (a) avoid strong emergence, (b) side-step the hard problem of consciousness, (c) circumvent epiphenomenalism, and (d) be compatible with the modern scientific word picture, namely the Standard Model of physics (or whichever future version achieves full causal closure).
Given this background, we then explain that “the binding problem” as stated is in fact conceptually insoluble. Rather, we ought to reformulate it as the “boundary problem”: reality starts out unified, and the real question is how it develops objective and frame invariant boundaries. Additionally, we explain that “classic vs. quantum” is a false dichotomy, at least in so far as “classical explanations” are assumed to involve particles and forces. Field behavior is in fact ubiquitous in conscious experience, and it need not be quantum to be computationally relevant! In fact, we argue that nothing in experience makes sense except in light of holistic field behavior.
We then articulate exactly why all of the previously proposed solutions to the binding problem fail to meet the criteria we outlined. Among them, we cover:
Cellular Automata
Complexity
Synchrony
Integrated Information
Causality
Spatial Proximity
Behavioral Coherence
Mach Principle
Resonance
Finally, we present what we believe is an actual plausible solution to the phenomenal binding problem that satisfies all of the necessary key constraints:
10. Topological segmentation
The case for (10) is far from trivial, which is why it warrants a detailed explanation. It results from realizing that topological segmentation allows us to simultaneously obtain holistic field behavior useful for computation and new and natural regions of fields that we could call “emergent separate beings”. This presents a completely new paradigm, which is testable using elements of the cohomology of electromagnetic fields.
We conclude by speculating about the nature of multiple personality disorder and extreme meditation and psychedelic states of consciousness in light of a topological solution to the boundary problem. Finally, we articulate the fact that, unlike many other theories, this explanation space is in principle completely testable.
~Qualia of the Day: Acqua di Gio by Giorgio Armani and Ambroxan~
Qualia Computing: How Conscious States Are Used For Efficient And Non-Trivial Information Processing (link)
Why are we conscious?
The short answer is that bound moments of experience have useful causal and computational properties that can speed up information processing in a nervous system.
But what are these properties, exactly? And how do we know? In this video I unpack this answer in order to explain (or at least provide a proof of concept explanation for) how bound conscious states accomplish non-trivial speedups in computational problems (e.g. such as the problem of visual reification).
In order to tackle this question we first need to (a) enrich our very conception of computation, and (b) also enrich our conception of intelligence.
(a) Computation: We must realize that the Church-Turing Thesis conception of computation only cares about computing in terms of functions. That is, how inputs get mapped to outputs. But a much more general conception of computation also considers how the substrate allows for computational speed-ups via interacting inner states with intrinsic information. More so, if reality is made of “monads” that have non-zero intrinsic information and interact with one another, then our conception of “computation” must also consider monad networks. And in particular, the “output” of a computation may in fact be an inner bound state rather than just a sequence of discrete outputs (!).
(b) Intelligence: currently this is a folk concept poorly formalized by the instruments with which we measure it (primarily in terms of sequential logics-linguistic processing). But, alas, intelligence is a function of one’s entire world-simulation: even the shading of the texture of the table in front of you is contributing to the way you “see the world” and thus reason about it. So, an enriched conception of intelligence must also take into account: (1) binding, (2) the presence of a self, (3) perspective-taking, (4) distinguishing between the trivial and significant, and (5) state-space of consciousness navigation.
Now that we have these enriched conceptions, we are ready to make sense of the computational role of consciousness: in a way, the whole point of “intelligence” is to avoid brute force solutions by instead recruiting an adequate “self-organizing principle” that can run on the universe’s inherent massively parallel nature. Hence, the “clever” way in which our world-simulation is used: as shown by visual illusions, meditative states, psychedelic experiences, and psychophysics, perception is the result of a balance of field forces that is “just right”. Case in point: our nervous system utilizes the holistic behavior of the field of awareness in order to quickly find symmetry elements (cf. Reverse Grassfire Algorithm).
As a concrete example, I articulate the theoretical synthesis QRI has championed that combines Friston’s Free Energy Principle, Atasoy’s Connectome-Specific Harmonic Waves, Carhart-Harris’ Entropic Disintegration, and QRI’s Symmetry Theory of Valence and Neural Annealing to shows that the nervous system is recruiting the self-organizing principle of annealing to solve a wide range of computational problems. Other principles to be discussed at a later time.
To summarize: the reason we are conscious is because being conscious allows you to recruit self-organizing principles that can run on a massively parallel fashion in order to find solutions to problems at [wave propagation] speed. Importantly, this predicts it’s possible to use e.g. a visual field on DMT in order to quickly find the “energy minima” of a physical state that has been properly calibrated to correspond to the dynamics of a worldsheet in that state. This is falsifiable and exciting.
I conclude with a description of the Goldilock’s Zone of Oneness and why to experience it.
The folks at QRI have recently given a string of presentations. Before I jump to the main topic of this article, I will briefly mention a few of these presentations that are likely to be of interest to the reader. Quintin Frerichs recently presented about Neural Annealing at the Wellcome Center for Human Neuroimaging at UCL. I recently presented about Mapping the Heaven Realms at the SSC/ACX online meetup organized by Joshua Fox. Also, a few weeks ago I participated in the U.S. Transhumanist Party Virtual Enlightenment Salon (the live conversation was so engaging we ended up talking for four hours). And finally, as the main topic of this article, the talk I gave at the Oxford Psychedelic Society on May 6th, 2021:
Healing Trauma with Neural Annealing: Is Annealing the Key Condition for Successful Psychedelic Psychotherapy?
Abstract of the Talk:
Mystical-type experiences mediate the therapeutic benefit of psychedelic-assisted psychotherapy (Griffiths, 2016; Ross, 2016; Yaden, 2020). In this talk we will explore why this may be the case and how we might improve this effect. On the one hand we can interpret the effect of mystical-type experiences through the lens of belief and attitude change (Carhart-Harris and K. J. Friston, 2019). But beliefs that are not deeply felt are unlikely to have much of an effect. Why would mystical-type experiences in particular cause deeply felt belief changes? On the other hand, one can interpret the effect of these experiences to be healing at a low-level: they allow the reconfiguration of the microstructure of our experience in beneficial ways. The first lens suggests that these experiences change what we believe and think about, whereas the second lens suggests that the experiences change how we feel. In this talk we will unify these two lenses and argue that neural annealing (Johnson, 2019) underlies high-level changes in beliefs and attitudes as well as low-level microstructural healing of internal representations. This paradigm ties together the puzzling effects of mystical-type experiences by interpreting them as uniquely strong versions of neural annealing. We suggest that traumatic memories are indeed implemented with low-level microstructural dissonance in the internal representations (Gomez-Emilsson, 2017). Not only are they about something bad, they also feel bad. In turn, neural annealing targeted towards these internal representations can heal and transform them from dissonance-producing to consonance-producing. More so, neural annealing also enhances the information propagation fidelity of the nervous system, allowing the healed representations to update the state of the rest of the nervous system. This insight, along with careful study of annealing dynamics under psychedelics, can allow us to target the annealing process in order to heal these internal representations more effectively. We conclude with empirical predictions for what to look for in order to identify the signatures of successful neural annealing under psychedelics and suggest methods to piggyback on the natural well-trodden paths of beneficial annealing (e.g. meditation, yoga, music, creativity) to optimize such experiences.
Why This Is Important
There are two main reasons I think sharing this work as soon as possible with the world is very beneficial. The first is that it genuinely advances a new model for how to optimize psychedelic therapy. In particular, I think that being aware of this model can be very useful for people who intend to self-medicate with psychedelics. Although there is a vast literature for psychedelic psychotherapy, it is largely laced with metaphysical views, implicit background philosophical assumptions incompatible with science, and in my view, questionable ethics.
The second point is that this model can be used as an antidote to psychedelic brainwashing. If a friend of yours has been taking a lot of psychedelics (with or without a shaman) and now has a web of unfalsifiable beliefs that do not seem to help them, this presentation might work to help them understand what is going on in their mind. Additionally, once you understand how psychedelic annealing works, you can anticipate irrational belief changes based on the texture of the experience and proactively prevent them. Indeed, being showered with bliss consciousness by a DMT entity might be healing to your nervous system, but alas, it also anneals in you a conviction in the independent existence of such entities. With this presentation, the hope is that you can keep the healing while discarding the irrational beliefs (because you will now be able to see how they are implemented!). If we want to indeed create a truth-seeking psychonaut shanga (aka. a Super-Shulgin Academy) we *have to* have an adequate model of how exotic states of consciousness modify one’s belief networks. The penalty of not modeling this accurately leads to the loss of one’s critical faculties. I have seen it happen (see Appendix A & B), and I am not impressed. We can do better.
Model (1) has the problem that the researchers themselves are not exposed to the exotic states of consciousness, and as such, what they write and theorize about comes from second-hand accounts. More so, the bulk of the direct phenomenological information the participants gain access to is generally discarded as it goes through the low-dimensional information filters of standardized questionnaires. There is no real buildup of phenomenological information or an effort to integrate it across participants (participants don’t generally talk to each other). The model does excel at generating copious high-quality neuroimaging data.
Model (2) suffers from the problem that the idiosyncratic beliefs of the psychonaut tend to “anneal more deeply” (see the next slide for a more through description of this) with each trip. Unless they were to focus on the phenomenal character of the experience rather than the intentional content, what tends to happen is that specific high-level beliefs become energy sinks and they dominate the exploration. Recall how DMT’s world-sheet “crystallizes” around objects and ideas you can recognize. Thus, as you take psychedelics over and over, the realms of experience one goes to will tend to follow recurring themes along the lines of what the most successful energy sinks from previous experiences have been. The explorer usually does not develop technical models of the phenomenological effects, but rather, tends to focus on the metaphysical or philosophical implications of the experiences.
Model (3) is like that of a think tank. Ever since writing articles like How to Secretly Communicate with People on LSD, we have received a lot of correspondence from pretty smart people who enjoy exploring exotic states of consciousness. The multi-year dialogue between us and them and each other has resulted in a lot of generative model building for which we can then get feedback. Grounded in common background philosophical assumptions and a drive towards phenomenological accuracy, the type of output of this model tends to look much more like The Hyperbolic Geometry of DMT Experiences than either a neuroscience paper (model 1) or a book about the Earth Coincidence Control Office (model 2).
Which of these information-processing architectures would you use if you were trying to figure out the truth of how psychedelics work? If they were diagrams for a neural network architecture, which one do you think would model and integrate information most effectively? Ultimately, we should think of these models as complementary. But since model 3 is novel and largely unexplored, it might be sensible to pay attention to what it outputs.
(H/T Quintin Frerichs for this slide)
This slides illustrates the sort of topics and problems that a “Good Annealing Manual” would need to cover. As an integrated “energy management” strategy, such a manual would describe how to raise energy, how to dampen it, how to translate it from one domain into another, how to stabilize a state, how to get knocked out of an unhelpful limit cycle, and so on.
(H/T Quintin Frerichs for this slide)
Note: I should have cited Michael Schartner’s work (and more generally the work coming out of Anil Seth‘s lab which applies the predictive processing paradigm and neural network feature visualization to model the effects of psychedelics). Apologies for this omission. Importantly, all of that work (in addition to REBUS and SEBUS) lives at the computational level of analysis. What QRI is bringing into the picture is how the implementation level based on principles of harmonic resonance and the Symmetry Theory of Valence underlie predictive processing. More on this below.
One of the interesting ideas of Steven Lehar is applying the duality between standing wave patterns and resonant modes of objects to the brain. A lot of psychedelic phenomenology suggests that there is a duality between the vibe of the state and the geometric layout of the multi-modal hallucinations. In other words, each phenomenal object has a corresponding way of vibrating, and this is experienced as a holistic signature of such objects. (cf. Resonance and vibration of [phenomenal] objects). (See also: Hearing the shape of a drum).
In the context of this presentation, the most important idea of this slide is that the duality between standing wave patterns and the vibe of the experience showcases how symmetry and valence are related. Blissful “heavenly realms” on DMT are constructed in ways where the resonance of the phenomenal objects with each other is consonant and their structure is symmetrical. Likewise, the screechy and painful quality of the DMT “hell realms” comes along with asymmetries, discontinuities, and missing components in the phenomenal objects that make up experiences. The overall vibe of the space is the result of the intrinsic vibratory modes of each phenomenal object in addition to each of the possible interactions between them (weighted by their phenomenal distance). An analogy readily comes to mind of an orchestra and the challenges that come with making it sound consonant.
A good algorithmic theory of cognition will collect, unify, and simplify a lot of things that look like odd psychological quirks, and recast them as deeply intertwined with, and naturally arising out of, how our brains process information. I’m optimistic that Symmetry Theory will be able to do just this- e.g.,
* Cognitive dissonance happens when two (or more) patterns in your head are battling for your neural real estate, and they’re incompatible– i.e., they’re collectively dissonant/asymmetrical.
* Denial is what happens when your brain attempts to isolate/quarantine such patterns, and is actively working to prevent this tug-of-war for neurons.
This model implies that your brain can evaluate the “internal consistency/harmony” of a neural pattern, and reject it if there’s a negative result- and also the “simulated relative compatibility/harmony” of two neural patterns, and try to keep them isolated if there’s a negative result. I’d suggest the best way to understand this is in terms of projective geometry, resonance, and symmetry: i.e., to evaluate a pattern’s “internal harmony” and whether it ‘runs well (is stable) on existing hardware’, the brain uses principles of resonance to apply certain geometric projections (high-dimensional-to-lower-dimensional transformations) to the pattern to see if the result is stable (unchanged, or predictably oscillating, or still strongly resonant) under these transforms. Stable patterns are allocated territory; unstable ones (=dangerous neural code) are not. The internal mechanics of this will vary across brain areas (based on the specific resonance profile of each area) and emotional states, which might contribute to how certain types of information tend to end up in certain brain regions. Likewise, this could explain how moods coordinate information processing– by changing the resonance landscape in the brain, thus preferentially selecting for certain classes of patterns over others. A core implication of this model is that different kinds of dissonance will drive different kinds of behavior (feel like different kinds of imperatives), and based on what action is needed, a mood may create (or be the creation of) a certain kind of dissonance.
Now applying annealing to the above, we hypothesize that: (1) On the one hand, at the implementation level neural annealing works as a method to reduce dissonance by escaping local minima. (2) On the other hand, at the computational level simulated annealing can be used as a method to reduce prediction errors (cf. message passing and belief propagation). We hypothesize that there is a kind of duality between these two levels of abstraction. We are very interested in cleanly formalizing it so it can be empirically tested. But the facts seem to suggest that there is something here. What this duality says is that for any transformation that you do to the resonance network there will be a corresponding effect on the belief network and vice versa. For example, in this light, you will always find that denial or cognitive dissonance will come along with the phenomenology of “resistance” in one of its many guises (such as muscle tension, feelings of viscosity, or hardness). If you can address the muscle tension directly with progressive relaxation (or yoga, massage, etc.) you will also be implicitly addressing the integration of information into your world-model. At the same time, you may use specific beliefs in order to relax specific muscles, and some aspects of meditation may involve doing this to an extent (e.g. “now is all there is” and “the self is illusory” are beliefs that would seem to result in particular patterns of mental and physical relaxation).
We might succinctly explain how a resonance network trying to minimize dissonance could implement the free energy principle. Namely, we could maximize “accuracy – complexity” in the following way: If complex models require complex networks of resonance to be implemented, then there might be an inherent dissonance cost to complexity. More symmetrical configurations lower this cost, which makes more compact and coherent models preferable. At the same time, to take care of the accuracy, prediction errors themselves might be implemented with dissonance (e.g. via out-of-phase communication between layers of the hierarchy). Together, these two effects favor both accurate and simple models.
An interesting contrast that illustrates this duality between the computational and implementational level of abstraction is that between the effects of DMT and 5-MeO-DMT. Particularly, DMT seems to give rise to the chaotic generation of information and this can be seen in something as simple as the style of the tracer effects it induces (richly-colored flip-flopping between positive and negative afterimages). 5-MeO-DMT’s tracer effects are generally monochromatic and the same color as that of the input. (See: Modeling Psychedelic Tracers with QRI’s Psychophysics Toolkit: The Tracer Replication Tool).
We hypothesize that DMT’s effects at the implementation level can be understood as the result of competing clusters of coherence across the hierarchy, whereas the main attractors of 5-MeO-DMT seem to involve global coherence. Modulating the average synaptic path length in a system of coupled oscillators can give rise to this sort of effect. By randomly adding connections to a network of coupled oscillators one first sees an emergent state of many competing patches of synchrony, and then, after a threshold is crossed, one starts seeing global synchrony emerge. Despite both drugs making the brain “more interconnected”, the slight difference in just how interconnected it makes it, may be the difference between the colorful chaos of DMT and the peaceful nothingness of 5-MeO-DMT.
The competing clusters of coherence across the hierarchy can evolve to adapt to each other. The DMT realm is more of an ecosystem than it is a state per se (ex: Hyperspace Lexicon). And due to the duality between dissonance minimization and prediction error minimization, avoiding updating one’s belief in the direction of these realms being real causes intense cognitive dissonance. Some level of belief updating to fit the content of the hallucinations might be very difficult to resist. Indeed, the forced coherence across the layers of the hierarchy would be bypassing one’s normal ability to resist information coming from the lower layers.
On peak experiences such as those induced by 5-MeO-DMT, global coherence will generally have the effect of dissolving internal boundaries. In turn, due to the duality proposed, belief updating in the direction of extreme simplicity is very difficult to resist. Global annealing without sensorial chaos results in the minimization of model complexity; high accuracy is taken care of thanks to the low information content of the state. As a consequence, one experiences very high-valence, high-energy, high-symmetry states of consciousness that come along with belief updating towards ideas with close to zero information content.
The high-valence nature of the state can be very useful to heal dissonance in the network, so therapeutic benefits seem very promising (notwithstanding the somewhat forced belief updates the state induces).
Unfortunately a nearby attractor of the globally coherent states is when there are two incompatible coherent states competing with one another. This can result in extremely negative valence and belief updating in the direction of “everything being bad”.
We now see how the typical belief changes caused by these two drugs have a dual counterpart in how they feel. I am of the opinion that a commitment towards truth and careful attention to one’s state of mind can prevent (or at least substantially lessen) the epistemological failure modes of these drugs. But since this kind of model is not known by the general population, for most people these drugs do tend to act as “epistemological hand grenades”.
See Appendix A & B at the bottom of this article for examples of each of these failure modes.
Now on to the therapeutic applications: practicing loving-kindness meditation consistently for weeks before a trip seems to substantially change its phenomenal character. It feels that metta practice over time anneals a consonant metronome which can become massively amplified during a psychedelic experience. In turn, a brightly shinning metta metronome emits “healing waves of energy” within one’s world-simulation (I know how crazy this sounds!), which impact the contents of one’s subconscious in ways that reduces their internal dissonance.
Similar benefits can be obtained from other meditation practices, as long as their emphasis is on high-valence and coherent states of mind. See also: Buddhist Annealing (video).
Importantly, you can “work smart” if you manage to use the seeds of consonance as the nucleation sources for alignment cascades. This can heal at a very deep level, and it is what people are talking about when they say things like “all is love”.
A secular Good Annealing Manual would ideally have very detailed information for how to move around in the state-space of consciousness.
Apparently, equanimity is also highly beneficial during psychedelic experiences. But rather than merely repeating the mantras that everyone in the psychedelic community chants (“just let go”, “surrender”, “accept”), we can use a More Dakka approach and aim to maximize equanimity rather than merely invoking it. Taking psilocybin during a meditation retreat in which you do a lot of equanimity exercises will allow you to “let go” with much greater skill than what you could do in normal everyday life. As a result, one is able to “learn one’s lessons” with much greater ease and a lot less resistance. This, I think, is generally good. After all, the point is not to punish oneself, but to learn from one’s mistakes.
In turn, Shinzen Young says that experiencing pleasure with equanimity is very healing. By not grasping, one is letting the consonant waves propagate freely throughout one’s nervous system, which results in positive annealing. So a possible therapeutic modality might be to combine peak states together with high levels of equanimity. If we want to bump the therapeutic effect sizes of psychedelic psychotherapy, this is the sort of thing I consider to be very promising.
I conclude by providing some annealing targets that are generically good for one’s mental health. Practice them consistently before a psychedelic experience so that they can be the nucleation points of sane and hedonically beneficial psychedelic annealing. Being bathed by love is good. Being bathed by love and equanimity at the same time is even better. Being bathed by love and all Seven Factors of Awakening at the same time might be still even better. The ceiling of wholesome happiness is not currently known by science. It is probably much higher than we can imagine.
If you found this talk inspiring, generative, or clarifying for your own work, please cite it! If you want to see more work like this and help us transform the alchemy of consciousness into a chemistry of the mind, please consider donating to QRI. Every dollar takes us closer to being able to empirically test these models and use them to develop technology to alleviate suffering in bulk.
Thank you!!!
Appendix A: What Happens When You Take Too Much DMT – What Does Overfitting Look Like?
A case study of a psychiatrist case who self-medicated his depression with a regiment of 1g of DMT (along with MAOIs) and 4mg of clonazepam a day:
“On arrival, the patient was nonverbal, combative, and required six security guards to restrain him. When less restrictive measures failed, he was given propofol 1,000 mg IV, ketamine 500 mg IM, midazolam 5 mg IV, diazepam 20 mg IV, and fentanyl 4 mg IV with minimal effect.”
“Psychiatry was consulted after the patient’s delirium resolved and he was medically stabilized as he exhibited symptoms of mania and psychosis. He was pressured in his speech, hyperreligious, and delusional. He believed that demons were leeching into his soul and asked the medical staff for an exorcism. It was recommended that the patient be admitted to the behavioral health unit for mood stabilization.”
“He has been smoking it every day and night for the past 3 months that I know of. He sees these little beings everywhere and says they are trying to destroy his house pushing it over. He also says they spray mace and fairy dust and little balls in his face and other peoples too. He doesn’t believe that nobody else sees this happening, he says we have all been compromised and can’t be trusted. I’m worried about him and also his girlfriend that has to deal with him and he’s delusional. His daughter is scared to come home, his parents want to have him committed, and he doesn’t believe it has anything to do with dmt! He absolutely believes it is real.”
“He is always under the influence of DMT, he smokes it all day every day. He says it no longer makes him hallucinate like when he first tried it, now it just takes away pain . NOT TRUE!! it’s like now he believes that this altered state of mind is reality and he’s losing everything. He is even destroying his own house to get them out from behind the walls.the other night he stood up and started stabbing his ceiling saying he was going to get them. It’s very disturbing to see him like this.”
“He’s doing about the same. Last time I went to see him he was showing me how the moon was following him into his back yard and then back to the front yard . He also sees a bunch of drones in the sky that I can’t see. He still doesn’t believe that we can’t see the walls and countertops moving, or feel the fairy dust being sprayed in our faces.”
“It all culminated in one long, elaborate, and highly dramatic visionary experience in which I was essentially ‘recruited,’ initiated in some grand ceremony alongside a large group of others presumably in my same situation (which may have just been “actors” ). It was all part of some kind of vast organization, which could best be described as ‘universal consciousness transcendental cosmic hippie space religion.’ [Read Lehar’s warning against believing what the DMT entities tell you]. It all had a very attractive but vaguely cult-like Scientology kind of feel to it. They even had their own music (which was actually pretty cool; see my comments on “the director” in part 4 for more details), propaganda, regular meetings and rituals, the whole works. They even seemed to revere a deity of some sort, their version of The Source (more detail on that in part 5), but this whole experience was so full of illusion and misdirection that I have no idea what their ‘deity’ really was, nor their true relation to it.”
“I’ve gone on way to long already and need to start wrapping things up here, but long story short, in light of their new demands of allegiance, and through a separate series of bizarre synchronicities in ‘real life’ (what that means to me now, I have no idea) that I still can’t quite explain, I began to have some serious doubts and questions that needed answers. As I reflected on all that they had taught me, I began to realize that there were some major gaps in my knowledge, and that I had unwittingly filled in a lot of the blanks with my own speculation while assuming the picture I was being given was much more complete than it actually was. To summarize, over a series of increasingly confrontational and unpleasant experiences, I became less and less satisfied with their vague and evasive answers to my direct (and I think perfectly reasonable) questions, and we had something of a falling out, to put it very mildly. They eventually dropped all pretenses and flat-out turned on me, beginning a long period of harsh punishment.”
“The results weren’t pretty. Their facade began to crumble as I saw through more and more of what I now recognized as deceptive illusions. What truly lay behind it was hideous, repulsive, monstrously evil, relentlessly manipulative, filled with petty malicious intent, and not nearly as righteous, enlightened, or omnipotent as they pretended to be. I’m actually still pretty uncomfortable with going into detail regarding what followed, but suffice it to say that I’ve basically been to hell and back. They did everything they could to ‘punish’ me, and some of the things they came up with were uniquely and creatively traumatic. If they had put half as much effort and sophistication into ‘teaching’ me as they did into attacking and tormenting me, I probably would still be happily and obliviously under their control today, a fresh new convert of their admittedly impressive sci-fi space religion.”
“It took all the willpower I had just to stay focused and not become a completely broken wreck through all of this. Most of the ‘abilities’ I had acquired under their guidance gradually faded away over the course of a few weeks, with the exception of a number of lucid dream skills that I had picked up along the way. As I began to approach something resembling recovery, all kinds of memories and perspective started coming back to me that I had lost along the way (which may have been intentionally withheld from me). I felt like a toxic fog had been lifted from me, and everything looked so different now. I looked back on the last couple years of my life, especially the preceding four months or so, and was shocked to find that it wasn’t what I thought it was.”
“I had seen some mind-blowingly incredible things and progressed in so many ways in what I thought represented cognitive and spiritual development, but the consequences were now apparent. Without realizing it, my personality had changed so much, and not for the better. I had alienated myself from many of my close friends, my romantic relationship had suffered, I had been much more depressed than I wanted to admit, and I had spent way too much of my free time alone and in the dark, becoming obsessed with progressively darker and weirder esoteric knowledge. I had been able to maintain a token amount of social interaction, just enough to convince myself I was still ‘normal,’ but it frequently left me feeling drained, and bored with the mere ‘meat puppets’ in this material plane who were but a pale reflection of what existed beyond it.”
Appendix B: What Happens When You Take Too Much 5-MeO-DMT – What Does Underfitting Look Like?
Martin Ball: Another advocate of 5-MeO-DMT who claims that the highest truth is that we are all God, and that all of the hallucinatory content of DMT is egoic distraction from this truth (see what he thinks of Terence Mckenna). He, like many in this cluster, seems to believe that the only truth worth knowing about is oneness and that this can only be known directly, at first with 5-MeO-DMT, and then through a process of integration of the experiences into one’s everyday life. Here is an interview he did with Adeptus Psychonautica. Also, here is Leo talking to Martin (do you count one or two persons in that video?).
While I agree that oneness is really important (and indeed I have written extensively about philosophy of personal identity and I generally advocate for Open Individualism), I do not think that realizing we are God is going to solve everything. In particular, we still need ruthlessly pragmatic solutions to the problem of intense suffering.
Insofar as non-duality is used as a mood-enhancer, it seems to be unreliable. Oneness can lead to bad trips of loneliness, a fact that tends to be brushed off by its advocates. My assessment is that this effect is the result of negative valence rather than an inherent effect of the concept (or truth?) of oneness. Shaman Oak‘s Bad LSD Experience – NIRVANA SUCKS video is a rather typical version of this effect and it highlights its true underlying cause: since he took the LSD during a comedown from cocaine, his entire trip was colored by the negative valence of that state. The world “felt inherently lonely” because it had depression qualia all over it. Amplified and magnified through the kaleidoscopic funhouse of LSD’s annealing dynamics, such a feeling of loneliness can look universal and omniprevalent “no matter how you look at it”. But if you were to replace that feeling with something blissful, then the concept of oneness would be experienced as wonderful and enlightening. It is always important to remember the Tyranny of the Intentional Object: ideas and beliefs seem to us as having inherent goodness or badness, but how this is implemented under the surface relies on hedonic tone/valence “painting” those ideas. As David Pearce likes to say, “take care of happiness and the meaning of life will take care of itself”.
Counterexamples: We do know a number of people who have used these compounds extensively and who do not seem to exhibit noticeable underfitting or overfitting. In particular, we have interviewed someone who took 5-MeO-DMT in high doses everyday for six months and who does not seem to suffer from any serious epistemological issues (they contacted me because they had read my analysis of Gura’s month-long experiment and wanted to share their even more extreme experience). The same person has extensive experience (including daily use for months) with DMT, Salvia, DPT and their combinations. They can still hold a technically demanding job and sustain a family despite this. Needless to say, such a level of psychological robustness is exceedingly rare.
Appendix C: The Abstract of the Other Talks
DMTX as a 21st Century Mystery School
A talk by Carl Hayden Smith
This talk will focus on the prospects of being one of the first participants in the world to try DMTX (X=Extended) at Imperial College London (ICL). After being part of the DMT phase 1 and phase 2 trials (over the last 5 years) this research now moves into a whole new level of immersion. During this experiment the peak of the DMT state will be extended thanks to a continuous intravenous drip feeding of the entheogen. This arguably turns this ancient medicine into a new form of technology. Early findings of the research from Chris Timmerman (ICL) suggests that nnDMT produces the same brain signature as the dreaming state. During the extended state we may be better able to explore the hypothesis from Andrew Gallimore that nnDMT actually opens up an entirely novel, orthogonal reality.
The DMTX experiment potentially means that nnDMT could become the base layer of our subjective reality, being combined, exponentially, with everything in life. What are the implications of this? Is there a danger that the psychedelic state is being overly romanticised and that DMTX could be regarded as a new form of bio chemical VR? How will DMTX help with the integration problem? Maybe the problem of bringing our insight back from the liminal space isn’t that these experiences defy verbalization, but that our languages are not yet sufficient enough to describe these experiences.
Increased cortical signal diversity during psychedelic states and visually realistic neural network models of hallucinations
A talk by Michael Schartner
Global states of consciousness – such as general anaesthesia or REM sleep – can be characterised by metrics of signal diversity, showing that diverse cortical activity is a hallmark of consciousness. We found that signal diversity is elevated in classical psychedelic states, possibly explained by a larger repertoire of brain states – which would be in line with reports about openness, novel associations and levelled salience of all experiences during psychedelic states. This coarse description of the brain as a dynamical system with various degrees of diversity in activity is only one dimension to characterise such global states of consciousness. Neural network models of visual perception and its pharmacological perturbation may provide a more mechanistic model, showing how the balanced integration of prior and sensory information into conscious perception is regulated by serotonin.
Note: I am still open to e.g. the external reality of DMT beings. I find it unlikely, but evidence could convince me otherwise. We are not dogmatic about the models we present. Rather, they simply are the current “best fit” for the available evidence in conjunction with parsimony considerations (yes, we could even say that this model is what minimizes our free energy!). Cheers!
References (abstract & talk; Chicago Style):
Atasoy, S., Donnelly, I. and Pearson, J. (2016). Human brain networks function in connectome-specific harmonic waves. Nat Commun 7, 10340. https://doi.org/10.1038/ncomms10340
Atasoy, S., Roseman, L., Kaelen, M. et al. (2017). Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Sci Rep7, 17661. https://doi.org/10.1038/s41598-017-17546-0
Carhart-Harris, R. L. (2018). The entropic brain -revisited. Neuropharmacology142, 167–178. doi:10.1016/j.neuropharm.2018.03.010.
Carhart-Harris, R. L., and Friston, K. J. (2019). REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics. Pharmacol. Rev.71, 316–344. doi:10.1124/pr.118.017160.
Griffiths, R. R., Johnson, M. W., Carducci, M. A., Umbricht, A., Richards, W. A., Richards, B. D., Cosimano, M. P., and Klinedinst, M. A. (2016). Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. Journal of psychopharmacology (Oxford, England), 30(12), 1181–1197. https://doi.org/10.1177/0269881116675513
Lehar, S. (1999). Harmonic Resonance Theory: An Alternative to the “Neuron Doctrine” Paradigm of Neurocomputation to Address Gestalt properties of perception. http://slehar.com/wwwRel/webstuff/hr1/hr1.html [Accessed April 30, 2021].
Luppi, A. I., Vohryzek, J., Kringelbach, M. L., Mediano, P. A. M., Craig, M. M., Adapa, R., Carhart-Harris, R. L., Roseman, L., Pappas, I., Finoia, P., Williams, G. B., Allanson, J., Pickard, J. D., Menon, D. K., Atasoy, S., & Stamatakis, E. A. (2020). Connectome Harmonic Decomposition of Human Brain Dynamics Reveals a Landscape of Consciousness [Preprint]. Neuroscience. https://doi.org/10.1101/2020.08.10.244459
Ross, S., Bossis, A., Guss, J., Agin-Liebes, G., Malone, T., Cohen, B., Mennenga, S. E., Belser, A., Kalliontzi, K., Babb, J., Su, Z., Corby, P., & Schmidt, B. L. (2016). Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. Journal of psychopharmacology (Oxford, England), 30(12), 1165–1180. https://doi.org/10.1177/0269881116675512
Safron, A. (2020). “Strengthened Beliefs Under Psychedelics (SEBUS)? A Commentary on “REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics”” PsyArXiv. November 30. doi:10.31234/osf.io/zqh4b.
Yaden, D., and Griffiths, R. R. (2020) The Subjective Effects of Psychedelics Are Necessary for Their Enduring Therapeutic Effects. CS Pharmacol. Transl. Sci. 2021, 4, 2, 568–572 https://doi.org/10.1021/acsptsci.0c00194
Transcript from the last section of the 1983 BBC interview of Richard Feynman “Fun to Imagine” (excerpt starts at 55:52):
Interviewer presumably asks: What is it like to think about your work?
Well, when I’m actually doing my own things, that I’m working in the high, deep, and esoteric stuff that I worry about, I don’t think I can describe very well what it is like… First of all it is like asking a centipede which leg comes after which. It happens quickly and I am not exactly sure… flashes and stuff goes on in the head. But I know it is a crazy mixture of partial differential equations, partial solving of the equations, then having some sort of picture of what’s happening that the equations are saying is happening, but they are not as well separated as the words that I’m using. And it’s a kind of a nutty thing. It’s very hard to describe and I don’t know that it does any good to describe. And something that struck me, that is very curious: I suspect that what goes on in every man’s head might be very, very different. The actual imagery or semi-imagery which comes is different. And that when we are talking to each other at these high and complicated levels, and we think we are speaking very well and we are communicating… but what we’re really doing is having some kind of big translation scheme going on for translating what this fellow says into our images. Which are very different.
I found that out because at the very lowest level, I won’t go into the details, but I got interested… well, I was doing some experiments. And I was trying to figure out something about our time sense. And so what I would do is, I would count trying to count to a minute. Actually, say I’d count to 48 and it would be one minute. So I’d calibrate myself and I would count a minute by counting to 48 (so it was not seconds what I counted, but close enough), and then it turns out if you repeat that you can do very accurately when you get to 48 or 47 or 49, not far off you are very close to a minute. And I would try to find out what affected that time sense, and whether I could do anything at the same time as I was counting and I found that I could do many things, but couldn’t do other things. I could… For example I had great difficulty doing this: I was in university and I had to get my laundry ready. And I was putting the socks out and I had to make a list of how many socks, something like six or eight pair of socks, and I couldn’t count them. Because the “counting machine” was being used and I couldn’t count them. Until I found out I could put them in a pattern and recognize the number. And so I learned a way after practicing by which I could go down on lines of type and newspapers and see them in groups. Three – three – three – one, that’s a group of ten, three – three – three – one… and so on without saying the numbers, just seeing the groupings and I could therefore count the lines of type (I practiced). In the newspaper, the same time I was counting internally the seconds, so I could do this fantastic trick of saying: “48! That’s one minute, and there are 67 lines of type”, you see? It was quite wonderful. And I discovered many things I could read while I was… I could read while I was counting and get an idea of what it was about. But I couldn’t speak, say anything. Because of course, when I was counting I sort of spoke to myself inside. I would say one, two, three… sort of in the head! Well, I went down to get breakfast and there was John Tuckey, a mathematician down at Princeton at the same time, and we had many discussions, and I was telling him about these experiments and what I could do. And he says “that’s absurd!”. He says: “I don’t see why you would have any difficulty talking whatsoever, and I can’t possibly believe that you could read.” So I couldn’t believe all this. But we calibrated him, and it was 52 for him to get to 60 seconds or whatever, I don’t remember the numbers now. And then he’d say, “alright, what do you want me to say? Marry Had a Little Lamb… I can speak about anything. Blah, blah, blah, blah… 52!” It’s a minute, he was right. And I couldn’t possibly do that, and he wanted me to read because he couldn’t believe it. And then we compared notes and it turned out that when he thought of counting, what he did inside his head is that when he counted he saw a tape with numbers, that did clink, clink, clink [shows with his hand the turning and passing of a counting tape], and the tape would change with the numbers printed on it, which he could see. Well, since it’s sort of an optical system that he is using, and not voice, he could speak as much as he wanted. But if he wanted to read then he couldn’t look at his clock. Whereas for me it was the other way.
And that’s where I discovered, at least in this very simple operation of counting, the great difference in what goes on in the head when people think they are doing the same thing! And so it struck me therefore, if that’s already true at the most elementary level, that when we learn about mathematics, and the Bessel functions, and the exponentials, and the electric fields, and all these things… that the imagery and method by which we are storing it all and the way we are thinking about it… could be it really if we get into each other’s heads, entirely different? And in fact why somebody has sometimes a great deal of difficulty understanding when you are pointing to something which you see as obvious, and vice versa, it may be because it’s a little hard to translate what you just said into his particular framework and so on. Now I’m talking like a psychologist and you know I know nothing about this.
Suppose that little things behaved very differently than anything that was big. Anything that you are familiar with… because you see, as the animal evolves, and so on, as the brain evolves, it gets used to handling, and the brain is designed, for ordinary circumstances. But if the gut particles in the deep inner workings whereby some other rules and some other character they behave differently, they were very different than anything on a large scale, then there would be some kind of difficulty, you know, understanding and imagining reality. And that is the difficulty we are in. The behavior of things on a small scale is so fantastic, it is so wonderfully different, so marvelously different than anything that behaves on a large scale… say, “electrons act like waves”, no they don’t exactly. “They act like particles”, no they don’t exactly. “They act like a kind of a fog around the nucleus”, no they don’t exactly. And if you would like to get a clear sharp picture of an animal, so that you could tell exactly how it is going to behave correctly, to have a good image, in other words, a really good image of reality I don’t know how to do it!
Because that image has to be mathematical. We have mathematical expressions, strange as mathematics is I don’t understand how it is, but we can write mathematical expressions and calculate what the thing is going to do without actually being able to picture it. It would be something like a computer that you put certain numbers in and you have the formula for what time the car will arrive at different destinations, and the thing does the arithmetic to figure out what time the car arrives at the different destinations but cannot picture the car. It’s just doing the arithmetic! So we know how to do the arithmetic but we cannot picture the car. No, it’s not a hundred percent because for certain approximate situations a certain kind of approximate picture works. That it’s simply a fog around the nucleus that when you squeeze it, it repels you is very good for understanding the stiffness of material. That it’s a wave which does this and that is very good for some other phenomena. So when you are working with certain particular aspect of the behavior of atoms, for instance when I was talking about temperature and so forth, that they are just little balls is good enough and it gives us a very nice picture of temperature. But if you ask more specific questions and you get down to questions like how is it that when you cool helium down, even to absolute zero where there is not supposed to be any motion, it’s a perfect fluid that hasn’t any viscosity, has no resistance, flows perfectly, and isn’t freezing?
Well if you want to get a picture of atoms that has all of that in it, I can’t do it, you see? But I can explain why the helium behaves as it does by taking my equations and showing that the consequences of them is that the helium will behave as it is observed to behave, so we now have the theory right, but we haven’t got the pictures that will go with the theory. And is that because we are limited and haven’t caught on to the right pictures? Or is that because there aren’t any right pictures for people who have to make pictures out of things that are familiar to them? Let’s suppose it’s the last one. That there’s no right pictures in terms of things that are familiar to them. Is it possible then, to develop a familiarity with those things that are not familiar on hand by study? By learning about the properties of atoms and quantum mechanics, and practicing with the equations, until it becomes a kind of second nature, just as it is second nature to know that if two balls came towards each other they’d mash into bits, you don’t say the two balls when they come toward each other turn blue. You know what they do! So the question is whether you can get to know what things do better than we do today. You know as the generations develop, will they invent ways of teaching, so that the new people will learn tricky ways of looking at things and be so well trained that they won’t have our troubles with picturing the atom? There is still a school of thought that cannot believe that the atomic behavior is so different than large-scale behavior. I think that’s a deep prejudice, it’s a prejudice from being so used to large-scale behavior. And they are always seeking to find, to waiting for the day that we discover that underneath the quantum mechanics, there’s some mundane ordinary balls hitting, or particles moving, and so on. I think they’re going to be defeated. I think nature’s imagination is so much greater than man’s, she’s never gonna let us relax.
Excerpt from Rhythms of the Brain (2006) by György Buzsáki (pgs. 168-170)
The paramount advantage of synchronization by oscillation is its cost-effectiveness. No other known mechanism in the physical world can bring about synchrony with so little investment. What do I mean by declaring that synchrony by oscillation is cheap? Let me illustrate the cost issue first with a few familiar examples from our everyday life. You have probably watched leisurely strolling romantic couples on a fine evening in a park or on the beach. Couples holding hands walk in perfect unison, whereas couples without such physical link walk out of step. You can do this experiment yourself. Just touching your partner’s finger will result in your walking in sync in a couple of cycles. Unless your partner is twice as tall or short as you, it costs pretty much the same effort to walk in sync as out of sync. Once you establish synchronous walking, it survives for quite some time even if physical contact is discontinued. If both of you are about the same height and have a similar step size, you will stay in sync for a long distance. In other words, synchronization by oscillation requires only an occasional update, depending on the frequency differences and precision of the oscillators. Two synchronized Patek Philippe vintage timepieces can tick together for many weeks, and quartz watches fare even better.
A much larger scale example of synchrony through oscillation is rhythmic clapping of hands, an expression of appreciation for superior theater and opera performances in some countries. Clapping always starts as a tumultuous cacophony but transforms into synchronized clapping after half a minute or so. Clapping synchrony builds up gradually and dies away after a few tens of seconds. Asynchronous and synchronous group clapping periods can alternate relatively regularly. An important observation, made by Zoltán Néda at the Babeș-Bolyai University, Romania, and his colleagues, is that synchronized clapping increases the transient noise during the duty cycle, but it actually diminishes the overall noise (Neda et al. 2000).* The explanation for the noise decrease during the synchronized clapping phase is the simple fact that everyone is clapping approximately half as fast during the synchronous compared with the nonsynchronous phase. Oscillatory entrainment nevertheless provides sharp surges of sound energy at the cost of less overall muscular effort. The waxing and waning nature of rhythmic hand clapping is reminiscent of numerous transient oscillatory events in the brain, especially in the thalamocortical system. Similar to hand clapping, the total number of spikes emitted by the participating neurons and the excitatory events leading to spiking may be fewer during these brain rhythms than during comparable nonrhythmic periods. A direct test of this hypothesis would require simultaneous recordings from large numbers of individual neurons. Indirect observations, using brain imaging methods, however, support the idea.**
Perhaps the most spectacular example of low-energy coupling, known to all physics and engineering majors, is the synchronization of Christiaan Huygen’s pendulum clocks. Huygen’s striking observation was that when two identical clocks were hung next to each other on the wall, their pendula became time-locked after some period. Synchrony did not happen when the clocks were placed on different walls in the room. Huygen’s clocks entrained because the extremely small vibrations of the wall that held both clocks were large enough that each rhythm affected the other. The physical reason for synchrony between two oscillators is relatively simple, and solid math exists to explain the phenomenon.*** However, extrapolation from two oscillators to the coupling behavior of large numbers of oscillators is not at all straightforward. Imagine that, in a cylinder-shaped room, 10 clocks are placed on the wall equidistant from one another, each started at a different time. In a second, much larger room, there are 100 clocks. Finally, in a giant arena, we hang 10,000 identical clocks on the wall. As with Huygen’s two clocks, each clock in the rooms has neighbors on each side, and these clocks influence the middle clock. Furthermore, in the new experiment, there are many distant neighbors with progressively less influence. However, the aggregate effects of more distant clocks must be significant, especially if they become synchronous. Do we expect that synchronous ticking of all clocks will develop in each room? Various things can happen, including traveling waves of synchrony or local buildup of small or large synchronous groups transiently. Only one thing cannot occur: global synchrony.
I know the answer because we did an analogous experiment with Xiao-Jing Wang and his student Caroline Geisler. We built a network of 4,000 inhibitory interneurons.**** When connectivity in the network mimicked local interneuron connections in the hippocampus, all we could see were some transient oscillations involving a small set of neurons. On the other hand, when the connections were random, a situation difficult to create in physical systems, a robust population oscillation emerged. So perfect harmony prevailed in a network with no resemblance to the brain but not with what appeared to be a copy of a local interneuronal network. The problem was the same as with the clocks on the wall: neurons could affect each other primarily locally. To reduce the synaptic path length of the network, we replaced a small subset of neurons with neurons with medium- and long-range connections. Such interneurons with medium- and long-range connections do indeed exist (see Cycle 3). The new, scale-free network ticked perfectly. Its structure shared reasonable similarities with the anatomical wiring of the hippocampus and displayed synchronized oscillations, involving each member equally, irrespective of their physical distance. The reason why our small-world-like artificial network synchronized is because it exploited two key features: few but critical long-range connections that reduced the average synaptic path length of the network and oscillatory coupling, which required very little energy. Analogously, cortical networks may achieve their efficacy by exploiting small-world-like organization at the anatomical level (Cycle 2) and oscillatory synchrony at the functional level. There is synchrony for (almost) free.
* Most of the observations were taken in the small underground Kamra (Chamber) Theater of Budapest. Global and local noise was measured by microphones above the audience and placed next to a spectator, respectively. Rhythmic group clapping emerges between 12 and 25 seconds. Average global noise intensity, integrated over 3-second time windows, indicates decreased energy spending by the audience during the rhythm despite large surges of noise.
** The BOLD signal (see Cycle 4) decreases over large cortical areas during both alpha dominance (Laufs et al., 2003) and thalamocortical spike-and-wave epilepsy (Salek-Haddadi et al., 2002), demonstrating that the metabolic cost of neuronal activity associated with increased neuronal synchrony may, in fact, be less than during nonrhythmic states.
*** For the English translation of Huygen’s original letter about the “sympathy” of clocks, see Pikovsky et al. (2001).
**** In reality, the issue we addressed was quite different from the clocks on the wall because none of the 4,000 interneurons was an oscillator. Instead, their interactions formed one single clock (Buzsáki et al., 2004). Coupling of numerous oscillators have been analyzed mathematically, but these mathematical models lack the physical constraints of axon conduction delays; therefore, they cannot be directly applied to coupling of brain oscillators (Kuramoto, 2984; Mirollo and Strogatz, 1990). For the coupling of two identical oscillators with realistic axon conduction delays, see Traub et al. (1996) and Bibbig et al. (2002).
See also:
5-MeO-DMT vs. N,N-DMT – Interestingly, 5-MeO-DMT seems to lead to global synchrony (and thus the melting of internal boundaries, the feeling of complete oneness with the universe) whereas N,N-DMT instead seems to give rise to powerful clusters of synchrony which are constantly competing against each other (thus creating partitions in the mind and the sense of “an other”, aka. machine elves). It would be fascinating to figure out why this difference emerges at the level of functional changes to the brain’s network topology as induced by each drug.
Neural Annealing – provides a model of emotional updating involving global synchronization via an annealing process.
QC Coronavirus Edition: Preventing Pandemics by Living on Toroidal Planets and Other Cocktail Napkin Ideas – here we present the concept of “scale-specific network geometry” as a possible tool to create bottlenecks for the exponential growth of a pandemic in a social network. That said, scale-specific geometry may also be used in populations of neurons in order to prevent specific types of synchronous behavior. This seems like a very fertile area of research.
“QRI Law of Transhumanism”: The overall motivation of humans to solve social and mental problems will remain much higher than the motivation to solve physics problems. The human performance in solving social and mental problems will remain much lower than the performance in solving physics problems. This continues until social and mental problems become physics problems.
A follow-up for the more nerdy audience could perhaps be how QRI seeks to resolve the confusion about individualism:
It often turns out that parsimony is a more useful guiding principle in science than naïve realism. This includes naïve realism about what constitutes parsimony. All relevant conditions must be taken into account, and some conditions are unknowns, which blurs the picture. Occam’s razor is powerful but more like a Samurai sword: you need great skill to use it well.
Compare the state-space of consciousness with the state-space of chemistry known to humans: there is biochemistry and there is other chemistry. They manifest quite differently. However, parsimony favors that at the fundamental level of organization things reduce to a small set of rules which are the same for all of chemistry. This is now known to indeed be the case but was not always so. Rather, it tended to be assumed that some extra factor, a “life-force”, had to be involved when it comes to biochemistry.
Biochemistry has been evolutionarily selected for performance on a most formidable problem. That of self-replicating a self-replicator. It takes a large number of steps in the process and high preciseness at each step. Only particular sequences of steps lead to normal cell function, and things are always open to getting corrupted. Take viruses, for instance.
Normal function of a brain is somewhat analogous to normal function of a cell. Evolution has selected for brains which produce the experience of continuity as a unique agent self. This is probably one of the harder tasks that conscious intelligence has solved, corresponding to the advanced parts necessary for reproduction in a cell. It is probably about as unusual in the state-space of consciousness as cellular replication is in the state-space of chemistry. However, the state naïvely feels like it is foundational to everything, which can make you confused when reflecting upon it. It can get even more confusing when you consider the strong possibility that valenced experiences of “good or bad” are much more commonplace in the state-space, perhaps more like transfer of electric charge is commonplace in chemistry.
Self-replicating a self-replicator
You can test this by altering (mental) system properties via meditation or psychedelics. Is “individuality” or “valence” more persistent under perturbation? It’s much harder to get rid of valence, and indeed, the highly altered state of a brain on high doses of 5-MeO-DMT gets rid of the agent self altogether but preserves and even enhances valence, interestingly more often in the positive than the negative direction. It’s like jumping from biochemistry to pyrotechnics.
Self-less 5-MeO-DMT “void”: The state is as different and exotic from normal everyday evolved consciousness as the chemistry of explosive pyrotechnics is to evolved biochemistry.
Naïve realism would hold that the sensations of “one-ness” experienced in certain highly altered states of consciousness feel the way they do because they somehow expand to include other entities into a union with yourself. What is likely to really be going on could be the opposite: there is no “self” as a reality fundament but rather a local complex qualia construct that is easy to interfere with. When it (and other detail) goes away there is less mental model complexity left. A reduction in the information diversity of the experience. Take this far enough and you can get states like “X is love” where X could be anything. These can feel as if they reveal hidden truths, for you obviously had not thought that way before, right? “X is love, wow, what a cosmic connection!”
Letter VII: Fractional Crystallization to Enhance Qualia Diversity
Some more chemistry: is there in qualia state-space something analogous to fractional crystallization? When a magma solidifies relatively rapidly, most of the minor elements stay in solid solution within a few major mineral phases. You get a low diversity assemblage. When the magma solidifies slowly it can yield a continuum of various unique phases all the way down to compounds of elements that were only present at ppb levels in the bulk. Crucially, for this to work well, a powerful viscosity reducer is needed. Water happens to fit the bill perfectly.
Consider the computational performance of the process of solidification of a thousand cubic kilometer plutonic magma with and without an added cubic kilometer of water. The one with the added water functions as a dramatically more efficient sorting algorithm for the chemical element constituents than the dry one. The properties of minor minerals can be quite different from those of the major minerals. The spectrum of mineral physical and chemical properties that the magma solidification produces is greatly broadened by adding that small fraction of water. Which nature does on Earth.
It resembles the difference between narrow and broad intelligence. Now, since the general intelligence of humans requires multiple steps at multiple levels, which takes a lot of time, there might need to be some facilitator that plays the role water does in geology. Water tends to remain in liquid form all the way through crystallization, which compensates for the increase in viscosity that takes place on cooling, allowing fractional crystallization to go to completion in certain pegmatites.
It seems that, in the brain, states become conscious once they “crystallize” into what an IIT-based model might describe as feedback loops. (Some physicalist model this as standing waves?). Each state could be viewed as analogous to a crystal belonging to a mineral family and existing somewhere on a composition spectrum. For each to crystallize as fast and distinctly as possible, there should be just the right amount of a water activity equivalent. Too much and things stay liquid, too little and no unique new states appear.
It may perhaps be possible to tease out such “mental water” by analyzing brain scan data and comparing them with element fractionation models from geochemistry?
Eliezer Yudkowsky has pointed out that something that is not very high hanging must have upgraded the human brain so that it became able to make mental models of things no animal would (presumably) even begin to think of. Something where sheer size would not suffice as an explanation. It couldn’t be high hanging since the evolutionary search space available between early hominids and homo sapiens is small in terms of individuals, generations, and genetic variability. Could it be a single factor that does the job as crystallization facilitator to get the brain primed to produce a huge qualia range? For survival, the bulk of mental states would need to remain largely as they are in other animals, but with an added icing on the cake which turned out to confer a decisive strategic advantage.
It should be low hanging for AI developers, too, but in order to find it they may have to analyze models of qualia state-space and not just models of causal chains in network configurations…
Letter VIII: Tacking on the Winds of Valence
We just thought of something on the subjects of group intelligence and mental issues. Consider a possible QRI framing: valence realism is key to understanding all conscious agency. The psyche takes the experienced valence axis to be equal to “the truth” about the objects of attention which appear experientially together with states of valence. Moment to moment.
Realism coupled with parsimony means it is most likely not possible for a psyche to step outside their experience and override this function. (Leaving out the complication of non-conscious processes here for a moment). But of course learning does exist. Things in psyches can be re-trained within bounds which differ from psyche to psyche. New memories form and valence set-points become correspondingly adjusted.
Naïvely it can be believed that it is possible to go against negative valence. If you muster enough willpower, or some such. Like a sailboat moving against the wind by using an engine. But what if it’s a system which has to use the wind for everything? With tacking, you can use the wind to move against the wind. It’s more advanced, and only experienced sailors manage to do it optimally. Advanced psyches can couple expectations (strategic predictive modeling) with a high valence associated with the appropriate objects that correlate with strategic goals. If strong enough, such valence gives a net positive sum when coupled with unpleasant things which need to be “overcome” to reach strategic goals.
You can “tack” in mental decision space. The expert psycho-mariner makes mental models of how the combinatorics of fractal valence plays out it in their own psyche and in others. Intra- and inter-domain valence summation modeling. Not quite there yet but the QRI is the group taking a systematic approach to it. We realize that’s what social superintelligences should converge towards. Experiential wellbeing and intelligence can be made to work perfectly in tandem for, in principle, arbitrarily large groups.
It is possible to make a model of negative valence states and render the model to appear in positive valence “lighting”. Sadism is possible, and self-destructive logic is possible. “I deserve to suffer so it is good that I suffer”. The valence is mixed but as long as the weighted sum is positive, agency moves in the destructive direction in these cases. Dysfunction can be complicated.
But on the bright side, a formalism that captures the valence summation well enough should be an excellent basis for ethics and for optimizing intelligences for both agency and wellbeing. This extends to group intelligences. The weight carried by various instantiations of positive and negative valence is then accessible for modeling and it is no longer necessary to consider it a moral imperative to want to destroy everything just to be on the safe side against any risk of negative experience taking place somewhere.
Is it possible to tack on the winds of group valence?
At this early stage we are however faced with the problem of how influential premature conclusions of this type can be, and how much is too much. Certain areas in philosophy and ideology are, to most people, more immediately rewarding than science and engineering, and cheaper, too. But more gets done by a group of scientists who are philosophically inspired than by a group of philosophers who are scientifically inspired.
The following essay was recently published in the Berlin-based art magazine Art Against Art (issue). Below you will find models 3 and 4 (out of 8). I will be sharing 2 new models each week until I’ve shared all of them (see part 1/4).
3. Schelling Point Creation
[Psychoanalysis teaches us:] When somebody complains, always be careful and try to find, identify, what type of additional pleasure, satisfaction, does the act of complaining itself bring to you. We all, when we complain, almost always, find a perverse satisfaction in the act of complaining itself.
– Slavoj Zizek (2019)
I certainly feel compelled to complain about the tyranny of genetic fitness signaling in art. That said, people who excel at games who are not played by many people will have an incentive to undermine the popular games and frame their favorite game as somehow superior. Why are Hipsters and Nerds allied against Cool Kids? Because the Cool Kids can decide on a whim that the games the Hipsters and Nerds play are uncool and not worthy of public fitness displays. Even if they happen to be of superb quality!
In many cases, the exploration of uncommon games can give rise to major innovations, so there is a utilitarian reason to promote some degree of exploration outside of the aesthetics that most people can enjoy.
This line of reasoning gives rise to a new interpretation for what a Hipster is. To be a Hipster is not, as popularly believed, to merely desire the uncommonly desired. The whole thrust of hipsterism is a promise of superior quality in at least some actually relevant area, even at the cost of severely reduced quality across the board. (Using an analogy from the field of statistics: Cool Kids favor L2 normalization[1] as it signal-boosts people who are well-rounded, whereas Hipsters and Nerds favor L1 normalization which improves the outlook for imbalanced minimax strategies).
Many people believe that all Hipsters are Cool Kids. Many believe something slightly weaker, which is that to be a Cool Kid you also need to be a Hipster. But in fact this is absolutely not the case, and it is a category error to think otherwise. Cool Kids and Hipsters were correlated when being Hipster had mainstream appeal. That is, Hipsters were cool when Cool Kids used to challenge people to show how Hipster they could be. But this should not be in any way an indication that Hipster aesthetics are intrinsically related to Cool Kids, for the same reason that e.g. Country Music, Normcore, or Bolshevik aesthetics are not intrinsically invented by Cool Kids. Hipsters are individual contributors to the frontier of culture. Indeed, it is rare to find a place that produces genuinely innovative content while also being saturated with Cool Kids.
Cool Kids, in large quantities, eventually form cliques that become voting blocs. These frustrate innovation by fully orthogonalizing what is socially cool from what is socially valuable. A Hipster under those circumstances tends to feel stifled. Cool Kids tend to be above-average in openness to experience, but they are rarely in the top 2% of openness to experience – more like one standard deviation above the mean. This is because they need to be open enough to look at new trends but also sufficiently closed to be able to relate to the bulk of the consumers of new trends. Genuine Hipsters are usually above the 98th percentile of openness to experience. In turn, the sexual attraction of some people is focused on this particular trait, and Hipsters compete at signaling it to the highest extent possible. In the process, they discover interesting things. But this does not mean they can sustainably stay cool in the eyes of the average person.
High openness to experience allows you to appreciate minimax players. It allows you to accept artists who are ridiculously good at making a specific point but lack talent in every other respect. Ultimately, the innovations produced by these extreme artistic explorations sometimes radically transform social reality.
In “Ads Don’t Work That Way”, Kevin Simler discusses how advertisement’s power is not through direct persuasion, but through shaping the landscape of cultural meaning. You don’t bring a 6-pack of Coronas to a party because the ads have subconsciously conditioned you to think that this beer in particular is more likely to make you and your friends feel like you are a chill group. Rather, you buy it in order to signal the fact that you see yourself as a chill person, and to bring that mindset to those who see you bring the product. It is by virtue of common knowledge that ads can do this; if every single person received a different custom-made AI-powered neural net ad, ads would stop having the function of shaping the landscape of cultural meaning, and perhaps lose a significant portion of their power.
Art, likewise, can also change the landscape of cultural meaning. In contrast to ads, art might perhaps be described as high-bandwidth low-distribution as opposed to high-distribution low-bandwidth. And to the extent that Hipsters discover new aesthetics, they are a big source of novel cultural Schelling points for subcultures to form around.
4. Creating Sacred Experiences
Art could be the next religion – Alex Grey
Below you will find an example of a piece that aims to create a sacred experience, which I recently encountered at the Santa Cruz Regional Burn. It is called Mementomorium, and it is a mixture of a sensory-deprivation-chamber and a symbolic self-burial experience crafted in order to simulate your own death and to attempt to see your life in its finitude. This art piece plays with one’s experience of time and sense of mortality, and helps you cut through delusion in order to re-interpret one’s time on earth as finite and priceless.
Mementomorium by Oleg Muir Lou Goff
Mementomorium by Oleg Muir Lou Goff
Why is the above art? Cool Kids might find this too morbid, and Hipsters are likely to see
it as too real. So what is the thrust behind artistic visions like the above?
Sacred experiences are an aspect of social and phenomenological reality. Art, it turns out, is deeply entwined with such sacredness. Now, much has been said about the sublime in relation to art. What else is there to say?
Life isn’t about finding yourself. Life is about creating yourself. – George Bernard Shaw
Contrary to the three previous models, here the culminating emotion that is sought is not the vindication of self, but rather, the elicitation of a sense of self-transcendence. This 4th model would say that art creates some of the most valuable experiences there are, because it makes us experience a sense of transcendence. And relative to the previous three models, this model is the first to consider art as involved in the quest of finding the ultimate answer, as opposed to merely providing incremental benefits to humanity.
Cutting to the chase, let us jump right into a list of possible intentional sources for phenomenal sacredness (i.e. the possible targets of art according to this model). From John Lilly’s “Simulations of God”, below you find the most common types of self-transcendence catalogued:
God As the Beginning
I Am God
God Out There
God As Him/Her/It
God As The Group
God As Orgasm and Sex
God As Death
God As Drugs
God As the Body
God As Money
God As Righteous Wrath
God As Compassion
God As War
God As Science
God As Mystery
God As the Belief, the Simulation, the Model
God As the Computer
God Simulating Himself
God As Consciousness-without-an-Object
God As Humor
God As Superspace, the Ultimate Collapse into the Black Hole, the End.
The Ultimate Simulation
God As the Diad
According to John Lilly’s view, each of us lives in a world simulation (whether this is generated by our brains or by a higher power is something Lilly himself went back and forth on for decades). He makes the case that our world simulation is run by a hierarchical chain of programs and meta-programs. One’s locus of control[2] is what he calls the Self Meta-Programmer, which is roughly equivalent to the ego (or at least a healthy one with high levels of self-control). Implicitly, however, the Self Meta-Programmer is subordinated to something higher, something he calls the Supra-Self Meta-Programmer (SSMP for short; see: “Programming and Metaprogramming in the Human Biocomputer”).[3] Our SSMPs are responsible for our notions of a higher power, higher values, and higher purpose. One’s religion is determined by the SSMPs to which one is subordinated. In Lilly’s view, it is one’s SSMPs that give rise to one’s understand- ing of God. And as the list above shows, there are many possible versions of God. That is, there are many possible meta-programmings for what the highest power, value, and purpose might be. In light of this, art as the pursuit of sacred experiences would not be restricted to a particular view of God. Rather, it encapsulates every possible notion of God – where the art that hits hardest is the art that resonates the most with one’s implicit conception of God.
A parallel here could be made with adult developmental models (such as those of Wilber’s Integral Theory, Kegan’s Evolving Self, Common’s and Richard’s Model of Hierarchical Complexity, etc.). At each level of development, one’s conception of the highest value transcends and includes those of the developmental stages below. Let’s take for example Integral Theory’s levels 4, 5, and 6. Level 4, aka. “Amber” (ethno- or nation-centric, values rules, discipline, faith in transcendent God or preordained high- er order, socially conservative, etc.) would derive a sense of sacredness from religious imagery, a nationalist spirit, and art that fosters traditional values. Level 5, aka. “Orange” (values science and rationality, democracy, individualism, materialism, entrepreneurship, etc.) gets off on experiences that bring about a reductionist scientific world picture compatible with self-reliance (“the world is made of atoms, and this, rather than being tragic, is an opportunity to have fine-grained control over the elements”). And Level 6, aka. “Green” (values pluralism and equality, multiple points of view, no true reality, embraces paradox, considers civil rights and environmentalism to be the frontier of culture, etc.) would find art projects that highlight the multiplicity of perspectives to be key to a sense of the sacred.[4] In this framework we can explain people’s negative reaction to art as a misfit between the developmental level of the target audience and the developmental level of the person who gets to experience it. Art targeted to people in a higher level of development than oneself will be perceived as heretical (e.g. postmodern art from the point of view of a traditionalist monotheist), while art targeted to people on a lower level of development than oneself will be perceived as childish or naïve (e.g. traditional religious iconography from the point of view of a scientific rationalist humanist). We could thus predict that if there are even higher developmental levels above ours, we will most likely think of the art targeted to them as deeply troubling.
The core quality of the experience is the feeling and recognition that oneness is truth. – Martin Ball on 5-MeO-DMT
At the upper levels of development, one could argue, we find sacredness based on concepts like pure consciousness, emptiness, and the clear white light of the void, etc. Famously, psychedelics, and in particular 5-MeO-DMT, seem to trigger direct experiences of this type of sacredness, which, according to its proponents, encapsulates all other kinds of transcendence within. If this is so, then we could anticipate that agents like 5-MeO-DMT will play an important role in the future of art as more people climb the ladder of adult psychological development.
On a social level, art as the pursuit of the sacred can be interpreted as an adaptive behavior aimed at taming envy. “Keeping up with the Joneses” is (artistically or other- wise) capable of diverting a group’s energy away from tasks that need to be done for individual and collective survival. When done in excess, wasteful displays of fitness make communities suffer. Runaway signaling has serious drawbacks, and sacred experiences seem to calm people down a bit, especially if the sense of sacredness comes along with social reassurance in the form of being able to hang out together without having to compete all the time, for Christ’s sake! Ahem. To be chill with one another.
As we saw with the previous models, this one, too, has its own aesthetic. The aesthetic of the model would perhaps manifest in the form of a museum that caters to every possible sense of sacredness. From aboriginal shamanism to monotheistic conservativism to punk rock concerts to transhumanism, this aesthetic recognizes the fact that sacredness is catalyzed by many different inputs depending on the psychological traits of the people who consume it.
[1] L1 and L2 normalization are ways of talking about how to describe the distance between points in a given space. L2 takes into account the mean squared difference along each dimension, whereas L1 simply uses the average difference in each dimension. If one is thinking about an ideal art piece within a given aesthetic, then using L2 would penalize very heavily exemplars that deviate from the archetype and generally favor well-roundedness, whereas an L1 normalization would accept large differences from the ideal along several dimensions as long as at least a fraction of the dimensions are very good.
[2] One’s locus of control is the part of our experience that comes with a felt sense of agency. That is, what feels like is in charge of determining the direction of one’s attention, intention, and behavior. Typically, a person’s locus of control is tied to their sense of self – or ego – but this is not true in the general case (as demonstrated by the shattered locus of control present in schizophrenia, and absent locus of control during states of depersonalization and derealization).
[3] According to John Lilly, a Supraself-Metaprogramer is an agent outside our locus of control that runs below our threshold of awareness and which ‘codes’ Supraself-Metaprograms. In turn, Supraself-Metaprograms are the mental “programs” that determine our sense of the highest values, which we typically inherit from our culture, influence from others, implicit historical beliefs, and so on.
[4] The colors of Integral Theory: Ken Wilber’s Integral theory was developed by identifying the commonalities among many different types of adult developmental models, spiritual stage maps, and meditation progression systems. The progression could broadly be described as a generalized expansion of the circle of compassion and increased acceptance of complexity. The color associated with each level is arranged from low-frequency to high-frequency parts of the spectrum. Specifically, infrared – archaic, magenta – tribal, red – warrior, amber – traditional, orange – modern, green – postmodern, teal/turquoise – integral, ultraviolet – post-integral.
Featured image credit: Mementomorium by Oleg Muir Lou Goff
* The full essay’s title is: Harmonic Society: 8 Models of Art for a Scientific Paradigm of Aesthetic Qualia
El Cielo is an album about lucid dreaming, dreamless sleep, and sleep paralysis. I love the fact that a rock band takes dreaming states of consciousness seriously enough to record an entire album dedicated to them. The line “I, too, once thought the radio played” reminded me of the times I’ve thought music was playing while I was experiencing a sleep paralysis.
Convincing auditory hallucinations do seem to be commonplace during such states, and ample anecdotal evidence supports this fact. The music experienced can either be (1) generated on the fly, (2) a faithful reproduction of a song one knows, (3) an altered version of a song one has heard and remembers, or even (4) a reproduction of a song one has heard but isn’t aware of at the time.
Examples of (1) and (2) are alluded to by this experience report found on the website DreamViews:
I love listening to music in sleep paralysis. The other day it was “I Love it Loud” by Kiss. The song that forms up is usually something fresh in my mind, maybe something listened to earlier. It’s like having headphones in, the sound quality is that good. What songs do you get?
And here is FlacidSteel from Reddit relating their experience:
That happens to me when I am in the right mindset to have a lucid dream. It normally comes as the sound of the radio next to my bed, or sometimes the TV. When I finally realize I didn’t leave the radio/TV on is when I realize I’m dreaming and gain control of my dream, almost like a reality check. One time I could have sworn the garbage men were outside and I woke up and it was hours before they came. Sleep paralysis hallucinations can be the most convincing and terrifying experienced.
I’ve experienced (3) but I haven’t seen an explicit account online. There is at least one account for (4): the music might have been stored in auditory memory but not semantically.
Sleep paralysis for me comes about once a month, and lucid dreams about every two months. Like many, I’ve heard Bach Cello Suite No.1. and other classics. I once heard the Harry Potter and the Philosopher’s Stone movie soundtrack playing perfectly for what seemed like many tracks. I think that learning about japanoise changed what my mind thought of as acceptable mood-setting melodies. So when I first started contemplating the emotional character of arbitrary sounds and I fell into a sleep paralysis my mind played a concert that combined noise music and Bach. That time I had the ability to modulate the ratio of noise music to Bach music and see how the various proportions changed the mood I experienced. Noise blunted the quality and emotional depth of Bach. On the other hand, noise did not make me commit to any particular pattern.
Our minds can create pleasant music on the fly featuring synthesizer sounds, flutes, pianos, duck quacks, elephant trumpets, and so on. Sleep paralysis allows you to experience a broad range of deeply emotional sounds of uncharted varieties. If you are in search of a bang rather than a slow burn, I would point you to the very start of the hypnagogic state. Once a sleep paralysis has gotten going it will creep for a good 5 to 15 minutes depending on your ability to reconfigure it to a better state. Some people use their extremities to bootstrap a wave of wakefulness by energizing little pulsed ripples in one’s toes and fingers until you have yourself wiggling out of the state. The methods to deal with the aftermath of entering a sleep paralysis are myriad. But let’s talk about the point before getting into it. There isn’t a better place to arrest a sleep paralysis than at its very beginning. It’s like a loud sound in the distance is trying to set the mood and seduces you so that you agree to abide by its emotional parameters. When you fully let go for a moment, that’s the real onset of a hypnagogic state. One can hear bangs right there – one can experience sounds with climaxes! Kitchen pots colliding, balloons exploding, water splashing, 80s drums. If you want to interrupt a sleep paralysis you have to contend with the mood-setting forces of the initial hypnagogic bang. Be brave; apply the mental move of either “internalism of meaning” or semantic nihilism and prevent the loud sound from convincing the rest of your experiential world to settle in on this “new world”. If you are quick to detect the hypnagogic sleight of hand and you act decisively, a sleep paralysis can be cut right at the nub.
During sleep paralysis, hearing any kind of sound is possible, really. The generality of it is remarkable. But perhaps more relevant still is the fact that dream music is often experienced as being emotionally compelling. “Like music is supposed to be heard”- I once thought as a kid waking up from a dream with a soundtrack. It is almost like the music is a manifestation of the mood one is in. Deep down, one’s own felt-sense of aliveness provides the constraints for the type of music that will resonate with you on a given night. In turn, having slept well through the night helps you internalize a certain mood, to imagine worlds within certain affective constraints. Some people remark that dream phenomenology is emotion-driven rather than emotion-responsive. What one sees is a projection of one’s mood, the semantic congruence being imposed in often symbolic and round-about ways. It’s like when you’ve had a conversation with someone a thousand times, so you come at it with a certain attitude. “Whatever you say, no, because I’ve seen it all and I’ve always said no. Try me.” And so the dream generates images and scenes and it is somehow always implied that what happens is part of the plot. Contradictions are quickly incorporated rather than a source of questioning. Sleep paralysis has this quality, but it also has the wakeful emotion-responsive quality too. So you are in the weird position of experiencing this strange feedback effect that has a certain mood, and is trying to express its excess energy in whatever way is possible, and you have your ego who is more critical and expects certain behaviors from the world. In a way you can think of this situation as having two metallic blades spinning very fast right next to each other, and they are tied together with a complicated arrangement of pulleys and levers. If you do it right and manage to keep the balance right, no harm done. But if you mess up you can experience super strange dissonant couplings and bizarre vibrations, few of which are strictly pleasant, and most of which are sharp and rather uncomfortable.
It’s no wonder some people get traumatized from experiencing sleep paralysis. I assume very few families have a parent-child vocabulary so well developed as to be able to carefully explain sleep paralysis phenomenology in a way that will work at pointing to the thing when it finally happens for the first time. Indeed, what is so stunning about the state is perhaps precisely that which people have the hardest time verbalizing. Namely, the fact that the phenomenal character of this state is almost entirely having to do with its ambiance rather than the intentional objects present. People come out of the state saying “there was a man on top of me” or “I felt like my arms were tied to the bed” which although true, completely misses the essential character of the state, the fact that it had this peculiar dreamy subtlety that embedded a mood into everything it touched. The often Halloweenesque scenic mist that comes with a sleep paralysis is rather paranormal-themed. On a bad night, the ambiance of a sleep paralysis can feel quite inviting to zombies, demons, and vultures as thought-forms. Likewise, the thought-forms can take the shape of angry sounds and dissonant percussions. It is incredible just how powerful of a filter hedonic tone exerts on reality. For that exact same reason, it does happen to be the case that some sleep paralyses are filled with extraordinary beauty and delight. The negative hedonic tone is not intrinsic to the state, although it may seem so at the time. For whatever reason, most humans’ experience with sleep paralysis is of the negative variety, but for most sufferers every once in a while the experience comes with pleasant qualities. Indeed, there is no reason to think that devoid of evolutionary selection pressures, exotic states of alertness should come with a pre-defined hedonic tone. On the contrary, I would expect them to be fully programmable.
Anyhow, some people, myself included, have experienced sleep paralysis in which the sounds heard were of extraordinary beauty. Most people will be skeptical that the music our brains can compose on the fly in a good mood sleep paralysis is genuinely good. I’ve gone through several stages on this matter. At first I treated it as self-evidently true that the music was beautiful. Then I questioned my memory and convinced myself that my brain was fabricating the music after the fact and that I was under the illusion that it was beautiful to begin with. Then I finally memorized a little melody I heard and it was nice but too small to say much about when I woke up, so I suspected again that my brain could compose great music if I just let it do it on that state. But finally I realized that the melody is in fact quite irrelevant. What matters is the mood, and the state itself, the good mood sleep paralysis itself is in a way expressing its positive valence via sounds, but if you were to listen to them in a normal state, they wouldn’t resonate in the same way. They wouldn’t produce the same peculiar echoing along one’s subjective arrow of time (cf. The Pseudo-Time Arrow).
Naïvely one may think: let us put musicians in good mood sleep paralysis and produce great music very easily. The problem is not that you will not get melodies and rhythms out. It’s that they will not create the same emotional impression they did in the person in the state in which they were generated.
Rather, what we ought to do is figure out in what ways good mood sleep paralysis states enable a wider range of emotional contrast for phenomenal music. That’s the real question. How can we import the (good) emotional depth of sleep paralysis into the wakeful state? Deep down I suspect this comes down to disabling the boredom mechanism. It is not so much that good mood sleep paralysis is great at composing music, and more that it can create a dreamy “enjoyment body” for the music. The thought-forms there can be entranced with harmonic patterns much more easily than those present while awake.
In the general case I suspect that the music produced is entirely new… it’s the emotional character that convinces you that it is so profound, not its resemblance to a previously heard soundtrack. To reword: the precise melody of the music one experiences on dream states is almost irrelevant to understanding that world of experience. It’s the resonant echoey quality of the state that gives such a remarkable emotional depth to those imagined/experienced sounds.
Perhaps the fact that dream music can be profoundly emotionally compelling is a special case of the more general feature of such states: that the brain is in some ways more resonant than usual. Music might be just one manifestation of this general effect, others being unlocking rarely-felt emotions, body vibrations, or even things like feeling that you are being electrocuted. If resonance is the key, we could predict that a sufficiently trained lucid dreamer will be able to generate musical experiences that are surprisingly simple in their complexity and yet stunningly deep in their emotional character. What is the CDNS of a dream state? This story doesn’t end here.
At this point in the trip I became something that I can not put into words… I became atemporal. I existed without time… I existed through an infinite amount of time. This concept is impossible to comprehend without having actually perceived it. Even now in retrospect it is hard to comprehend it. But I do know that I lived an eternity that night…
What is time? When people ask this question it is often hard to tell what they are talking about. Indeed, without making explicit one’s background philosophical assumptions this question will usually suffer from a lot of ambiguity. Is one talking about the experience of time? Or is one talking about the physical nature of time? What sort of answer would satisfy the listener? Oftentimes this implicit ambiguity is a source of tremendous confusion. Time distortion experiences deepen the mystery; the existence of exotic ways of experiencing time challenges the view that we perceive the passage of physical time directly. How to disentangle this conundrum?
Modern physics has made enormous strides in pinning down what physical time is. As we will see, one can reduce time to causality networks, and causality to patterns of conditional statistical independence. Yet in the realm of experience the issue of time remains much more elusive.
In this article we provide a simple explanatory framework that accounts for both the experience of time and its relation to physical time. We then sketch out how this framework can be used to account for exotic experiences of time. We end with some thoughts pertaining the connection between the experience of time and valence (the pleasure-pain axis), which may explain why exotic experiences of the passage of time are frequently intensely emotional in nature.
To get there, let us first lay out some key definitions and background philosophical assumptions:
Key Terminology: Physical vs. Phenomenal Time
Physical Time: This is the physical property that corresponds to what a clock measures. In philosophy of time we can distinguish between eternalism and presentism. Eternalism postulate that time is a geometric feature of the universe, best exemplified with “block universe” metaphor (i.e. where time is another dimension alongside our three spatial dimensions). Presentism, instead, postulates that only the present moment is real; the past and the future are abstractions derived from the way we experience patterns in sequences of events. The present is gone, and the future has yet to come.
Now, it used to be thought that there was a universal metronome that dictated “what time it is” in the universe. With this view one could reasonably support presentism as a viable account of time. However, ever since Einstein’s theory of relativity was empirically demonstrated we now know that there is no absolute frame of reference. Based on the fundamental unity of space and time as presented by general relativity, and the absence of an absolute frame of reference, we find novel interesting arguments in favor of eternalism and against presentism (e.g. the Rietdijk–Putnam argument). On the other hand, presentists have rightly argued that the ephemeral nature of the present is self-revealing to any subject of experience. Indeed, how can we explain the feeling of the passage of time if reality is in fact a large geometric “static” structure? While this article does not need to take sides between eternalism and presentism, we will point out that the way we explain the experience of time will in turn diminish the power of presentist arguments based on the temporal character of our experience.
Phenomenal Time: This is the way in which the passing of time feels like. Even drug naïve individuals can relate to the fact that the passage of time feels different depending on one’s state of mind. The felt sense of time depends on one’s level of arousal (deeply asleep, dreaming, tired, relaxed, alert, wide awake, etc.) and hedonic tone (depressed, anxious, joyful, relaxed, etc.). Indeed, time hangs heavy when one is in pain, and seems to run through one’s fingers when one is having a great time. More generally, when taking into account altered states of consciousness (e.g. meditation, yoga, psychedelics) we see that there is a wider range of experiential phenomena than is usually assumed. Indeed, one can see that there are strange generalizations to phenomenal time. Examples of exotic phenomenal temporalities include: tachypsychia (aka. time dilation), time reversal, short-term memory tracers, looping, “moments of eternity“, temporal branching, temporal synchronicities, timelessness, and so on. We suggest that any full account of consciousness ought to be able to explain all of these variants of phenomenal time (among other key features of consciousness).
Key Background Assumptions
We shall work under three key assumptions. First, we have indirect realism about perception. Second, we have mereological nihilism in the context of consciousness, meaning that one’s stream of consciousness is composed of discrete “moments of experience”. And third, Qualia Formalism, a view that states that each moment of experience has a mathematical structure whose features are isomorphic to the features of the experience. Let us unpack these assumptions:
1. Indirect Realism About Perception
This view also goes by the name of representationalism or simulationism (not to be confused with the simulation hypothesis). In this account, perception as a concept is shown to be muddled and confused. We do not really perceive the world per se. Rather, our brains instantiate a world-simulation that tracks fitness-relevant features of our environment. Our sensory apparatus merely selects which specific world-simulation our brain instantiates. In turn, our world-simulations causally covaries with the input our senses receive and the motor responses it elicits. Furthermore, evolutionary selection pressures, in some cases, work against accurate representations of one’s environment (so long as these are not fitness-enhancing). Hence, we could say that our perception of the world is an adaptive illusion more than an accurate depiction of our surroundings.
A great expositor of this view is Steve Lehar. We recommend his book about how psychonautical experience make clear the fact that we inhabit (and in some sense are) a world-simulation created by our brain. Below you can find some pictures from his “Cartoon Epistemology“, which narrates a dialogue between a direct and an indirect realist about perception:
This slideshow requires JavaScript.
Steve Lehar also points out that the very geometry of our world-simulation is that of a diorama. We evolved to believe that we can experience the world directly, and the geometry of our world-simulation is very well crafted to keep us under the influence of a sort of spell to makes us believe we are the little person watching the diorama. This world-simulation has a geometry that is capable of representing both nearby regions and far-away objects (and even points-at-infinity), and it represents the subject of experience with a self-model at its projective center.
We think that an account of how we experience time is possible under the assumption that experiential time is a structural feature of this world-simulation. In turn, we would argue that implicit direct realism about perception irrevocably confuses physical time and phenomenal time. For if one assumes that one somehow directly perceives the physical world, doesn’t that mean that one also perceives time? But in this case, what to make of exotic time experiences? With indirect realism we realize that we inhabit an inner world-simulation that causally co-varies with features of the environment and hence resolve to find the experience of time within the confines of one’s own skull.
2. Discrete Moments of Experience
A second key assumptions is that experiences are ontologically unitary rather than merely functionally unitary. The philosophy of mind involved in this key assumption is unfortunately rather complex and easy to misunderstand, but we can at least say the following. Intuitively, as long as one is awake an alert, it feels like one’s so-called “stream of consciousness” is an uninterrupted and continuous experience. Indeed, at the limit, some philosophers have even argued that one is a different person each day; subjects of experience are, as it were, delimited by periods of unconsciousness. We instead postulate that the continuity of experience from one moment to the next is an illusion caused be the way experience is constructed. In reality, our brains generate countless “moments of experience” every second, each with its own internal representation of the passage of time and the illusion of a continuous diachronic self.
Contrast this discretized view of experience with deflationary accounts of consciousness (which insist that there is no objective boundary that delimits a given moment of experience) and functionlist accounts of consciousness (which would postulate that experience is smeared across time over the span of hundreds of milliseconds).
The precise physical underpinnings of a moment of experience have yet to be discovered, but if monistic physicalism is to survive, it is likely that the (physical) temporal extension that a single moment of experience spans is incredibly thin (possibly no more than 10^-13 seconds). In this article we make no assumptions about the actual physical temporal extension of a moment of experience. All we need to say is that it is “short” (most likely under a millisecond).
It is worth noting that the existence of discrete moments of experience supports an Empty Individualist account of personal identity. That is, a person’s brain works as an experience machine that generates many conscious events every second, each with its own distinct coordinates in physical space-time and unique identity. We would also argue that this ontology may be compatible with Open Individualism, but the argument for this shall be left to a future article.
3. Qualia Formalism
This third key assumption states that the quality of all experiences can be modeled mathematically. More precisely, for any given moment of experience, there exists a mathematical object whose mathematical features are isomorphic the the features of the experience. At the Qualia Research Institute we take this view and run with it to see where it takes us. Which mathematical object can fully account for the myriad structural relationships between experiences is currently unknown. Yet, we think that we do not need to find the One True Mathematical Object in order to make progress in formalizing the structure of subjective experience. In this article we will simply invoke the mathematical object of directed graphs in order to encode the structure of local binding of a given experience. But first, what is “local binding”? I will borrow David Pearce’s explanation of the terms involved:
The “binding problem”, also called the “combination problem”, refers to the mystery of how the micro-experiences mediated by supposedly discrete and distributed neuronal edge-detectors, motion-detectors, shape-detectors, colour-detectors, etc., can be “bound” into unitary experiential objects (“local” binding) apprehended by a unitary experiential self (“global” binding). Neuroelectrode studies using awake, verbally competent human subjects confirm that neuronal micro-experiences exist. Classical neuroscience cannot explain how they could ever be phenomenally bound. As normally posed, the binding problem assumes rather than derives the emergence of classicality.
In other words, “local binding” refers to the way in which the features of our experience seem to be connected and interwoven into complex phenomenal objects. We do not see a chair as merely a disparate set of colors, edges, textures, etc. Rather, we see it as an integrated whole with fine compositional structure. Its colors are “bound” to its edges which are “bound” to its immediate surrounding space and so forth.
A simple toy model for the structure of an experience can be made by saying that there are “simple qualia” such as color and edges, and “complex qualia” formed by the binding of simple qualia. In turn, we can represent an experience as a graph where each node is a simple quale and each edge is a local binding connection. The resulting globally connected graph corresponds to the “globally bound” experience. Each “moment of experience” is, thus, coarsely at any rate, a network.
While this toy model is almost certainly incomplete (indeed some features of experience may require much more sophisticated mathematical objects to be represented properly), it is fair to say that the rough outline of our experience can be represented with a network-like skeleton encoding the local binding connections. More so, as we will see, this model will suffice to account for many of the surprising features of phenomenal time (and its exotic variants).
Each layer is connected itself in a geometric way, and connected to the previous and next layer with directed edges.
While both physical and phenomenal time pose profound philosophical conundrums, it is important to denote that science has made a lot of progress providing formal accounts of physical time. Confusingly, even Einstein’s theory of general relativity is time-symmetric, meaning that the universe would behave the same whether time was moving forwards or backwards. Hence relativity does not provide, on its own, a direction to time. What does provide a direction to time are properties like the entropy gradient (i.e. the direction along which disorder is globally increasing) and, the focus of this article, causality as encoded in the network of statistical conditional independence. This is a mouthful, let us tackle it in more detail.
In Timeless CausalityYudkowsky argues one can tell the direction of causality, (and hence of the arrow of time) by examining how conditioning on events inform us about other events. We recommend reading the linked article for details (and for a formal account read SEP’s entry on the matter).
In the image above we have a schematic representation of two measurables (1 & 2) at several times (L, M, and R). The core idea is that we can determine the flow of causality by examining the patterns of statistical conditional independence, with questions like “if I’ve observed L1 and L2, do I gain information about M1 by learning about M2?” an so on*.
Along the same lines Wolfram has done research on how time may emerge in rule-based network modifications automata:
Intriguingly, these models of time and causality are tenseless and hence eternalist. The whole universe works as a unified system in which time appears as an axis rather than a metaphysical universal metronome. But if eternalism is true, how come we can feel the passage of time? If moments of experience exist, how come we seem to experience movement and action? Shouldn’t we experience just a single static “image”, like seeing a single movie frame without being aware of the previous ones? We are now finally ready tackle these questions and explain how time may be encoded in the structure of one’s experience.
In the image above we contrast physical and phenomenal time explicitly. The top layer shows the physical state of a scene in which a ball is moving along a free-falling parabolic trajectory. In turn, a number of these states are aggregated by a process of layering (second row) into a unified “moment of experience”. As seen on the third row, each moment of experience represents the “present scene” as the composition of three slices of sensory input with a time-dependent dimming factor. Namely, the scene experienced is approximated with a weighted sum of three scenes with the most recent one being weighted the highest and the oldest the least.
In other words, at the coarsest level of organization time is encoded by layering the current input scene with faint after-images of very recent input scenes. In healthy people this process is rather subtle yet always present. Indeed, after-images are an omnipresent feature of sensory modalities (beyond sight).
A simple model to describe how after-images are layered on top of each other to generate a scene with temporal depth involves what we call “time-dependent qualia decay functions”. This function determines how quickly sensory (and internal) impressions fade over time. With e.g. psychedelics making this decay function significantly fatter (long-tailed) and stimulants making it slightly shorter (i.e. higher signal-to-noise ratio at the cost of reduced complex image formation).
With this layering process going on, and the Qualia Formalist model of experience as a network of local binding, we can further find a causal structure in experience akin to that in physical time (as explained in Timeless Causality):
Again, each node of the network represents a simple quale and each edge represents a local binding relationship between the nodes it connects. Then, we can describe the time-dependent qualia decay function as the probability that a node or an edge will vanish at each (physical) time step.
The rightmost nodes and edges are the most recent qualia triggered by sensory input. Notice how the nodes and edges vanish probabilistically with each time step, making the old layers sparsely populated.
With a sufficiently large network one would be able to decode the direction of causality (and hence of time) using the same principles of statistical conditional independence used to account for physical time. What we are proposing is that this underlies what time feels like.
Now that we understand what the pseudo-time arrow is, what can we do with it?
Explanatory Power: How the Pseudo-Time Arrow Explains Exotic Phenomenal Time
Let us use this explanatory framework on exotic experiences of time. That is, let us see how the network of local binding and its associated pseudo-time arrows can explain unusual experiences of time perception.
To start we should address the fact that tachypsychia (i.e. time dilation) could either mean (a) that “one experiences time passing at the same rate but that this rate moves at a different speed relative to the way clocks tick compared to typical perception” or, more intriguingly, (b) that “time itself feels slower, stretched, elongated, etc.”.
The former (a) is very easy to explain, while the latter requires more work. Namely, time dilation of the former variety can be explained by an accelerated or slowed down sensory sampling rate in such a way that the (physical) temporal interval between each layer is either longer or shorter than usual. In this case the structure of the network does not change; what is different is how it maps to physical time. If one were on a sensory deprivation chamber and this type of time dilation was going on one would not be able to say so since the quality of phenomenal time (as encoded in the network of local binding) remains the same as before. Perhaps compare how it feels like to see a movie in slow-motion relative to seeing it at its original speed while being perfectly sober. Since one is sober either way, what changes is how quickly the world seems to move, not how one feels inside.
The latter (b) is a lot more interesting. In particular, phenomenal time is often incredibly distorted when taking psychedelics in a way that is noticeable even in sensory deprivation chambers. In other words, it is the internal experience of the passage of time that changes rather than the layering rate relative to the external world. So how can we explain that kind of phenomenal time dilation?
Psychedelics
The most straightforward effect of psychedelics one can point out with regards to the structure of one’s experience is the fact that qualia seems to last for much longer than usual. This manifests as “tracers” in all sensory modalities. Using the vocabulary introduced above, we would say that psychedelics change the time-dependent qualia decay function by making it significantly “fatter”. While in sober conditions the positive after-image of a lamp will last between 0.2 and 1 second, on psychedelics it will last anywhere between 2 and 15 seconds. This results in a much more pronounced and perceptible change in the layering process of experience. Using Lehar’s diorama model of phenomenal space, we could represent various degrees of psychedelic intoxication with the following progression:
Strong dose (overwhelming layering/confusion between layers)
The first image is what one experiences while sober. The second is what one experiences if one takes, e.g. 10 micrograms of LSD (i.e. microdosing), where there is a very faint additional layer but is at times indistinguishable from sober states. The third, fourth, and fifth image represent what tracers may feel like on ~50, ~150, and ~300 micrograms of LSD, respectively. The last image is perhaps most reminiscent of DMT experiences, which provide a uniquely powerful and intense high-frequency layering at the onset of the trip.
In the graphical model of time we could say that the structure of the network changes by (1) a lower probability for each node to vanish in each (physical) time step, and (2) an even lower probability for each edge to vanish after each (physical) time step. The tracers experienced on psychedelics are more than just a layering process; the density of connections also increases. That is to say, while simple qualia lasts for longer, the connections between them are even longer-lasting. The inter-connectivity of experience is enhanced.
A low dose of a psychedelic will lead to a slow decay of simple qualia (colors, edges, etc.) and an even slower decay of connections (local binding), resulting in an elongated and densified pseudo-time arrow.
This explains why time seems to move much more slowly on psychedelics. Namely, each moment of experience has significantly more temporal depth than a corresponding sober state. To illustrate this point, here is a first-person account of this effect:
A high dose of LSD seems to distort time for me the worst… maybe in part because it simply lasts so long. At the end of an LSD trip when i’m thinking back on everything that happened my memories of the trip feel ancient.
When you’re experiencing the trip it’s possible to feel time slowing down, but more commonly for me I get this feeling when I think back on things i’ve done that day. Like “woah, remember when I was doing this. That feels like it was an eternity ago” when in reality it’s been an hour.
On low doses of psychedelics, phenomenal time may seem to acquire a sort of high definition unusual for sober states. The incredible (and accurate) visual acuity of threshold DMT experiences is a testament to this effect, and it exemplifies what a densified pseudo-time arrow feels like:
Just as small doses of DMT enhance the definition of spatial structures, so is the pseudo-time arrow made more regular and detailed, leading to a strange but compelling feeling of “HD vision”.
But this is not all. Psychedelics, in higher doses, can lead to much more savage and surrealistic changes to the pseudo-time arrow. Let us tackle a few of the more exotic variants with this explanatory framework:
Time Loops
This effect feels like being stuck in a perfectly-repeating sequence of events outside of the universe in some kind of Platonic closed timelike curve. People often accidentally induce this effect by conducting repetitive tasks or listening to repetitive sounds (which ultimately entrain this pattern). For most people this is a very unsettling experience since it produces a pronounce feeling of helplessness due to making you feel powerless about ever escaping the loop.
In terms of the causal network, this experience could be accounted for with a loop in the pseudo-time arrow of experience:
High Dose LSD can lead to annealing and perfect “standing temporal waves” often described as “time looping” or “infinite time”
Moments of Eternity
Subjectively, so-called “Moments of Eternity” are extremely bizarre experiences that have the quality of being self-sustaining and unconditioned. It is often described in mystical terms, such as “it feels like one is connected to the eternal light of consciousness with no past and no future direction”. Whereas time loops lack some of the common features of phenomenal time such as a vanishing past, moments of eternity are even more alien as they also lack a general direction for the pseudo-time arrow.
High Dose LSD may also generate a pseudo-time arrow with a central source and sink to that connects all nodes.
Both time loops and moments of eternity arise from the confluence of a slower time-dependent qualia decay function and structural annealing (which is typical of feedback). As covered in previous posts, as depicted in numerous psychedelic replications, and as documented in PsychonautWiki, one of the core effects of psychedelics is to lower the symmetry detection threshold. Visually, this leads to the perception of wallpaper symmetry groups covering textures (e.g. grass, walls, etc.). But this effect is much more general than mere visual repetition; it generalizes to the pseudo-time arrow! The texture repetition via mirroring, gyrations, glides, etc. works indiscriminately across (phenomenal) time and space. As an example of this, consider the psychedelic replication gifs below and how the last one nearly achieves a standing-wave structure. On a sufficient dose, this can anneal into a space-time crystal, which may have “time looping” and/or “moment of eternity” features.
Sober Input
Stimuli with tracers
Temporal Branching
As discussed in a previous post, a number of people report temporal branching on high doses of psychedelics. The reported experience can be described as simultaneously perceiving multiple possible outcomes of a given event, and its branching causal implications. If you flip a coin, you see it both coming up heads and tails in different timelines, and both of these timelines become superimposed in your perceptual field. This experience is particularly unsettling if one interprets it through the lens of direct realism about perception. Here one imagines that the timelines are real, and that one is truly caught between branches of the multiverse. Which one is really yours? Which one will you collapse into? Eventually one finds oneself in one or another timeline with the alternatives having been pruned. An indirect realist about perception has an easier time dealing with this experience as she can interpret it as the explicit rendering of one’s predictions about the future in such a way that they interfere with one’s incoming sensory stimuli. But just in case, in the linked post we developed an empirically testable predictions from the wild possibility (i.e. where you literally experience information from adjacent branches of the multiverse) and tested it using quantum random number generators (and, thankfully for our collective sanity, obtained null results).
High Dose LSD Pseudo-Time Arrow Branching, as described in trip reports where people seem to experience “multiple branches of the multiverse at once.”
Timelessness
Finally, in some situations people report the complete loss of a perceived time arrow but not due to time loops, moments of eternity, or branching, but rather, due to scrambling. This is less common on psychedelics than the previous kinds of exotic phenomenal time, but it still happens, and is often very disorienting and unpleasant (an “LSD experience failure mode” so to speak). It is likely that this also happens on anti-psychotics and quite possibly with some anti-depressants, which seem to destroy unpleasant states by scrambling the network of local binding (rather than annealing it, as with most euphoric drugs).
Loss of the Pseudo-Time Arrow (bad trips? highly scrambled states caused by anti-psychotics?)
In summary, this framework can tackle some of the weirdest and most exotic experiences of time. It renders subjective time legible to formal systems. And although it relies on an unrealistically simple formalism for the mathematical structure of consciousness, the traction we are getting is strong enough to make this approach a promising starting point for future developments in philosophy of time perception.
We will now conclude with a few final thoughts…
Hyperbolic Geometry
Intriguingly, with compounds such as DMT, the layering process is so fast that on doses above the threshold level one very quickly loses track of the individual layers. In turn, one’s mind attempts to bind together the incoming layers, which leads to attempts of stitching together multiple layers in a small (phenomenal) space. This confusion between layers compounded with a high density of edges is the way we explained the unusual geometric features of DMT hallucinations, such as the spatial hyperbolic symmetry groups expressed in its characteristic visual texture repetition (cf. eli5). One’s mind tries to deal with multiple copies of e.g. the wall in front, and the simplest way to do so is to stitch them together in a woven Chrysanthemum pattern with hyperbolic wrinkles.
Of special interest to us is the fact that both moments of eternity and time loops tend to be experienced with very intense emotions. One could imagine that finding oneself in such an altered state is itself bewildering and therefore stunning. But there are many profoundly altered states of consciousness that lack a corresponding emotional depth. Rather, we think that this falls out of the very nature of valence and the way it is related to the structure of one’s experience.
In particular, the symmetry theory of valence (STV) we are developing at the Qualia Research Institute posits that the pleasure-pain axis is a function of the symmetry (and anti-symmetry) of the mathematical object whose features are isomorphic to an experience’s phenomenology. In the case of the simplified toy model of consciousness based on the network of local binding connections, this symmetry may manifest in the form of regularity within and across layers. Both in time loops and moments of eternity we see a much more pronounced level of symmetry of this sort than in the sober pseudo-time arrow structure. Likewise, symmetry along the pseudo-time arrow may explain the high levels of positive valence associated with music, yoga, orgasm, and concentration meditation. Each of these activities would seem to lead to repeating standing waves along the pseudo-time arrow, and hence, highly valence states. Futurework shall aim to test this correspondence empirically.
The Qualia Research Institute Logo (timeless, as you can see)
Suppose that we do know L1 and L2, but we do not know R1 and R2. Will learning M1 tell us anything about M2? […]
The answer, on the assumption that causality flows to the right, and on the other assumptions previously given, is no. “On each round, the past values of 1 and 2 probabilistically generate the future value of 1, and then separately probabilistically generate the future value of 2.” So once we have L1 and L2, they generate M1 independently of how they generate M2.
But if we did know R1 or R2, then, on the assumptions, learning M1 would give us information about M2. […]
Similarly, if we didn’t know L1 or L2, then M1 should give us information about M2, because from the effect M1 we can infer the state of its causes L1 and L2, and thence the effect of L1/L2 on M2.
Thanks to: Mike Johnson, David Pearce, Romeo Stevens, Justin Shovelain, Andrés Silva Ruiz, Liam Brereton, and Enrique Bojorquez for their thoughts about phenomenal time and its possible mathematical underpinnings. And to Alfredo Valverde for pointing me to the Erlangen program, wh
This time David Chalmers brought the Meta-problem of Consciousness into the overall conversation by making a presentation about his paper on the topic. I think that this was a great addition to the conference, and it played beautifully as a tone-setter.
“The meta-problem of consciousness is (to a first approximation) the problem of explaining why we think that there is a problem of consciousness.”
And of all of his works, I would argue, discussing the meta-problem of consciousness is perhaps one of the things that will help advance the field of consciousness research the most. In brief, we are in sore need of an agreed-upon explanation for the reasons why consciousness poses a problem at all. Rather than getting caught up in unfruitful arguments at the top of the argumentative tree, it is helpful to sometimes be directed to look at the roots of people’s divergent intuitions. This tends to highlight unexpected differences in people’s philosophical background assumptions.
And the fact that these background assumptions are often not specified leads to problems. For example: talking past each other due to differences in terminology, people attacking a chain of reasoning when in fact their disagreement starts at the level of ontology, and failure to recognize and map useful argumentative isomorphisms from one ontology onto another.
Having the Meta-Problem of Consciousness at the forefront of the discussions, in my appraisal of the event, turned out to be very generative. Asking an epiphenomenalist, an eliminativist, a panprotopsychist, etc. to explain why they think their view is true seemed less helpful in advancing the state of our collective knowledge than asking them about their thoughts on the Meta-Problem of Consciousness.
(2) Qualia Formalism in the Water Supply
At the Qualia Research Institute we explicitly assume that consciousness is not only real, but that it is formalizable. This is not a high-level claim about the fact that we can come up with a precise vocabulary to talk about consciousness. It is a radical take on the degree to which formal mathematical models of experience can be discovered. Qualia Formalism, as we define it, is the claim that for any conscious experience, there exists a mathematical object whose properties are isomorphic to the phenomenology of that experience. Anti-formalists, on the other hand, might say that consciousness is an improper reification.
For formalists, consciousness is akin to electromagnetism: we started out with a series of peculiar disparate phenomena such as lightning, electricity, magnets, static-electricity, etc. After a lot of work, it turned out that all of these diverse phenomena had a crisp unifying mathematical underpinning. More so, this formalism was not merely descriptive. Light, among other phenomena, were hidden in it. That is, finding a mathematical formalism for real phenomena can be generalizable to even more domains, be strongly informative for ontology, and ultimately, also technologically generative (the computer you are using to read this article wouldn’t- and in fact couldn’t -exist if electromagnetism wasn’t formalizable).
For anti-formalists, consciousness is akin to Élan vital. People had formed the incorrect impression that explaining life necessitated a new ontology. That life was, in some sense, (much) more than just the sum of life-less forces in complex arrangements. And in order to account for the diverse (apparently unphysical) behaviors of life, we needed a life force. Yet no matter how hard biologists, chemists, and physicists have tried to look for it, no life force has been found. As of 2018 it is widely agreed by scientists that life can be reduced to complex biochemical interactions. In the same vein, anti-formalists about consciousness would argue that people are making a category error when they try to explain consciousness itself. Consciousness will go the same way as Élan vital: it will turn out to be an improper reification.
In particular, the new concept-handle on the block to refer to anti-formalist views of consciousness is “illusionism”. Chalmers writes on The Meta-Problem of Consciousness:
This strategy [of talking about the meta-problem] typically involves what Keith Frankish has called illusionism about consciousness: the view that consciousness is or involves a sort of introspective illusion. Frankish calls the problem of explaining the illusion of consciousness the illusion problem. The illusion problem is a close relative of the meta-problem: it is the version of the meta-problem that arises if one adds the thesis that consciousness is an illusion. Illusionists (who include philosophers such as Daniel Dennett, Frankish, and Derk Pereboom, and scientists such as Michael Graziano and Nicholas Humphrey) typically hold that a solution to the meta-problem will itself solve or dissolve the hard problem.
In the broader academic domain, it seems that most scientists and philosophers are neither explicitly formalists nor anti-formalists. The problem is, this question has not been widely discussed. We at QRI believe that there is a fork in the road ahead of us. That while both formalist and anti-formalist views are defensible, there is very little room in-between for coherent theories of consciousness. The problem of whether qualia formalism is correct or not is what Michael Johnson has coined as TheReal Problem of Consciousness. Solving it would lead to radical improvements in our understanding of consciousness.
What a hypothetical eliminativist about consciousness would say to my colleague Michael Johnson in response to the question – “so you think consciousness is just a bag of tricks?”: No, consciousness is not a bag of tricks. It’s an illusion, Michael. A trick is what a Convolutional Neural Network needs to do to perform well on a text classification task. The illusion of consciousness is the radical ontological obfuscation that your brain performs in order to render its internal attentional dynamics as a helpful user-interface that even a kid can utilize for thinking.
Now, largely thanks to the fact that Integrated Information Theory (IIT) is being discussed openly, qualia formalism is (implicitly) starting to have its turn on the table. While we believe that IIT does not work out as a complete account of consciousness for a variety of reasons (our full critique of it is certainly over-due), we do strongly agree with its formalist take on consciousness. In fact, IIT might be the only mainstream theory of consciousness that assumes anything resembling qualia formalism. So its introduction into the water supply (so to speak) has given a lot of people the chance to ponder whether consciousness has a formal structure.
(3) Great New Psychedelic Research
The conference featured the amazing research of Robin Carhart-Harris, Anil K. Seth, and Selen Atasoy, all of whom are advancing the frontier of consciousness research by virtue of collecting new data, generating computational models to explain it, and developing big-picture accounts of psychedelic action. We’ve already featured Atasoy’s work in here. Her method of decomposing brain activity into harmonics is perhaps one of the most promising avenues for advancing qualia formalist accounts of consciousness (i.e. tentative data-structures in which the information about a given conscious state is encoded). Robin’s entropic brain theory is, we believe, a really good step in the right direction, and we hope to formalize how valence enters the picture in the future (especially as it pertains to being able to explain qualia annealingon psychedelic states). Finally, Anil is steel-manning the case for predictive coding’s role in psychedelic action, and, intriguingly, also advancing the field by trying to find out in exactly what ways the effects of psychedelics can be simulated with VR and strobe lights (cf. Algorithmic Reduction of Psychedelic States, and Getting Closer to Digital LSD).
(4) Superb Aesthetic
The Science of Consciousness brings together a group of people with eclectic takes on reality, extremely high Openness to Experience, uncompromising curiosity about consciousness, and wide-ranging academic backgrounds, and this results in an amazing aesthetic. In 2016 the underlying tone was set by Dorian Electra and Baba Brinkman, who contributed with consciousness-focused music and witty comedy (we need more of that kind of thing in the world). Dorian Electra even released an album titled “Magical Consciousness Conference” which discusses in a musical format classical topics of philosophy of mind such as: the mind-body problem, brains in vats, and the Chinese Room.
The Science of Consciousness conference carries a timeless aesthetic that is hard to describe. If I were forced to put a label on it, I would say it is qualia-aware paranormal-adjacentpsychedelicmeta-cognitivefuturism, or something along those lines. For instance, see how you can spot philosophers of all ages vigorously dancing to the empiricists vs. rationalists song by Dorian Electra (featuring David Chalmers) at The End of Consciousness Party in this video. Yes, that’s the vibe of this conference. The conference also has a Poetry Slam on Friday in which people read poems about qualia, the binding problem, and psychedelics (this year I performed a philosophy of mind stand-up comedy sketch there). They also play the Zombie Blues that night, in which people take turns to sing about philosophical zombies. Here are some of Chalmers’ verses:
I act like you act
I do what you do
But I don’t know
What it’s like to be you
What consciousness is!
I ain’t got a clue
I got the Zombie Blues!!!
I asked Tononi:
“How conscious am I?”
He said “Let’s see…”
“I’ll measure your Phi”
He said “Oh Dear!”
“It’s zero for you!”
And that’s why you’ve got the Zombie Blues!!!
Noteworthy too is the presence of after-parties that end at 3AM, the liberal attitude on cannabis, and the crazy DMT art featured in the lobby. Here are some pictures we took late at night borrowing some awesome signs we found at a Quantum Healing stand.
Panpsychism Made Practical
No Zombies Allowed: Human or Zombie? Get Tested Here
(5) We found a number of QRI allies and supporters
Finally, we were very pleased to find that Qualia Computing readers and QRI supporters attended the conference. We also made some good new friends along the way, and on the whole we judged the conference to be very much worth our time. For example, we were happy to meet Link Swanson, who recently published his article titled Unifying Theories of Psychedelic Drug Effects. I in fact had read this article a week before the event and thought it was great. I was planning on emailing him after the conference, and I was pleasantly surprised to meet him in person there instead. If you met us at the conference, thanks for coming up and saying hi! Also, thank you to all who organized or ran the conference, and to all who attended it!
QRI members, friends, and allies
What I Would Like to See More Of
(1) Qualia Formalism
We hope and anticipate that in future years the field of consciousness research will experience an interesting process in which theory proponents will come out as either formalists or anti-formalists. In the meantime, we would love to see more people at least taking seriously the vision of qualia formalism. One of the things we asked ourselves during the conference was: “Where can we find other formalists?”. Perhaps the best heuristic we explored was the simple strategy of going to the most relevant concurrent sessions (e.g. physics and consciousness, and fundamental theories of consciousness). Interestingly, the people who had more formalist intuitions also tended to take IIT seriously.
(2) Explicit Talk About Valence (and Reducing Suffering)
To our knowledge, our talks were the only ones in the event that directly addressed valence (i.e. the pleasure-pain axis). I wish there were more, given the paramount importance of affect in the brain’s computational processing, its role in culture, and of course, its ethical relevance. What is the point of meaning and intelligence if one cannot be happy?
There was one worthy exception: at some point Stuart Hameroff briefly mentioned his theory about the origin of life. He traces the evolutionary lineage of life to molecular micro-environmental system in which “quantum events [are] shielded from random, polar interactions, enabling more intense and pleasurable [Objective Reduction] qualia. ” In his view, pleasure-potential maximization is at the core of the design of the nervous system. I am intrigued by this theory, and I am glad that valence enters the picture here. I would just want to extend this kind of work to include the role of suffering as well. It seems to me that the brain evolved an adaptive range of valence that sinks deep into the negative, and is certainly not just optimizing for pleasure. While our post-human descendants might enjoy information-sensitive gradients of bliss, us Darwinians have been “gifted” by evolution a mixture of negative and positive hedonic qualia.
Related to (2), we think that one of the most important barriers for making progress in valence research is the fact that most people (even neuroscientists and philosophers of mind) think of it as a very personal thing with no underlying reality beyond hearsay or opinion. Some people like ice-cream, some like salads. Some people like Pink Floyd, others like Katy Perry. So why should we think that there is a unifying equation for bliss? Well, in our view, nobody actually likes ice-cream or Pink Floyd. Rather, ice-cream and Pink Floyd trigger high-valence states, and it is the high valence states that are actually liked and valuable. Our minds are constructed in such a way that we project pleasure and pain out into the world and think of them as necessarily connected to the external state of affairs. But this, we argue, is indeed an illusion (unlike qualia, which is as real as it gets).
Even the people in the Artificial Intelligence and Machine Consciousness plenary panel seemed subject to the Tyranny of the Intentional Object. During the Q&A section I asked them: “if you were given a billion dollars to build a brain or machine that could experience super-happiness, how would you go about doing so?” Their response was that happiness/bliss only makes sense in relational terms (i.e. by interacting with others in the real world). Someone even said that “dopamine in the brain is just superficial happiness… authentic happiness requires you to gain meaning from what you do in the world.” This is a common view to take, but I would also point out that if it is possible to generate valence in artificial minds without human interactions, generating high valence could be done more directly. Finding methods to modulate valence would be done more efficiently by seeking out foundational qualia formalist accounts of valence.
(4) Bigger Role for the Combination Problem
The number of people who account for the binding problem (also called the combination or boundary problem) is vanishingly small. How and why consciousness appears as unitary is a deep philosophical problem that cannot be dismissed with simple appeals to illusionism or implicit information processing. In general, my sense has been that many neuroscientists, computer scientists, and philosophers of mind don’t spend much time thinking about the binding problem. I have planned an article that will go in depth about why it might be that people don’t take this problem more seriously. As David Pearce has eloquently argued, any scientific theory of consciousness has to explain the binding problem. Nowadays, almost no one addresses it (and much less compellingly provides any plausible solution to it). The conference did have one concurrent session called “Panpsychism and the Combination Problem” (which I couldn’t attend), and a few more people I interacted with seemed to care about it, but the proportion was very small.
(5) Bumping-up the Effect Size of Psi Phenomena (if they are real)
There is a significant amount of interest in Psi (parapsychology) from people attending this conference. I myself am agnostic about the matter. The Institute of Noetic Science (IONS) conducts interesting research in this area, and there are some studies that argue that publication bias cannot explain the effects observed. I am not convinced that other explanations have been ruled out, but I am sympathetic to people who try to study weird phenomena within a serious scientific framework (as you might tell from this article). What puzzles me is why there aren’t more people advocating for increasing the effect size of these effects in order to study them. Some data suggests that Psi (in the form of telepathy) is stronger with twins, meditators, people on psychedelics, and people who believe in Psi. But even then the effect sizes reported are tiny. Why not go all-in and try to max out the effect size by combining these features? I.e. why not conduct studies with twins who claim to have had psychic experiences, who meditate a lot, and who can handle high doses of LSD and ketamine in sensory deprivation tanks? If we could bump up the effect sizes far enough, maybe we could definitively settle the matter.
(6) And why not… also a lab component?
Finally, I think that trip reports by philosophically-literate cognitive scientists are much more valuable than trip reports by the average Joe. I would love to see a practical component to the conference someday. The sort of thing that would lead to publications like: “The Phenomenology of Candy-Flipping: An Empirical First-Person Investigation with Philosophers of Mind at a Consciousness Conference.”
Additional Observations
The Cards and Deck Types of Consciousness Theories
To make the analogy between Magic decks and theories of consciousness, we need to find a suitable interpretation for a card. In this case, I would posit that cards can be interpreted as either background assumptions, required criteria, emphasized empirical findings, and interpretations of phenomena. Let’s call these, generally, components of a theory.
Like we see in Magic, we will also find that some components support each other while others interact neutrally or mutually exclude each other. For example, if one’s theory of consciousness explicitly rejects the notion that quantum mechanics influences consciousness, then it is irrelevant whether one also postulates that the Copenhagen interpretation of quantum mechanics is correct. On the other hand, if one identifies the locus of consciousness to be in the microtubules inside pyramidal cells, then the particular interpretation of quantum mechanics one has is of paramount importance.
Consciousness as the Result of Action-Oriented Cognition (not explicitly named)
Higher Order Thought Theory (HOT)
So how has the meta-game changed since then? Based on the plenary presentations, the concurrent sessions, the workshops, the posters, and my conversations with many of the participants, I’d say (without much objective proof) that the new meta-game now looks more or less like this:
Orchestrated Objective Reduction (Orch OR)
Integrated Information Theory (IIT)
Entropic Brain Theory (EBT)
Global Neuronal Workspace Theory (GNWS)
Prediction Error Minimization (PEM)
Panprotopsychist as a General Framework
Harmonic-Resonant Theories of Consciousness
It seems that Higher Order Thought (HOT) theories of consciousness have fallen out of favor. Additionally, we have a new contender on the table: Harmonic-Resonant Theories of Consciousness is now slowly climbing up the list (which, it turns out, had already been in the water supply since 2006 when Steven Lehar attended the conference, but only now is gathering popular support).
Given the general telos of the conference, it is not surprising that deflationary theories of consciousness do not seem to have a strong representation. I found a few people here and there who would identify as illusionists, but there were not enough to deserve their place in a short-list of dominant deck types. I assume it would be rather unpleasant for people with this general view about consciousness to hang out with so many consciousness realists.
A good number of people I talked to admitted that they didn’t understand IIT, but that they nonetheless felt that something along the lines of irreducible causality was probably a big part of the explanation for consciousness. In contrast, we also saw a few interesting reactions to IIT – some people said “I hate IIT” and “don’t get me started on IIT”. It is unclear what is causing such reactions, but they are worth noting. Is this an allergic reaction to qualia formalism? We don’t have enough information at the moment to know.
Ontological Violence
The spiritual side of consciousness research is liable to overfocus on ethics and mood hacks rather than on truth-seeking. The problem is that a lot of people have emotionally load-bearing beliefs and points of view connected to how they see reality’s big plot. This is a generalized phenomenon, but its highest expression is found within spiritually-focused thinkers. Many of them come across as evangelizers rather than philosophers, scientists, explorers, or educators. For example: two years ago, David Pearce and I had an uncomfortable conversation with a lady who had a very negative reaction to Pearce’s take on suffering (i.e. that we should use biotechnology to eradicate it). She insisted suffering was part of life and that bliss can’t exist without it (a common argument for sure, but the problem was the intense emotional reaction and insistence on continuing the conversation until we had changed our minds).
We learned our lesson – if you suspect that a person has emotionally load-bearing beliefs about a grand plan or big spiritual telos, don’t mention you are trying to reduce suffering with biotechnology. It’s a gamble, and the chance for a pleasant interaction and meaningful exchange of ideas is not worth the risk of interpersonal friction, time investment, and the pointlessness of a potential ensuing heated discussion.
This brings me to an important matter…
Who are the people who are providing genuinely new contributions to the conversation?
There is a lot of noise in the field of consciousness research. Understandably, a lot of people react to this state of affairs with generalized skepticism (and even cynicism). In my experience, if you approach a neuroscientist in order to discuss consciousness, she will usually choose to simply listen to her priors rather than to you (no matter how philosophically rigorous and scientifically literate you may be).
And yet, at this conference and many other places, there are indeed a lot of people who have something new and valuable to contribute to our understanding of consciousness. So who are they? What allows a person to make a novel contribution?
I would suggest that people who fall into one of the following four categories have a higher chance of this:
People who have new information
Great synthesizers
Highly creative people with broad knowledge of the field
New paradigm proposers
For (1): This can take one of three forms: (a) New information about phenomenology (i.e. rational psychonauts with strong interpretation and synthesis skills). (b) New third-person data (i.e. as provided by scientists who conduct new research on e.g. neuroimaging). And (c) new information on how to map third-person data to phenomenology, especially about rare states of consciousness (i.e. as obtained from people who have both access to third-person data sources and excellent experienced phenomenologists). (a) Is very hard to come by because most psychonauts and meditators fall for one or more traps (e.g. believing in the tyranny of the intentional object, being direct realists, being dogmatic about a given pre-scientific metaphysic, etc.). (b) Is constrained by the number of labs and the current Kuhnian paradigms within which they work. And (c) is not only rare, but currently nonexistent. Hence, there are necessarily few people who can contribute to the broader conversation about consciousness by bringing new information to the table.
For (2): Great synthesizers are hard to come by. They do not need to generate new paradigms or have new information. What they have is the key ability to find what the novel contribution in a given proposal is. They gather what is similar and different across paradigms, and make effective lossless compressions – saving us all valuable time, reducing confusion, and facilitating the cross-pollination between various disciplines and paradigms. This requires the ability to extract what matters from large volumes of extremely detailed and paradigm-specific literature. Hence, it is also rare to find great synthesizers.
For (3): Being able to pose new questions, and generate weird but not random hypotheses can often be very useful. Likewise, being able to think of completely outrageous outside-the-box views might be key for advancing our understanding of consciousness. That said, non-philosophers tend to underestimate just how weird an observation about consciousness needs to be for it to be new. This in practice constrains the range of people able to contribute in this way to people who are themselves fairly well acquainted with a broad range of theories of consciousness. That said, I suspect that this could be remedied by forming groups of people who bring different talents to the table. In Peaceful Qualia I discussed a potential empirical approach for investigating consciousness which involves having people who specialize in various aspects of the problem (e.g. being great psychonauts, excellent third-person experimentalists, high-quality synthesizers, solid computational modelers, and so on). But until then, I do not anticipate much progress will come from people who are simply very smart and creative – they also need to have either privileged information (such as what you get from combining weird drugs and brain-computer interfaces), or be very knowledgeable about what is going on in the field.
And (4): This is the most difficult and rarest of all, for it requires some degree of the previous three attributes. Their work wouldn’t be possible without the work of many other people in the previous three categories. Yet, of course, they will be the most world-changing of them all. Explicitly, this is the role that we are aiming for at the Qualia Research Institute.
In addition to the above, there are other ways of making highly valuable contributions to the conversation. An example would be those individuals who have become living expressions of current theories of consciousness. That is, people who have deeply understood some paradigm and can propose paradigm-consistent explanations for completely new evidence. E.g. people who can quickly figure out “what would Tononi say about X?” no matter how weird X is. It is my view that one can learn a lot from people in this category. That said… don’t ever expect to change their minds!
A Final Suggestion: Philosophical Speed Dating
To conclude, I would like to make a suggestion in order to increase the value of this and similar conferences: philosophical speed dating. This might be valuable for two reasons. First, I think that a large percentage of people who attend TSC are craving interactions with others who also wonder about consciousness. After all, being intrigued and fascinated by this topic is not very common. Casual interest? Sure. But obsessive curiosity? Pretty uncommon. And most people who attend TCS are in the latter category. At the same time, it is never very pleasant to interact with people who are likely to simply not understand where you are coming from. The diversity of views is so large that finding a person with whom you can have a cogent and fruitful conversation is quite difficult for a lot of people. A Philosophical Speed Dating session in which people quickly state things like their interest in consciousness, take on qualia, preferred approaches, favorite authors, paradigm affinities, etc. would allow philosophical kindred souls to meet at a much higher rate.
And second, in the context of advancing the collective conversation about consciousness, I have found that having people who know where you are coming from (and either share or understand your background assumptions) is the best way to go. The best conversations I’ve had with people usually arise when we have a strong base of shared knowledge and intuitions, but disagree on one or two key points we can identify and meaningfully address. Thus a Philosophical Speed Dating session could lead to valuable collaborations.
And with that, I would like to say: If you do find our approach interesting or worth pursuing, do get in touch.
Till next time, Tucson!
* In Chalmer’s paper about the Meta-Problem of Consciousness he describes his reason for investigating the subject: “Upon hearing about this article, some people have wondered whether I am converting to illusionism, while others have suspected that I am trying to subvert the illusionist program for opposing purposes. Neither reaction is quite correct. I am really interested in the meta-problem as a problem in its own right. But if one wants to place the paper within the framework of old battles, one might think of it as lending opponents a friendly helping hand.” The quality of a philosopher should not be determined only by their ability to make a good case for their views, but also by the capacity to talk convincingly about their opponent’s. And on that metric, David is certainly world-class.