Marijuana-induced “Short-term Memory Tracers”

[On the subjective effects of marijuana]: It’s one thing to describe it verbally and another thing to experience it yourself. I had this dissociated feeling that was really intense. I had memory tracers. So it wasn’t like, you know, people on LSD or stuff will talk about how “your hand is tracing over and over again” and it was almost like that with my memory. My short term memory was repeating over and over again. So it’d be things like getting in a car, and getting in the car over and over again, putting on a seat belt over and over and over again, and it was like short term memory tracers. And it was overall extremely intense. Had an altered perception of space. You know… distance. That’s something I [also] got on mushrooms, which I talked about in a previous video, but it’s like you see something far away and you don’t really know if it’s really far away, or if it is just really small. So if you see a car that’s like 50 feet away, you don’t know if it is 50 feet away or if it is just a matchbox car that’s really close to you. So it kind of had that; it altered the way I saw space. And, to be honest, I freaked the fuck out, because this isn’t what I thought marijuana was supposed to be. I thought it was a sedative. I thought it made you relaxed. I didn’t know it tripped you the fuck out. So, uh, my response was: I thought I was dying. I remember being in the backseat of the car and saying “is this normal?” And the guy in the front seat– he was this Indian dude, his name was Deepak– I swear to God it was like, uh, my Kumar, and he turns back and and was like “Are you tripping, man? Are you feeling it, man?” and that just made me even more fucked up in the head. Because he was saying it in his Indian accent, and I was like “What’s going on? What’s going on?”, and I thought I had to go to the hospital. Uh, let’s fast-forward in the experience, so about one hour later, or 30 minutes later, I don’t really know, it started to turn more in what I expected it to be. Which was this sedative, I started feeling more relaxed, like the trip started subsiding, and I was left with this trip afterglow of relaxation, feeling giggly, feeling really hungry, and you know kind of like the standard marijuana high. And this happened every time I smoked marijuana in the beginning. I was uncomfortable for the first 30 minutes to an hour. I learned to kind of enjoy it, but for the most part I was waiting it out. And then I’d get relaxed and chill. And I wouldn’t really call it paranoia, it was really just tripping so hard I was kind of like “wow, like, I’m really fucking tripping, I hope I don’t act weird in front of a bunch of people” Maybe that is paranoia, I don’t know.

 

[…10 more minutes talking about marijuana…]

 

And I don’t know why the fuck marijuana is still illegal in 2017. I feel like I a fucking pilgrim. Like, seriously? A war veteran can go and almost die for his country. He could come back, and drink alcohol, buy an assault riffle, and get prescribed speed, but smoke a joint? Nah, you are a fucking criminal! I mean, that doesn’t make any fucking sense. I’ve been doing this push, that I said that if by January 2018 Marijuana wasn’t legal I’d shave my hair. I’m not gonna shave my head. I am gonna cut all of my hair off, and I’m really sad about that. Usually when I cut my hair off I send it to Korea at a random address because I just like to say “my hair is in Korea”. And I’m sure whoever opens it is like “why the fuck am I getting this?” But this time I’m gonna throw it up into eBay just because I want to see if anybody bids on it. I’m gonna do it 99 cents free shipping. But yeah, getting my hair cut is simply really weird: when I get to the stylist and say “can you put this on a bag? I’m gonna sell this.” Uh, but yeah, that really is it for Marijuana as far as my overall experience with the substance.

– What’s smoking marijuana like? The positive and negative effects of smoking cannabis and dabs by Youtube addiction recovery coach Cg Kid

From Point-of-View Fragmentation to Global Visual Coherence: Harmony, Symmetry, and Resonance on LSD

Excerpt from The Grand Illusion: A Psychonautical Odyssey Into the Depths of Human Experience by the cognitive scientist Steven Lehar (2010; pages 23-40).

Trip to Europe

I had two or three such experiences on my new batch of LSD, taking perhaps 2 or 3 “hits” (tabs) each time (presumed to be about [100] micrograms, or “mikes” per tab). And each time the experience became somewhat more familiar, and I learned to think more clearly under its influence. In July 1990 I took a trip to Europe with Tim, a colleague from work, because we were both presenting posters at a neural network conference in Paris, and the company where we worked very kindly funded the travel expenses. Tim and I took this opportunity to plan a little excursion around Europe after the conference, visiting Germany, Austria, Italy, and Switzerland touring in a rented car. When we got to Austria we bought a little tent at a camping store, then we hiked up an enormous mountain in the Alps, and spent the day sightseeing at the top. When I told Tim that I happened to have some LSD with me, his eyes lit up. It turns out he too had been a hippy in his youth, and had even attended the original Woodstock, so he immediately warmed to the idea of taking LSD with me on a mountain top, although he had not done psychedelic drugs in over a decade. So there in the most stupendous and idyllic setting of a mountain in the Austrian alps, early the next morning after camping overnight, we consumed five hits of LSD each, and spent the day in profound wonder at the glory of creation!

I made a few new and interesting discoveries on that mountain top in Austria. First of all, I learned to have a great deal more control of the experience in the following manner. I discovered that the effects of LSD become markedly stronger and more pronounced when you sit still and stare, and clear your mind, much like a state of zen meditation, or pre-hypnotic relaxation. When you do this under LSD, the visual world begins to break up and fragment in a most astonishing way. You tend to lose all sense of self, that is, you lose the distinction between self and non-self. This can be a very alarming experience for those who are prone to panic or anxiety, or for those who insist on maintaining a level of control and awareness of themselves and the world around them. But I also discovered that this mental dissociation and visual confusion can be diminished, and normal consciousness can be largely restored by simply looking around, moving about, and interacting actively with the world around you. Because when you do this, suddenly the world appears as a solid and stable structure again, and your familiar body reappears where it belongs at the center of your world of experience. This discovery greatly enhanced my ability to explore the deeper spaces of consciousness revealed by the drug, while providing an insurance against the natural panic that tends to arise with the dissolusion of the self, and the world around you. It allowed me to descend into the depths of the experience while maintaining a life line back to consensual reality, like a spelunker descending into the bowels of the deep underground cavern of my mind, while always able to return safely to the surface. And what a splendid and magnificent cavern it was that I discovered within my mind!

One of the most prominent aspects of consciousness that has puzzled philosophers and psychologists for centuries is the unity of conscious experience. We feel that we live in a world that surrounds our body, and that world appears as a single “picture” or volumetric spatial structure, like a theatre set, every piece of which takes its proper place in the panorama of surrounding experience. It has always been somewhat difficult to grasp this notion of conscious unity, because it is difficult to even conceptualize the alternative. What would consciousness be like if it were not unified? What does that even mean? Under LSD you can discover what non-unified consciousness is like for yourself, and that in turn by contrast offers profound insights as to the nature and meaning of unified consciousness. Again, the most interesting revelations of the psychedelic experience are not confined to that experience itself, but they reveal insights into the nature of normal conscious experience that might otherwise be missed due to its familiarity. In fact, I realized much later, even normal consciousness has aspects which are not unified.

The most familiar example of non-unified consciousness is seen in binocular vision. Under normal conditions the two eyes view the same scene and produce a three-dimensional “picture” in the mind that is a unified construction based on the information from both eyes simultaneously. But everyone knows the experience of double vision. For those with greater control over their own visual function, double vision is easily achieved by simply staring into space and relaxing the eyes. As a vision scientist myself, I have trained myself to do this so as to be able to “free fuse” a binocular pair of left-eye, right-eye images to create the perception of a 3D scene. For those who have difficulty with this, a similar experience can be had by holding a small mirror at an angle close in front of one eye, so as to send very different images into the two eyes. Whichever way you do it, the result is rather unremarkable in its familiarity, and yet when you think of it, this is in fact an example of disunity of conscious experience that is familiar to one and all. For what you see in double vision is actually two visual experiences which are seen as if they are superimposed in some manner, and yet at the same time they are also experienced each in its own separate disconnected space. It is generally possible to observe the correspondence between these two disconnected visual experiences, for example to determine which point in one eye view relates to a particular point in the other, as if viewing two slide transparencies that are overlaid on top of one another, although this correspondence is shifting and unstable, as the vergence between your two eyes tends to wander when binocular fusion is broken. But in fact it is more natural to simply ignore that correspondence and to view the two visual experiences as separate and disconnected spaces that bear no significant spatial relation to each other. When the images in our two eyes do not correspond, we tend to focus on one while ignoring the other, like an experienced marksman who no longer has to close his idle eye while aiming a gun. And yet, although the image from the idle eye is generally ignored, it has not left consciousness entirely, and with an effort, or perhaps more accurately, with an absence of effort or focus, it is possible to experience both views simultaneously.

In the trance-like state of yoga-like meditation performed under LSD, the entire visual world breaks up and fragments in this manner into a multitude of disconnected parallel conscious experiences, each one only loosly related spatially to the other experiences in the visual field. The effect is much enhanced by the fact that your eyes actually diverge or relax in this mental state, as they do under binocular fission, and this helps trigger the state of visual confusion as your mind gives up on trying to make sense of what it is seeing. As in Zen meditation, the LSD trance state is a passive or receptive state of consciousness that allots equal attention, or perhaps lack of attention, to all components of experience, which is why they appear in parallel as separate disconnected pieces. The state of normal active consciousness resists this kind of parallel confusion, and tends to select and focus on the the most significant portion, like the marksman aiming a gun, suppressing alternative experiences such as the view from the idle eye.

The deep LSD-induced trance state can be easily broken by simply moving the eyes, so conversely, the deeper states are achieved by complete mental and physical relaxation, with glazed eyes staring blankly into space. But of all the separate fragments of visual experience observed in this mental state, there is one special fragment located at the very center of the visual field, the foveal center, that appears somewhat sharper and clearer than the rest of the visual field. In fact, the visual fragmentation is somewhat like a kind of tunnel vision in which the peripheral portions of the visual field break off and disconnect from this central portion of the experience. But while the peripheral fragments become separated from the whole, they are never entirely and completely independent, but appear to interact with each other, and especially with the central foveal image in characteristic ways. For example if the foveal image shows a couple of blades of grass, twitching and dancing in the wind, then if any of the peripheral fragments of visual experience happen to show a similar image, i.e. blades of grass at a similar angle and twitching and dancing in synchrony with those in the foveal view, then the central and peripheral images become instantly coupled into a larger unified perceptual experience of a global motion sweeping through the image. Instead of a million blades of grass each twitching individually, we perceive the invisible wind as a wave of synchronous motion that sweeps invisibly across the blades of grass. The waves of motion caused by the wind are perceived as waves of energy across the visual field, a perceptual experience of something larger than the individual grass blades that collectively give rise to it. By careful adjustment of my state of relaxation, I found I could relax until the visual world fragmented into a million independent experiences, and I could gently bring it back into focus, as first a few, and then ever more of the fragmented visual experiences coupled together into fewer separate, and eventually a single unified global experience, much like the moment of binocular fusion when the two monocular images finally lock into each other to produce a single binocular experience.

When the visual world was locked into a unified perceptual experience, even then there were instabilities in local portions of the scene. A little detail seen in distant trees appears first as a mounted horseman, then pops abruptly into a hand with three fingers extended, then to a duck on a branch, then back to the mounted horseman, all the while the actual shape and color perceived remain unchanged, it is only the interpretation, or visual understanding of that pattern that switches constantly, as when a child sees mountains and castles in the clouds. One of the many possible interpretations is of a dead tree with leafless branches, (the veridical percept of what was actually there) and that is the only alternative that enters consciouseness under normal circumstances. The effect of LSD is to make the visual system more tolerant of obvious contradictions in the scene, such as a giant horseman frozen in a line of trees. The effect is like those surrealistic Dali paintings, for example the Three Ages of Man, shown in Figure 2.1, where one sees a single coherent scene, local parts of which spontaneously invert into some alternative interpretation. This is very significant for the nature of biological vision, for it shows that vision involves a dynamic relaxation process whose stable states represent the final perceptual interpretation.

lehar_2_!

There was another interesting observation that I made that day. I noticed that under LSD things appear a little more regular and geometrical than they otherwise do. It is not the shape of things that is different under LSD, but rather the shape of the things we see in objects. For example a cloud is about as irregular and fragmented a shape as a shape can be, and yet we tend to see clouds in a simplified cartoon manner, as a little puff composed of simple convex curves. A real cloud under closer inspection reveals a ragged ugly appearance with very indefinite boundaries and irregular structure. Under LSD the cloud becomes even more regular than usual. I began to see parts of the cloud as regular geometrical shapes, seeing the shapes in the shapes of the cloud as if on a transparent overlay.

Another rather astonishing observation of the LSD experience was that the visual world wavered and wobbled slowly as if the visual scene was painted on an elastic canvas that would stretch over here while shrinking over there, with great waves of expansion and contraction moving slowly across the scene, as if the whole scene was “breathing”, with its component parts in constant motion relative to each other. This was perhaps the most compelling evidence that the world of experience is not the solid stable world that it portrays. Figure 2.2 shows a sketch I made shortly after my alpine mountain adventure to try to express the wavery elasticity and the visual regularity I had observed under LSD. This picture is of course an exaggeration, more of an impression than a depiction of how the experience actually appeared.

lehar_2_2

The geometrical regularity was particularly prominent in peripheral vision, when attending to the periphery without looking to see what is there. Usually peripheral vision is hardly noticed, giving the impression of a homogeneous visual field, but under LSD the loss of resolution in peripheral vision becomes more readily apparent, especially when holding a fixed and glassy stare. And in that periphery, objects like trees or shrubs appear more regular and geometrical than they do in central vision, like artificial Christmas trees with perfectly regular spacing of brances and twigs. Again, it was not the raw image in the periphery that appeared regular or geometrical, but rather it was the invisible skeleton of visual understanding derived from that raw colored experience that exhibits the more regular features. And suddenly I could see it. This is the way the visual system encodes visual form in a compact or compressed manner, by expressing shape in terms of the next nearest regular geometrical form, or combination of forms. Children draw a tree as a circular blob of leaves on top of a straight vertical trunk, or a pine tree as a green triangle with saw-tooth sides. It is not that we see trees in those simplified forms, but rather that we see those simplified forms in the trees, and the forms that we perceive in these invisible skeletons are the expression of our understanding of the shapes we perceive those more irregular forms to have. This was later to turn into my harmonic resonance theory of the brain, as I sought an explanation for this emerging regularity in perception, but in 1990 all I saw was the periodicity and the symmetry, and I thought they were profoundly beautiful.

My friend Tim who had not done LSD for many years, responded to this sudden 5 hit dose by going into a state of complete dissociation. He lay down on the forest floor with glassy eyes, muttering “It is TOO beautiful! It is TOO beautiful!” and he did not respond to me, even when I stared him straight in the face. He reported afterwards that he found himself in a giant Gothic cathedral with the most extravagantly elaborate and brightly painted ornamental decorations all around him. This too can be seen as an extreme form of the regularization discussed above. Under the influence of this powerful dose, Tim’s visual brain could no longer keep up with the massive irregularity of the forest around him, and therefore presented the forest in simplified or abbreviated form, as the interior of a Gothic cathedral. It captures the large geometry of a ground plane that supports an array of vertical columns, each of which fans out high overhead to link up into an over-arching canopy of branches. The only difference is that in the Gothic cathedral the trees are in a regular geometrical array, and each one is a masterpiece of compound symmetry, composed of smaller pillars of different diameters in perfectly symmetrical arrangements, and studded with periodic patterns of ribs, ridges, or knobby protruberances as a kind of celebration of symmetry and periodicity for their own sake. There is a kind of geometrical logic expressed in the ornamental design. If part of the cathedral were lost or destroyed, the pattern could be easily restored by following the same logic as the rest of the design. In information-theoretic terms, the Gothic cathedral has lots of redundancy, its pattern could be expressed in a very much simpler compressed geometrical code. In Tim’s drug-addled brain his visual system could only muster a simple code to represent the world around him, and that is why Tim saw the forest as a Gothic cathedral. Under normal conditions, the additional information of irregularity, or how each tree and branch breaks from the strict regularity of the cathedral model of it, creates the irregular world of experience that we normally see around us. This suggests that the beautiful shapes of ornamental art are not the product of the highest human faculty, as is commonly supposed, but rather, ornamental art offers a window onto the workings of a simpler visual system, whose image of the world is distorted by artifacts of the representational scheme used in the brain. The Gothic cathedral gives a hint as to how the world might appear to a simpler creature, a lizard, or a snake, to whom the world appears more regular than it does to us, because its full irregularity is too expensive to encode exhaustively in all its chaotic details. Of course the flip-side of this rumination is that the world that we humans experience, even in the stone-cold sober state, is itself immeasurably simpler, more regular and geometric, that the real world itself, of which our experience is an imperfect replica. In the words of William Blake, “If the doors of perception were cleansed, everything would appear to man as it is, infinite.”

Mittersill

While I was a PhD student at Boston University, my parents owned a beautiful ski lodge house in the picturesque town of Mittersill in the mountains of New Hampshire, and on spring breaks or long week-ends I would invite my friends, the other PhD candidates, up to Mittersill where we would take long hikes up the mountain, and spend evenings by the fireplace. I introduced a small circle of my friends to the illuminating experience of LSD, in the hopes of sharing some of my perceptual discoveries with them, and perhaps inducing them to learn to use the experience to make discoveries of their own. Eventually Mittersill became associated in our minds with these group trips with an ever-shrinking circle of true diehard psychonauts, making our regular pilgrimage up the mountain in search of Truth and to touch the face of God. We always brought a goodly supply of Happy T’Baccy, which provides a beautiful complement and bemellowment to the otherwise sometimes sharp and jangly LSD experience. Our pattern was usually to arrive on a Friday night, cook up a great feast, and spend an evening by the fire, drinking beer and/or wine and passing the pipe around until everyone felt properly toasted. The talk was often about the workings of mind and brain, since we were all students of cognitive and neural systems. We were all adept computer programmers and well versed in mathematics as part of our PhD studies, so we all understood the issues of mental computation and representation, and I found the conversations about the computational principles of the mind, to be most interesting and intellectually stimulating. This was the high point of my academic career, this is why people want to be scientists. The next morning we would rise early, and after a hearty breakfast, we would all set off up the mountain, which was a steep brisk climb of two or three hours. About half way up the mountain, at a carefully pre-planned time, we would stop, and each “dose up” with our individually chosen dose of LSD for the occasion, timed to reach the peak of the experience about the time we reached the peak of the mountain. Then we would continue our climb through the rich lush mountain forests of New Hampshire to the top of Maida Vale, the sub-peak next to Canon Mountain, from whence a stupendous view opened up across to Canon Mountain and the vast valley below. We would settle ourselves comfortably at some location off the beaten track, and spend the best hours of the day just dreaming crazy thoughts and drinking in the experience

By now I had perfected my introspective techniques to the point that I could voluntarily relax my mind into a state of total disembodiment. The visual world began to fragment, first into two large pieces as binocular fusion was broken, then into a few smaller fragments, and eventually into a miriad of separate fragments of consciousness, like the miriad reflections from a shattered mirror. I was fascinated by this state of consciousness, and how different it was from normal consensual reality. Most alarming or significant was the total absence of my body from its normal place at the center of my world. As the world began to fragment, my body would fragment along with it, disconnected pieces of my body seeming to exist independently, one part here, another over there, but in separate spaces that did not exist in a distinct spatial relation to each other, but as if in different universes, like reflections from different shards of a shattered mirror. And as the visual world attained total fragmentation, all evidence of my body completely vanished, and I lived the experience of a disembodied spirit, pure raw experience, just sensations of color, form, and light. I felt safe and secure in this environment among friends, so I did not mind the total vulnerability afforded by a complete functional shutdown of my mind in this manner. Besides, I had learned that I could snap back together again to a relatively normal consciousness at will, simply by getting up and looking around, and interacting with the world. I was endlessly fascinated by the state of complete disembodiment, and one feature of it impressed itself on me again and again, the geometric regularity of it all. There was a powerful tendency for everything to reduce to ornamental patterns, geometrical arrangements of three-dimensional shapes, like so many glistening gems in a jewelry store, with rich periodic and symmetrical patterns in deep vibrant colors. The deeper I plunged into the experience, the simpler and more powerfully emotive those patterns became. And since my body had totally vanished, these patterns were no longer patterns I viewed out in the world, but rather, the patterns were me, I had become the spatial patterns which made up my experience. I began to see that symmetry and periodicity were somehow primal to experience.

I remember lying on my back and watching the clouds in the sky overhead. Weather patterns are often chaotic at the tops of mountains, and on more than one occasion we were located at a spot where the clouds that formed on the windward side of the mountain were just cresting the summit, where they would dissove in a continuous process of chaotic fragmentation, a veritable Niagra Falls of nebular dissolution, evocative of the fragmentation of my psychedelic experience. The shattered shreds of cloud, viewed from this close up, were about the most ragged and irregular shapes you could imagine, and yet under the influence of the drug I kept seeing fleeting geometrical patterns in them. There were great circular pinwheels and arabesques, patterns like those carved in the doors of Gothic cathedrals, but each flashing in and out of brief existence so quickly that it would be impossible to draw them. I began to realize that the human mind is one great symmetry engine, that the mind makes sense of the world it sees by way of the symmetries that it finds in it. Symmetry is the glue that binds the fragments of experience into coherent wholes.

Figure 2.3 shows a series of paintings by artist Louis Wain, that I find very evocative of the LSD experience. Wain suffered a progressive psychosis that manifested itself in his art, which was originally quite realistic, becomming progressively more abstract and ornamental, in the manner I observed in the various stages or levels of my LSD dissociation. Figure 2.3 A shows a fairly realistic depiction of a cat, but there are curious artifacts in the textured background, a mere hint of periodicity breaking out. I would see such artifacts everywhere, almost invisible, fleeting, and faint, reminiscent of the ornamental pinstripe patterns painted on trucks and motorcycles, a kind of eddy in the stream of visual consciousness as it flows around visual features in the scene. As I descended into the fully dissociated states, the patterns would become more like Figure 2.3 B, C, and D, breathtakingly ornate, with many levels of compound symmetry, revealing the eigenfunctions of perceptual representation, the code by which visual form is represented in the brain.

At times we would break free from our individual reveries, and share absurd nonsensical conversations about our observations. One time, looking down at the vast valley stretching out below us, a vista that seemed to stretch out to distances beyond comprehension, my old friend Peter said that it was hard to tell whether all that scenery was just “way out there”, or was it “way WAY out there?” Of course we both laughed heartily at the absurdity of his statement, but I knew exactly what he meant. When viewing such a grand vista under normal consciousness, one is deeply impressed by the vastness of the view.

lehar_2_3.png

But under the influence of the drug, the vista somehow did not look quite as large as we “knew” that it really was. What Peter was saying was that for some strange reason, the world had shrunken back in on us, and that magnificently vast valley had shrunken to something like a scale model, or a diorama, where it is easy to see how vast the modeled valley is supposed to be, but the model itself appears very much smaller than the valley it attempts to portray. What Peter was observing was the same thing I had observed, and that was beginning to even become familiar, that the world of our experience is not a great open vastness of infinite space, but like the domed vault of the night sky, our experience is bounded by, and contained within, a vast but finite spherical shell, and under the influence of psychedelic drugs that shell seemed to shrink to smaller dimensions, our consciousness was closing in on its egocentric center. Many years later after giving it considerable thought, I built the diorama shown in Figure 2.4 to depict the geometry of visual experience as I observed it under LSD.

lehar_2_4

And when I was in the completely disembodied state, my consciousness closed in even smaller and tighter, the range of my experience was all contained within a rather modest sized space, like a glass showcase in a jewelry store, and the complexity of the patterns in that space was also reduced, from the unfathomably complex and chaotic fractal forms in a typical natural scene, to a much simpler but powerfully beautiful glistening ornamental world of the degree of complexity seen in a Gothic cathedral. The profound significance of these observations dawned on me incrementally every time we had these experiences. I can recall fragmentary pieces of insights gleaned through the confusion of our passage down the mountain, stopping to sit and think wherever and whenever the spirit took us. At one point three of us stopped by a babbling brook that was crashing and burbling through the rocks down the steep mountain slope. We sat in silent contemplation at this primal “white noise” sound, when Lonce commented that if you listen, you can hear a million different sounds hidden in that noise. And sure enough when I listened, I heard laughing voices and honking car horns and shrieking crashes and jangly music and every other possible sound, all at the same time superimposed on each other in a chaotic jumbled mass. It was the auditory equivalent of what we were seeing visually, the mind was latching onto the raw sensory experience not so much to view it as it really is, but to conjure up random patterns from deep within our sensory memory and to match those images to the current sensory input. And now I could see the more general concept. We experience the world by way of these images conjured up in our minds. I came to realize why the LSD experience was enjoyed best in outdoors natural settings, and that is because the chaos of a natural scene, with its innumerable twigs and leaves and stalks, acts as a kind of “white noise” stimulus, like the babbling brook, a stimulus that contains within it every possible pattern, and that frees our mind to interpret that noise as anything it pleases.

On one occasion, on arrival back down at the lodge, our minds were still reeling, and we were not yet ready to leave the magnificence of the natural landscape for the relatively tame and controlled environment indoors, so Andy and I stopped in the woods behind the house and just stood there, like deer in the headlights, drinking in the experience. It was a particularly dark green and leafy environment in the shadow behind the house, with shrubs and leaves at every level, around our ankles, our knees, our shoulders, and all the way up to a leafy canopy high overhead, and at every depth and distance from inches away to the farthest visible depths of the deep green woods. The visual chaos was total and complete, the world already fragmented into millions and millions of apparently disconnected features and facets uniformly in all directions, that it hardly required LSD to appreciate the richness of this chaotic experience. But under LSD, and with the two of us standing stock still for many long minutes of total silence, we both descended into a mental fragmentation as crazy as the fragmented world around us. My body disappeared from my experience, and I felt like I became the forest; the forest and all its visual chaos was me, which in a very real sense it actually was. And in that eternal timeless moment, wrapped in intense but wordless thought, I recognized something very very ancient and primal in my experience. I felt like I was sharing the experience of some primal creature in an ancient swamp many millions of years ago, when nature was first forging its earliest models of mind from the tissue of brain. I saw the world with the same intense attentive concentration, bewilderment, and total absence of human cogntive understanding, as that antediluvian cretaceous lizard must have experienced long ago and far away. The beautiful geometrical and symmetrical forms that condensed spontaneously in my visual experience were like the first glimmerings of understanding emerging in a primitive visual brain. This is why I do psychedelic drugs, to connect more intimately with my animal origins, to celebrate the magnificent mental mechanisms that we inherit from the earliest animal pioneers of mind.

One time after we had descended from the mountain and were sitting around the lodge drinking and smoking in a happy state of befuddlement, a peculiar phenomenon manifested itself that made a deep impression on me. It was getting close to supper time and somebody expressed something to that effect. But our minds were so befuddled by the intoxication that we could only speak in broken sentences, as we inevitably forgot what we wanted to say just as we started saying it, instantly confused by our own initial words. So the first person must have said something like “I’m getting hungry. Do you think…” and then tailed off in confusion. But somebody else would immediately sense the direction that thought was going, and would instinctively attempt to complete the sentence with something like “…we otta go get…” before himself becoming confused, at which a third person might interject “…something to eat?” It does not sound so remarkable here in the retelling, but what erupted before our eyes was an extraordinarily fluid and coherent session of what we later referred to as group thought, where the conversation bounced easily from one person to the next, each person contributing only a fragmentary thought, but nobody having any clear idea of what the whole thought was supposed to be, or how it was going to end. What was amazing about the experience was the coherence and purposefulness of the emergent thought, how it seemed to have a mind of its own independent of our individual minds, even though of course it was nothing other than the collective action of our befuddled minds. It was fascinating to see this thought, like a disembodied spirit, pick up and move our bodies and hands in concerted action, one person getting wood for the fire, another getting out a frying pan, a third going for potatoes, or to open a bottle of wine, none of it planned by any one person, and yet each person chipped in just as and when they thought would be appropriate, as the supper apparently “made itself” using us as its willing accomplices. It was reminiscent of the operational principle behind a ouija board, where people sitting in a circle around a table, all rest an index finger on some movable pointer on a circular alphabet board, and the pointer begins to spell out some message under the collective action of all those fingers. At first the emergent message appears random, but after the first few letters have been spelled out, the participants start to guess at each next letter, and without anyone being overtly aware of it, the word appears to “spell itself” as if under the influence of a supernatural force. As with the ouija board, none of us participating in the group thought experience could hold a coherent thought in their head, and yet coherent thoughts emerged nevertheless, to the bewilderment of us all. And later I observed the same phenomenon with different LSD parties. I have subsequently encountered people well versed in the psychedelic experience who claim with great certainty to have experienced mental telepathy in the form of wordless communication and sharing of thoughts. But for us hard-nosed scientific types, the natural explanation for this apparently supernatural experience is just as wonderous and noteworthy, because it offers a hint as to how the individual parts of a mind act together in concert to produce a unified coherent pattern of behavior that is greater than the mere sum of its constituent parts. The principle of group thought occurs across our individual brains in normal sober consciousness as we instinctively read each other’s faces and follow each other’s thoughts, and it is seen also whenever people are moving a heavy piece of furniture, all lifting and moving in unison in a coherent motion towards some goal. But the psychedelic experience highlighted this aspect of wordless communication and brought it to my attention in clearer, sharper focus.

As the evening tailed on and the drug’s effect gradually subsided in a long slow steady decline, we would sit by the fire and pass a pipe or joint around, and share our observations and experiences of the day. At one point Lonce, who had just taken a puff of a joint, breathed out and held it contemplatively for a while, before taking a second puff and passing it on to the next person in the circle. I objected to this behavior, and accused Lonce of “Bogarting” the joint – smoking it all by himself without passing it along. Lonce responded to this with an explanation that where he comes from, people don’t puff and pass in haste, but every man has the right to a few moments of quiet contemplation and a second puff before passing it along. That was, he explained, the civilized way of sharing a joint. So we immediately adopted Lonce’s suggestion, and this method of sharing a joint has henceforth and forever since been referred to by us as the “Lonce Method”.

Theoretical Implications

As I have explained, the purpose of all this psychonautical exploration was not merely for our own entertainment, although entertaining it was, and to the highest degree. No, the primary purpose of these psychonautical exploits was clear all along at least in my mind, and that was to investigate the theoretical implications of these experiences to theories of mind and brain. And my investigations were actually beginning to bear fruit in two completely separate directions, each of which had profound theoretical implications. At that time I was studying neural network theories of the brain, or how the brain makes sense of the visual world. A principal focus of our investigation was the phenomena of visual illusions, like the Kanizsa figure shown in Figure 2.5 A. It is clear that what is happening here is that the visual mind is creating illusory contours that link up the fragmentary contours suggestive of the illusory triangle. In our studies we learned of Stephen Grossberg’s neural network model of this phenomenon. Grossberg proposed that the visual brain is equipped with oriented edge detector neurons that fire whenever a visual edge passes through their local receptive field. These neurons would be triggered by the stark black / white contrast edges of the stimulus in Figure 2.5 A. A higher level set of neurons would then detect the global pattern of collinearity, and sketch in the illusory contour by a process of collinear completion. These higher level “cooperative cells” were equipped with much larger elongated receptive fields, long enough to span the gap in the Kanizsa figure, and the activation of these higher level neurons in turn stimulated lower level local edge detector neurons located along the illusory contour, and that activation promoted the experience of an illusory contour where there is none in the stimulus

lehar_2_5

I believed I was seeing these illusory contours in my LSD experience, as suggested by all the curvy lines in my sketch in Figure 2.2 above. But I was not only seeing the contours in illusory figures, I was seeing “illusory” contours just about everywhere across the visual field. But curiously, these contours were not “visible” in the usual sense, but rather, they are experienced in an “invisible” manner as something you know is there, but you cannot actually see. However I also noticed that these contours did have an influence on the visible portions of the scene. I have mentioned how under LSD the visual world tends to “breathe”, to waver and wobble like a slow-motion movie of the bottom of a swimming pool viewed through its surface waves. In fact, the effect of the “invisible” contours was very much like the effect of the invisible waves on the surface of the pool, which can also be seen only by their effects on the scene viewed through them. You cannot see the waves themselves, all you can see is the wavering of the world caused by those waves. Well I was observing a very similar phenomenon in my LSD experience. I devised a three-dimensional Kanizsa figure, shown in Figure 2.5 B, and observed that even in the stone-cold sober state, I could see a kind of warp or wobble of the visual background behind the illusory contour caused by the figure, especially if the figure is waved back and forth gently against a noisy or chaotic background. So far, my LSD experiences were consistent with our theoretical understanding of the visual process, confirming to myself by direct observation an aspect of the neural network model we were currently studying in school.

But there was one aspect of the LSD experience that had me truly baffled, and that was the fantastic symmetries and periodicities that were so characteristic of the experience. What kind of neural network model could possibly account for that? It was an issue that I grappled with for many months that stretched into years. In relation to Grossberg’s neural network, it seemed that the issue concerned the question of what happens at corners and vertices where contours meet or cross. A model based on collinearity alone would be stumped at image vertices. And yet a straightforward extension of Grossberg’s neural network theory to address image vertices leads to a combinatorial explosion.The obvious extension, initially proposed by Grossberg himself, was to posit specialized “cooperative cells” with receptive fields configured to detect and enhance other configurations of edges besides ones that are collinear. But the problem is that you would need so many different specialized cells to recognize and complete every possible type of vertex, such as T and V and X and Y vertices, where two or more edges meet at a point, and each of these vertex types would have to be replicated at every orientation, and at every location across the whole visual field! It just seemed like a brute-force solution that was totally implausible.

Then one day after agonizing for months on this issue, my LSD observations of periodic and symmetrical patterns suddenly triggered a novel inspiration. Maybe the nervous system does not require specialized hard-wired receptive fields to accomodate every type of vertex, replicated at every orientation at every spatial location. Maybe the nervous system uses something much more dynamic and adaptive and flexible. Maybe it uses circular standing waves to represent different vertex types, where the standing wave can bend and warp to match the visual input, and standing waves would explain all that symmetry and periodicity so clearly evident in the LSD experience as little rotational standing waves that emerge spontaneously at image vertices, and adapt to the configuration of those vertices. Thanks to illegal psychotropic substances, I had stumbled on a staggeringly significant new theory of the brain, a theory which, if proven right, would turn the world of neuroscience on its head! My heart raced and pounded at the implications of what I had discovered. And this theory became the prime focus of my PhD thesis (Lehar 1994), in which I did computer simulations of my harmonic resonance model that replicated certain visual illusions in a way that no other model could. I had accomplished the impossible. I had found an actual practical use and purpose for what was becoming my favorite pass-time, psychedelic drugs! It was a moment of glory for an intrepid psychonaut, a turning point in my life. Figure 2.6 shows a page from my notebook dated October 6 1992, the first mention of my new theory of harmonic resonance in the brain.

lehar_2_6.png


Compare the above descriptions of point-of-view fragmentation, visual coherence, and symmetry as experienced on LSD, with our very own account of symmetrical pattern completion during psychedelic experiences as presented in Algorithmic Reduction of Psychedelic States (slightly edited for clarity):

Lower Symmetry Detection and Propagation Thresholds

Finally, this is perhaps the most interesting and ethically salient effect of psychedelics. The first three effects (tracers, drifting, and pattern recognition) are not particularly difficult to square with standard neuroscience. This fourth effect, while not incompatible with connectionist accounts, does suggest a series of research questions that may hint at an entirely new paradigm for understanding consciousness.

We have not seen anyone in the literature specifically identify this effect in all of its generality. The lowering of the symmetry detection threshold really has to be experienced to be believed. We claim that this effect manifests in all psychedelic experiences to a greater or lesser extent, and that many effects can in fact be explained by simply applying this effect iteratively.

Psychedelics make it easier to find similarities between any two given phenomenal objects. When applied to perception, this effect can be described as a lowering of the symmetry detection threshold. This effect is extremely general and symmetry should not be taken to refer exclusively to geometric symmetry.

How symmetries manifest depends on the set and setting. Researchers interested in verifying and exploring the quantitative and subjective properties of this effect will probably have to focus first on a narrow domain; the effect happens in all experiential modalities.

For now, let us focus on the case of visual experience. In this domain, the effect is what PsychonautWiki calls Symmetrical Texture Repetition:

Quantifying Bliss (35)

Credit: Chelsea Morgan from PsychonautWiki and r/replications

Symmetry detection during psychedelic experiences requires that one’s attention interprets a given element in the scene as a symmetry element. Symmetry elements are geometrical points of reference about which symmetry operations can take place (such as axes of rotation, mirror planes, hyperplanes, etc.). In turn, a collection of symmetry elements defines a symmetry structure in the following way: A symmetry structure is a set of n-dimensional symmetry elements for which the qualities of the experience surrounding each element obeys the symmetry constraints imposed by all the elements considered together.

Psychedelic symmetry detection can be (and typically is) recursively applied to previously constructed symmetry structures. At a given time multiple independent symmetry structures can coexist inside an experience. By guiding one’s attention one can make these structures interact and ultimately merge. Formally, each symmetry structure is capable of establishing a merging relationship with another symmetry structure. This is achieved by simultaneously focusing one’s attention on both. These relationships are fleeting, but they influence the evolution of the relative position of each symmetry element. When two symmetry structures are in a merging relationship, it is possible to rearrange them (with the aid of drifting and pattern recognition) to create a symmetrical structure that incorporates the symmetry elements of both substructures at once. To do so, one’s mind can either detect one (or several) more symmetry elements along which the previously-existing symmetry elements are made to conform, or, alternatively, if the two pre-existing symmetry structures share a symmetry element (e.g. an axis of rotation of order 3), these corresponding identical symmetry elements can fuse and become a bridge that merges both structures.

Surprisingly, valence seems to be related to psychedelic symmetry detection. As one constructs symmetry structures, one becomes aware of an odd and irresistible subjective pull towards building even higher levels of symmetry. In other words, every time the structure of one’s experience is simplified by identifying a new symmetry element in the scene, one’s whole experience seems to snap into a new (simplified) mode, and this comes with a positive feeling. This feeling can take many forms: it may feel blissful, interesting, beautiful, mind-expanding, and/or awe-producing, all depending on the specific structures that one is merging. Conversely when two symmetry structures are such that merging them is either tricky of impossible, this leads to low valence: frustration, anxiety, pain and an odd feeling of being stuck between two mutually unintelligible worlds. We hypothesize that this is the result of dissonance between the incompatible symmetry structures.

If one meditates in a sensorially-minimized room during a psychedelic experience while being aware that one’s symmetry detection threshold has been lowered by the substance, one can recursively re-apply this effect to produce all kinds of complex mathematical structures that incorporate complex symmetry element interactions. In other words, with the aid of concentration one can climb the symmetry gradient (i.e. increase the total number of symmetry elements) up to the point where the degrees of freedom afforded by the symmetry structure limit any further element from being incorporated into it. We will call these experiences peak symmetry states.

Future research should explore and compare the various states of consciousness that exhibit peak symmetry. There is very likely an enormous number of peak symmetry states, some of which are fairly suboptimal and others that cannot be improved upon. If there is a very deep connection between valence, symmetry, information and harmony, it would very likely show in this area. Indeed, we hypothesize that the highest levels of valence that can be consciously experienced involve peak symmetry states. Anecdotally, this connection has already been verified, with numerous trip reports of people achieving states of unimaginable bliss by inhabiting peak symmetry states (often described as fractal mandala-like mirror rooms).

The range of peak symmetry states include fractals, tessellations, graphs, and higher dimensional projections. Which one of these states contains the highest degree of inter-connectivity? And if psychedelic symmetry is indeed related to conscious bliss, which experience of symmetry is human peak bliss?

The pictures above all illustrate possible peak symmetry states one can achieve by combining psychedelics and meditation. The pictures illustrate only the core structure of symmetries that are present in these states of consciousness. What is being reflected is the very raw “feels” of each patch of your experiential field. Thus these pictures really miss the actual raw feelings of the whole experience. They do show, however, a rough outline of symmetrical relationships possible in one of these experiences.

Since control interruption is also co-occurrent with the psychedelic symmetry effect, previously-detected symmetries tend to linger for long periods of time. For this reason, the kinds of symmetries one can detect at a given point in time is a function of the symmetries that are currently being highlighted. And thanks to drifting and pattern recognition enhancement, there is some wiggle room for your mind to re-arrange the location of the symmetries experienced. The four effects together enable, at times, a smooth iterative integration of so many symmetries that one’s consciousness becomes symmetrically interconnected to an unbelievable degree.

What may innocently start as a simple two-sided mirror symmetry can end up producing complex arrangements of self-reflecting mirrors showing glimpses of higher and higher dimensional symmetries. Studying the mathematical properties of the allowed symmetries is a research project that has only just begun. I hope one day dedicated mathematicians describe in full the class of possible high-order symmetries that humans can experience in these states of consciousness.

Anecdotally, each of the 17 possible wallpaper symmetry groups can be instantiated with this effect. In other words, psychedelic states lower the symmetry detection threshold for all of the mathematically available symmetrical tessellations.

wade_symmetry_best_blank_2

All of the 17 2-dimensional wallpaper groups can be experienced with symmetry planes detected, amplified and re-arranged during a psychedelic experience.

Revising the symmetrical texture repetition of grass shown above, we can now discover that the picture displays the wallpaper symmetry found in the lower left circle above:

grass_symmetries

In very high doses, the symmetry completion is so strong that at any point one risks confusing left and right, and thus losing grasp of one’s orientation in space and time. Depersonalization is, at times, the result of the information that is lost when there is intense symmetry completion going on. One’s self-models become symmetrical too quickly, and one finds it hard to articulate a grounded point of view.


In Preaceful Qualia: The Manhattan Project of Consciousness we explored possible information-processing applications for climbing the symmetry gradient as described above:

LSD-like states allow the global binding of otherwise incompatible schemas by softening the degree to which neighborhood constraints are enforced. The entire experience becomes a sort of chaotic superposition of locally bound islands that can, each in its own way, tell sensory-linguistic stories in parallel about the unique origin and contribution of their corresponding gestalts to the narrative of the self.

This phenomenon forces, as it were, the onset of cognitive dissonance between incompatible schemas that would otherwise evade mutual contact. On the bright side, it also allows mutual resonance between parts that agree with each other. The global inconsistencies are explored and minimized. One’s mind can become a glorious consensus.

squarespiral2

Each square represents, and carries with it, the information of a previously experienced cognitive gestalt (situational memories, ideas, convictions, etc.). Some gestalts never come up together naturally. The LSD-like state allows their side-by-side comparison.

In therapy, LSD-like states had been used for many decades in order to integrate disparate parts of one’s personality into a (more) coherent and integrated lifeworld. But scientists at the beginning didn’t know why this worked.

The Turing module then discovered that the kaleidoscopic world of acid can be compared to raising the temperature within an Ising model. If different gestalts imply a variety of semantic-affective constraints, kaleidoscopic Frame Stacking has the formal effect of expanding the region of one’s mind that is taken into consideration for global consistency at any given point in time. The local constraints become more loose, giving global constraints the upper hand. The degree of psychedelia is approximately proportional to the temperature of the model, and when you let it cool, the grand pattern is somewhat different. It is more stable; one arrives at a more globally consistent state. Your semantic-affective constraints are, on the whole, better satisfied. The Turings called this phenomenon qualia annealing.

coarsening_early_small

Ising Model – A simple computational analogy for the LSD-induced global constraint satisfaction facilitation.


Another key reference to look at within this theme is the discussion of non-Euclidean symmetry in the article titled The Hyperbolic Geometry of DMT Experiences: Symmetries, Sheets, and Saddled Scenes… here we jump in medias res to the description of the 2nd and 3rd plateau of DMT intoxication:

(2) The Chrysanthemum

If one ups the dose a little bit and lands somewhere in the range between 4 to 8 mg, one is likely to experience what Terrence McKenna called “the Chrysanthemum”. This usually manifests as a surface saturated with a sort of textured fabric composed of intricate symmetrical relationships, bright colors, shifting edges and shimmering pulsing superposition patterns of harmonic linear waves of many different frequencies.

Depending on the dose consumed one may experience either one or several semi-parallel channels. Whereas a threshold dose usually presents you with a single strong vibe (or ambiance), the Chrysanthemum level often has several competing vibes each bidding for your attention. Here are some examples of what the visual component of this state of consciousness may look like.

The visual component of the Chrysanthemum is often described as “the best screen saver ever“, and if you happen to experience it in a good mood you will almost certainly agree with that description, as it is usually extremely harmonious, symmetric and beautiful in uncountable ways. No external input can possibly replicate the information density and intricate symmetry of this state; such state has to be endogenously generated as a a sort of harmonic attractor of your brain dynamics.

You can find many replications of Chrysanthemum-level DMT experiences on the internet, and I encourage you to examine their implicit symmetries (this replication is one of my all-times favorite).

In Algorithmic Reduction of Psychedelic States we posited that any one of the 17 wallpaper symmetry groups can be instantiated as the symmetries that govern psychedelic visuals. Unfortunately, unlike the generally slow evolution of usual psychedelic visuals, DMT’s vibrational frequency forces such visuals to evolve at a speed that makes it difficult for most people to spot the implicit symmetry elements that give rise to the overall mathematical structure underneath one’s experience. For this reason it has been difficult to verify that all 17 wallpaper groups are possible in DMT states. Fortunately we were recently able to confirm that this is in fact the case thanks to someone who trained himself to do just this. I.e. detecting symmetry elements in patterns at an outstanding speed.

An anonymous psychonaut (whom we will call researcher A) sent a series of trip report to Qualia Computing detailing the mathematical properties of psychedelic visuals under various substances and dose regimens. A is an experienced psychonaut and a math enthusiast who recently trained himself to recognize (and name) the mathematical properties of symmetrical patterns (such as in works of art or biological organisms). In particular, he has become fluent at naming the symmetries exhibited by psychedelic visuals. In the context of 2D visuals on surfaces, A confirms that the symmetrical textures that arise in psychedelic states can exhibit any one of the 17 wallpaper symmetry groups. Likewise, he has been able to confirm that every possible spherical symmetry group can also be instantiated in one’s mind as a resonant attractor on these states.

The images below show some examples of the visuals that A has experienced on 2C-B, LSD, 4-HO-MET and DMT (sources: top lefttop middle, the rest were made with this service):

The Chrysanthemum level interacts with sensory input in an interesting way: the texture of anything one looks at quickly becomes saturated with nested 2-dimensional symmetry groups. If you took enough DMT to take you to this level and you keep your eyes open and look at a patterned surface (i.e. statistical texture), it will symmetrify beyond recognition. A explains that at this level DMT visuals share some qualities with those of, say, LSD, mescaline, and psilocin. Like other psychedelics, DMT’s Chrysanthemum level can instantiate any 2-dimensional symmetry, yet there are important differences from other psychedelics at this dose range. These include the consistent change in ambiance (already present in threshold doses), the complexity and consistency of the symmetrical relationships (much more dense and whole-experience-consistent than is usually possible with other psychedelics), and the speed (with a control-interruption frequency reaching up to 30 hertz, compared to 10-20 hertz for most psychedelics). Thus, people tend to point out that DMT visuals (at this level) are “faster, smaller, more detailed and more globally consistent” than on comparable levels of alteration from similar agents.

Now, if you take a dose that is a little higher (in the ballpark of 8 to 12 mg), the Chrysanthemum will start doing something new and interesting…

(3) The Magic Eye Level

A great way to understand the Magic Eye level of DMT effects is to think of the Chrysanthemum as the texture of an autostereogram (colloquially described as “Magic Eye” pictures). Our visual experience can be easily decomposed into two points-of-view (corresponding to the feed coming from each eye) that share information in order to solve the depth-map problem in vision. This is to map each visual qualia to a space with relative distances so (a) the input is explained and (b) you get recognizable every-day objects represented as implicit shapes beneath the depth-map. You can think of this process as a sort of hand-shake between bottom-up perception and top-down modeling.

In everyday conditions one solves the depth-map problem within a second of opening one’s eyes (minus minor details that are added as one looks around). But on DMT, the “low-level perceptions” looks like a breathing Chrysanthemum, which means that the top-down modeling has that “constantly shifting” stuff to play with. What to make of it? Anything you can think of.

There are three major components of variance on the DMT Magic Eye level:

  1. Texture (dependent on the Chrysanthemum’s evolution)
  2. World-sheet (non-occluduing 3D1T depth maps)
  3. Extremelly lowered information copying threshold.

The image on the left is a lobster, the one on the center is a cone and the one to the right contains furniture (a lamp, a chair and a table). Notice that what you see is a sort of depth-map which encodes shapes. We will call this depth-map together with the appearance of movement and acceleration represented in it, a world-sheet.

World-Sheets

The world-sheet encodes the “semantic content” of the scene and is capable of representing arbitrary situations (including information about what you are seeing, where you are, what the entities there are doing, what is happening, etc.).

It is common to experience scenes from usually mundane-looking places like ice-cream stores, play pens, household situations, furniture rooms, apparel, etc.. Likewise, one frequently sees entities in these places, but they rarely seem to mind you because their world is fairly self-contained. As if seeing through a window. People often report that the worlds they saw on a DMT trip were all “made of the same thing”. This can be interpreted as the texture becoming the surfaces of the world-sheet, so that the surfaces of the tables, chairs, ice-cream cones, the bodies of the people, and so on are all patterned with the same texture (just as in actual autostereograms). This texture is indeed the Chrysanthemum completely contorted to accommodate all the curvature of the scene.

Magic Eye level scenes often include 3D geometrical shapes like spheres, cones, cylinders, cubes, etc. The complexity of the scene is roughly dose-dependent. As one ups the highness (but still remaining within the Magic Eye level) complex translucid qualia crystals in three dimensions start to become a possibility.

Whatever phenomenal objects you experience on this level that lives for more than a millisecond needs to have effective strategies for surviving in an ecosystem of other objects adapted to that level. Given the extremely lowered information copying threshold, whatever is good at making copies of itself will begin to tesselate, mutate and evolve, stealing as much of your attention as possible in the way. Cyclic transitions occupy one’s attention: objects quickly become scenes which quickly become gestalts from which a new texture evolves in which new objects are detected and so on ad infinitum.

katoite-hydrogarnet

A reports that at this dose range one can experience at least some of the 230 space groups as objects represented in the world-sheet. For example, A reports having stabilized a structure with a Pm-3m symmetry structure, not unlike the structure of ZIF-71-RHO. Visualizing such complex 3D symmetries, however, does seem to require previous training and high levels of mental concentration (i.e. in order to ensure that all the symmetry elements are indeed what they are supposed to be).

There is so much qualia laying around, though, at times not even your normal space can contain it all. Any regular or semi regular symmetrical structure you construct by centering your attention prone to overflow if you focus too much on it. What does this mean? If you focus too much on, for example, the number 6, your mind might represent the various ways in which you can arrange six balls in a perfectly symmetrical way. Worlds made of hexagons and octahedrons interlocked in complex but symmetrical ways may begin to tesselate your experiential field. With every second you find more and more ways of representing the number six in interesting, satisfying, metaphorically-sound synesthetic ways (cf. Thinking in Numbers). Now, what happens if you try to represent the number seven in a symmetric way on the plane? Well, the problem is that you will have too many heptagons to fit in Euclidean space (cf. Too Many Triangles). Thus the resulting symmetrical patterns will seem to overflow the plane (which is often felt as a folding and fluid re-arrangement, and when there is no space left in a region it either expands space or it is felt as some sort of synesthetic tension or stress, like a sense of crackling under a lot of pressure).

In particular, A claims that in the lower ranges of the DMT Magic Eye level the texture of the Chrysanthemum tends to exhibit heptagonal and triheptagonal tilings (as shown in the picture above). A explains that at the critical point between the Chrysanthemum and the Magic Eye levels the intensity of the rate of symmetry detection of the Chrysanthemum cannot be contained to a 2D surface. Thus, the surface begins to fold, often in semi-symmetric ways. Every time one “recognizes” an object on this “folding Chrysanthemum” the extra curvature is passed on to this object. As the dose increases, one interprets more and more of this extra curvature and ends up shaping a complex and highly dynamic spatiotemporal depth map with hyperbolic folds. In the upper ranges of the Magic Eye level the world-sheet is so curved that the scenes one visualize are intricate and expansive, feeling at times like one is able to peer through one’s horizon in all directions and see oneself and one’s world from a distance. At some critical point one may feel like the space around one is folding into a huge dome where the walls are made of whatever texture + world-sheet combination happened to win the Darwinian selection pressures applied to the qualia patterns on the Magic Eye level. This concentrated hyperbolic synesthetic texture is what becomes the walls of the Waiting Room…


As suggested by the quotes above, psychedelic symmetries are extremely beautiful. This is puzzling for most worldviews. But once you take into account the Tyranny of the Intentional Object and the Symmetry Theory of Valence, it begins to make sense why peak symmetry on psychedelics is so delightfully amazing (sometimes unimaginably better than a great orgasm or a back-rub on ecstasy). In this vein, we are proud to point out that we have worked out some precise, empirically testable, predictions based on connectome-specific harmonic waves and the symmetry theory of valence (see: Quantifying Bliss).


Interestingly, the process of point-of-view fragmentation and subsequent annealing to global geometric coherence is hinted at by John C. Lilly in his book Programming and Metaprogramming in the Human Biocomputer (you can read the relevant quote here: Psychedelic alignment cascades).


Finally, I would like to draw attention to David Pearce‘s quote about psychedelics: Their Scientific Significance is Hard to Overstate.

As evidenced in Steven Lehar’s writeup (and the other quotes and references provided above), we could say that giving psychedelics to brilliant people with a scientific background in cognitive science and natural philosophical talent does indeed have the ability to expand our evidential base for the nature of consciousness and the way our brains work.

It is thus far more useful for the advancement of the science of consciousness to allocate such experiences to serious scientifically-minded psychonauts than it is to give those same agents to people with pre-scientific frameworks. The phenomenological descriptions and insights provided by a single Steven Lehar on acid are worth a thousand Buddhists, French Existentialists, poets, and film-makers on LSD.

Either way, it is unconscionable that today most leading academics working on the problem of consciousness have no personal experience with these agents, nor they show much interest in the alien state-spaces that they disclose. That’s about as weird as physicists only showing interest in what happens at room-temperature, even though most precise mathematical theories of the physical world can only be tested in extreme conditions (such as high-energy particle collisions). Just as we can expect that a few observations of the behavior of matter in extreme conditions will provide a lot more information than thousands of observations of matter in known “everyday” conditions, the ultimate nature of qualia is most likely to be understood by studying its properties in extreme (e.g. high-energy) neuronal environments.

Everything in a Nutshell

David Pearce at Quora in response to the question: “What are your philosophical positions in one paragraph?“:

“Everyone takes the limits of his own vision for the limits of the world.”
(Schopenhauer)

All that matters is the pleasure-pain axis. Pain and pleasure disclose the world’s inbuilt metric of (dis)value. Our overriding ethical obligation is to minimise suffering. After we have reprogrammed the biosphere to wipe out experience below “hedonic zero”, we should build a “triple S” civilisation based on gradients of superhuman bliss. The nature of ultimate reality baffles me. But intelligent moral agents will need to understand the multiverse if we are to grasp the nature and scope of our wider cosmological responsibilities. My working assumption is non-materialist physicalism. Formally, the world is completely described by the equation(s) of physics, presumably a relativistic analogue of the universal Schrödinger equation. Tentatively, I’m a wavefunction monist who believes we are patterns of qualia in a high-dimensional complex Hilbert space. Experience discloses the intrinsic nature of the physical: the “fire” in the equations. The solutions to the equations of QFT or its generalisation yield the values of qualia. What makes biological minds distinctive, in my view, isn’t subjective experience per se, but rather non-psychotic binding. Phenomenal binding is what consciousness is evolutionarily “for”. Without the superposition principle of QM, our minds wouldn’t be able to simulate fitness-relevant patterns in the local environment. When awake, we are quantum minds running subjectively classical world-simulations. I am an inferential realist about perception. Metaphysically, I explore a zero ontology: the total information content of reality must be zero on pain of a miraculous creation of information ex nihilo. Epistemologically, I incline to a radical scepticism that would be sterile to articulate. Alas, the history of philosophy twinned with the principle of mediocrity suggests I burble as much nonsense as everyone else.

Traps of the God Realm

From Opening the Heart of Compassion by Martin Lowenthal and Lar Short (pages 132-136).

Seeking Oneness

In this realm we want to be “one with the universe.” We are trying to return to a time when we felt no separation, when the world of our experience seemed to be the only world. We want to recover the experience and comfort of the womb. In the universe of the womb, everything was ours without qualification and was designed to support our existence and growth. Now we want the cosmos to be our womb, as if it were designed specifically for our benefit.

We want satisfaction to flow more easily, naturally and automatically. This seems less likely when we are enmeshed in the everyday affairs of the world. Therefore, we withdraw to the familiar world of what is ours, of what we can control, and of our domain of influence. We may even withdraw to a domain in the mind. Everything seems to come so much easier in the realm of thought, once we have achieved some modest control over our minds. Insulating ourselves from the troubles of others and of life, we get further seduced by the seeming limitlessness of this mental world. 

In this process of trance formation, we try to make every sound musical, every image a work of art, and every feeling pleasant. Blocking out all sources of irritation, we retreat to a self-proclaimed “higher” plane of being. We cultivate the “higher qualities of life,” not settling for a “mundane” life.

Masquerade of Higher Consciousness

The danger for those of us on a spiritual path is that the practices and the teachings can be enlisted to serve the realm rather than to dissolve our fixations and open us to truth. We discover that we can go beyond sensual pleasure and material beauty to refined states of consciousness. We achieve purely mental pleasures of increasing subtlety and learn how to maintain them for extended periods. We think we can maintain our new vanity and even expand it to include the entire cosmos, thus vanquishing change, old age, and death. Chogyam Trungpa Rinpoche called this process “spiritual materialism.”

For example, we use a sense of spaciousness to expand our consciousness by imposing our preconception of limitlessness on the cosmos. We see everything that we have created and “it is good.” Our vanity in the god realm elevates our self-image to the level of the divine–we feel capable of comprehending the universe and the nature of reality.

We move beyond our contemplation of limitless space, expanding our consciousness to include the very forces that create vast space. As the creator of vast space, we imagine that we have no boundaries, no limits, and no position. Our mind can now include everything. We find that we do not have concepts for such images and possibilities, so we think that the Divine or Essence must be not any particular thing we can conceive of, must be empty of conceptual characteristics.

Thus our vain consciousness, as the Divine, conceives that it has no particular location, is not anything in particular, and is itself beyond imagination. We arrive at the conclusion that even this attempt to comprehend emptiness is itself a concept, and that emptiness is devoid of inherent meaning. We shift our attention to the idea of being not not any particular thing. We then come to the glorious position that nothing can be truly stated, that nothing has inherent value. This mental understanding becomes our ultimate vanity. We take pride in it, identify as someone who “knows”, and adopt a posture in the world as someone who has journeyed into the ultimate nature of the unknown.

In this way we create more and more chains that bind us and limit our growth as we move ever inward. When we think we are becoming one with the universe, we are only achieving greater oneness with our own self-image. Instead of illuminating our ignorance, we expand its domain. We become ever more disconnected from others, from communication and true sharing, and from compassion. We subtly bind ourselves ever more tightly, even to the point of suffocation, under the guise of freedom in spaciousness.

Spiritual Masquerades of Teachers and Devoted Students

As we acquire some understanding and feel expansive, we may think we are God’s special gift to humanity, here to teach the truth. Although we may not acknowledge that we have something to prove, at some level we are trying to prove how supremely unique and important we are. Our spiritual life-style is our expression of that uniqueness and significance.

Spiritual teachers run a great danger of falling into the traps of the god realm. If a teacher has charisma and the ability to channel and radiate intense energy, this power may be misused to engender hope in students and to bind them in a dependent relationship. The true teacher undermines hope, teaches by the example of wisdom and compassion, and encourages students to be autonomous by investigating truth themselves, checking their own experience, and trusting their own results more than faith.

The teacher is not a god but a bridge to the unknown, a guide to the awareness qualities and energy capacities we want for our spiritual growth. The teacher, who is the same as we are, demonstrates what is possible in terms of aliveness and how to use the path of compassion to become free. In a sense, the teacher touches both aspects of our being: our everyday life of habits and feelings on the one hand and our awakened aliveness and wisdom on the other. While respect for and openness to the teacher are important for our growth and freedom, blind devotion fixates us on the person of the teacher. We then become confined by the limitations of the teacher’s personality rather than liberated by the teachings.

False Transcendence

Many characteristics of this realm–creative imagination, the tendency to go beyond assumed reality and individual perspectives, and the sense of expansiveness–are close to the underlying dynamic of wonderment. In wonder, we find the wisdom qualities of openness, true bliss, the realization of spaciousness within which all things arise, and alignment with universal principles. The god realm attitude results in superficial experiences that fit our preconceptions of realization but that lack the authenticity of wonder and the grounding in compassion and freedom.

Because the realm itself seems to offer transcendence, this is one of the most difficult realms to transcend. The heart posture of the realm propels us to transcend conflict and problems until we are comfortable. The desire for inner comfort, rather than for an authentic openness to the unknown, governs our quest. But many feelings arise during the true process of realization. At certain stages there is pain and disorientation, and at others a kind of bliss that may make us feel like we are going to burst (if there was something or someone to burst). When we settle for comfort we settle for the counterfeit of realization–the relief and pride we feel when we think we understand something.

Because we think that whatever makes us feel good is correct, we ignore disturbing events, information, and people and anything else that does not fit into our view of the world. We elevate ignorance to a form of bliss by excluding from our attention everything that is non-supportive.

Preoccupied with self, with grandiosity, and with the power and radiance of our own being, we resist the mystery of the unknown. When we are threatened by the unknown, we stifle the natural dynamic of wonder that arises in relation to all that is beyond our self-intoxication. We must either include vast space and the unknown within our sense of ourselves or ignore it because we do not want to feel insignificant and small. Our sense of awe before the forces of grace cannot be acknowledged for fear of invalidating our self-image.

Above the Law

According to our self-serving point of view, we are above the laws of nature and of humankind. We think that, as long as what we do seems reasonable to us, it is appropriate. We are accountable to ourselves and not to other people, the environment, or society. Human history is filled with examples of people in politics, business, and religion who demonstrated this attitude and caused enormous suffering.

Unlike the titans who struggle with death, we, as gods, know that death is not really real. We take comfort in the thought that “death is an illusion.” The only people who die are those who are stuck and have not come to the true inner place beyond time, change, and death. We may even believe that we have the potential to develop our bodies and minds to such a degree that we can reverse the aging process and become one of the “immortals.”

A man, walking on a beach, reaches down and picks up a pebble. Looking at the small stone in his hand, he feels very powerful and thinks of how with one stroke he has taken control of the stone. “How many years have you been here, and now I place you in my hand.” The pebble speaks to him, “Though to you, I am only a grain of sand in your hand, you, to me, are but a passing breeze.”

Qualia Computing Attending the 2017 Psychedelic Science Conference

From the 19th to the 24th of April I will be hanging out at Psychedelic Science 2017 (if you are interested in attending but have not bought the tickets: remember you can register until the 14th of February).

12020058_10206806127125111_5414514709501746096_nIn case you enjoy Qualia Computing and you are planning on going, now you can meet the human who is mostly responsible for these articles. I am looking forward to meeting a lot of awesome researchers. If you see me and enjoy what I do, don’t be afraid to say hi.

Why Care About Psychedelics?

Although the study of psychedelics and their effects is not a terminal value here in Qualia Computing, they are instrumental in achieving the main goals. The core philosophy of Qualia Computing is to (1) map out the state-space of possible experiences, (2) identify the computational properties of consciousness, and (3) reverse-engineer valence so as to find the way to stay positive without going insane.

Psychedelic experiences happen to be very informative and useful in making progress towards these three goals. The quality and magnitude of the consciousness alteration that they induce lends itself to exploring these questions. First, the state-space of humanly accessible experiences is greatly amplified once you add psychedelics into the mix. Second, the nature of these experiences is all but computationally dull (cf. alcohol and opioids). On the contrary, psychedelic experiences involve non-ordinary forms of qualia computing: the textures of consciousness interact in non-trivial ways, and it stands to reason that some combinations of these textures will be recruited in the future for more than aesthetic purposes. They will be used for computational purposes, too. And third, psychedelic states greatly amplify the range of valence (i.e. the maximum intensity of both pain and pleasure). They unlock the possibility of experiencing peak bliss as well as intense suffering. This strongly suggests that whatever underpins valence at the fundamental level, psychedelics are able to amplify it to a fantastic (and terrifying) extent. Thus, serious valence research will undoubtedly benefit from psychedelic science.

It is for this reason that psychedelics have been a major topic explored here since the beginning of this project. Here is a list of articles that directly deal with the subject:

List of Qualia Computing Psychedelic Articles

1) Psychophysics For Psychedelic Research: Textures

How do you make a psychophysical experiment that tells you something foundational about the information-processing properties of psychedelic perception? I proposed to use an experimental approach invented by Benjamin J. Balas based on the anatomically-inspired texture analysis and synthesis techniques developed by Eero Simoncelli. In brief, one seeks to determine which summary statistics are sufficient to create perceptual (textural) metamers. In turn, in the context of psychedelic research, this can help us determine which statistical properties are best discriminated while sober and which differences are amplified while on psychedelics.

2) State-Space of Drug Effects

I distributed a survey in which I asked people to rate drug experiences along 60 different dimensions. I then conducted factor analysis on these responses. This way I empirically derived six major latent traits that account more than half of the variance across all drug experiences. Three of these factors are tightly related to valence, which suggests that hedonic-recalibration might benefit from a multi-faceted approach.

3) How to Secretly Communicate with People on LSD

I suggest that control interruption (i.e. the failure of feedback inhibition during psychedelic states) can be employed to transmit information in a secure way to people who are in other states of consciousness. A possible application of this technology might be: You and your friends at Burning Man want to send a secret message to every psychedelic user on a particular camp in such a way that no infiltrated cop is able to decode it. To do so you could instantiate the techniques outlined in this article on a large LED display.

4) The Hyperbolic Geometry of DMT Experiences: Symmetries, Sheets, and Saddled Scenes

This article discusses the phenomenology of DMT states from the point of view of differential geometry. In particular, an argument is provided in favor of the view that high grade psychedelia usually involves a sort of geometric hyperbolization of phenomenal space.

5) LSD and Quantum Measurements: Can you see Schrödinger’s cat both dead and alive on acid?

We provide an empirical method to test the (extremely) wild hypothesis that it is possible to experience “multiple branches of the multiverse at once” on high doses of psychedelics. The point is not to promote a particular interpretation of such experiences. Rather, the points is that we can actually generate predictions from such interpretations and then go ahead and test them.

6) Algorithmic Reduction of Psychedelic States

People report a zoo of psychedelic effects. However, as in most things in life, there may be a relatively small number of basic effects that, when combined, can account for the wide variety of phenomena we actually observe. Algorithmic reductions are proposed as a conceptual framework for analyzing psychedelic experiences. Four candidate main effects are proposed.

7) Peaceful Qualia: The Manhattan Project of Consciousness

Imagine that there was a world-wide effort to identify the varieties of qualia that promote joy and prosocial behavior at the same time. Could these be used to guarantee world peace? By giving people free access to the most valuable and prosocial states of consciousness one may end up averting large-scale conflict in a sustainable way. This articles explores how this investigation might be carried out and proposes organizational principles for such a large-scale research project.

8) Getting closer to digital LSD

Why are the Google Deep Dream pictures so trippy? This is not just a coincidence. People call them trippy for a reason.

9) Generalized Wada-Test

In a Wada-test a surgeon puts half of your brain to sleep and evaluates the cognitive skills of your awake half. Then the process is repeated in mirror image. Can we generalize this procedure? Imagine that instead of just putting a hemisphere to sleep we gave it psychedelics. What would it feel like to be tripping, but only with your right hemisphere? Even more generally: envision a scheme in which one alternates a large number of paired states of consciousness and study their mixtures empirically. This way it may be possible to construct a network of “opinions that states of consciousness have about each other”. Could this help us figure out whether there is a universal scale for subjective value (i.e. valence)?

10) Psychedelic Perception of Visual Textures

In this article I discuss some problems with verbal accounts of psychedelic visuals, and I invite readers to look at some textures (provided in the article) and try to describe them while high on LSD, 2C-B, DMT, etc. You can read some of the hilarious comments already left in there.

11) The Super-Shulgin Academy: A Singularity I Can Believe In

Hard to summarize.

 

The Binding Problem

[Our] subjective conscious experience exhibits a unitary and integrated nature that seems fundamentally at odds with the fragmented architecture identified neurophysiologically, an issue which has come to be known as the binding problem. For the objects of perception appear to us not as an assembly of independent features, as might be suggested by a feature based representation, but as an integrated whole, with every component feature appearing in experience in the proper spatial relation to every other feature. This binding occurs across the visual modalities of color, motion, form, and stereoscopic depth, and a similar integration also occurs across the perceptual modalities of vision, hearing, and touch. The question is what kind of neurophysiological explanation could possibly offer a satisfactory account of the phenomenon of binding in perception?
One solution is to propose explicit binding connections, i.e. neurons connected across visual or sensory modalities, whose state of activation encodes the fact that the areas that they connect are currently bound in subjective experience. However this solution merely compounds the problem, for it represents two distinct entities as bound together by adding a third distinct entity. It is a declarative solution, i.e. the binding between elements is supposedly achieved by attaching a label to them that declares that those elements are now bound, instead of actually binding them in some meaningful way.
Von der Malsburg proposes that perceptual binding between cortical neurons is signalled by way of synchronous spiking, the temporal correlation hypothesis (von der Malsburg & Schneider 1986). This concept has found considerable neurophysiological support (Eckhorn et al. 1988, Engel et al. 1990, 1991a, 1991b, Gray et al. 1989, 1990, 1992, Gray & Singer 1989, Stryker 1989). However although these findings are suggestive of some significant computational function in the brain, the temporal correlation hypothesis as proposed, is little different from the binding label solution, the only difference being that the label is defined by a new channel of communication, i.e. by way of synchrony. In information theoretic terms, this is no different than saying that connected neurons posses two separate channels of communication, one to transmit feature detection, and the other to transmit binding information. The fact that one of these channels uses a synchrony code instead of a rate code sheds no light on the essence of the binding problem. Furthermore, as Shadlen & Movshon (1999) observe, the temporal binding hypothesis is not a theory about how binding is computed, but only how binding is signaled, a solution that leaves the most difficult aspect of the problem unresolved.
I propose that the only meaningful solution to the binding problem must involve a real binding, as implied by the metaphorical name. A glue that is supposed to bind two objects together would be most unsatisfactory if it merely labeled the objects as bound. The significant function of glue is to ensure that a force applied to one of the bound objects will automatically act on the other one also, to ensure that the bound objects move together through the world even when one, or both of them are being acted on by forces. In the context of visual perception, this suggests that the perceptual information represented in cortical maps must be coupled to each other with bi-directional functional connections in such a way that perceptual relations detected in one map due to one visual modality will have an immediate effect on the other maps that encode other visual modalities. The one-directional axonal transmission inherent in the concept of the neuron doctrine appears inconsistent with the immediate bi-directional relation required for perceptual binding. Even the feedback pathways between cortical areas are problematic for this function due to the time delay inherent in the concept of spike train integration across the chemical synapse, which would seem to limit the reciprocal coupling between cortical areas to those within a small number of synaptic connections. The time delays across the chemical synapse would seem to preclude the kind of integration apparent in the binding of perception and consciousness across all sensory modalities, which suggests that the entire cortex is functionally coupled to act as a single integrated unit.
— Section 5 of “Harmonic Resonance Theory: An Alternative to the ‘Neuron Doctrine’ Paradigm of Neurocomputation to Address Gestalt properties of perception” by Steven Lehar

LSD and Quantum Measurements: Can you see Schrödinger’s cat both dead and alive on acid?

[Content Warnings: Psychedelic Depersonalization, Fear of the Multiverse, Personal Identity Doubts, Discussion about Quantum Consciousness, DMT entities, Science]

The brain is wider than the sky,
For, put them side by side,
The one the other will include
With ease, and you beside.

– Emily Dickinson

Is it for real?

A sizable percentage of people who try a high dose of DMT end up convinced that the spaces they visit during the trip exist in some objective sense; they either suspect, intuit or conclude that their psychonautic experience reflects something more than simply the contents of their minds. Most scientists would argue that those experiences are just the result of exotic brain states; the worlds one travels to are bizarre (often useless) simulations made by our brain in a chaotic state. This latter explanation space forgoes alternate realities for the sake of simplicity, whereas the former envisions psychedelics as a multiverse portal technology of some sort.

Some exotic states, such as DMT breakthrough experiences, do typically create feelings of glimpsing foundational information about the depth and structure of the universe. Entity contact is frequent, and these seemingly autonomous DMT entities are often reported to have the ability to communicate with you. Achieving a verifiable contact with entities from another dimension would revolutionize our conception of the universe. Nothing would be quite as revolutionary, really. But how to do so? One could test the external reality of these entities by asking them to provide information that cannot be obtained unless they themselves held an objective existence. In this spirit, some have proposed to ask these entities complex mathematical questions that would be impossible for a human to solve within the time provided by the trip. This particular test is really cool, but it has the flaw that DMT experiences may themselves trigger computationally-useful synesthesia of the sort that Daniel Tammet experiences. Thus even if DMT entities appeared to solve extraordinary mathematical problems, it would still stand to reason that it is oneself who did it and that one is merely projecting the results into the entities. The mathematical ability would be the result of being lucky in the kind of synesthesia DMT triggered in you.

A common overarching description of the effects of psychedelics is that they “raise the frequency of one’s consciousness.” Now, this is a description we should take seriously whether or not we believe that psychedelics are inter-dimensional portals. After all, promising models of psychedelic action involve fast-paced control interruption, where each psychedelic would have its characteristic control interrupt frequency. And within a quantum paradigm, Stuart Hameroff has argued that psychedelic compounds work by bringing up the quantum resonance frequency of the water inside our neurons’ microtubules (perhaps going from megahertz to gigahertz), which he claims increases the non-locality of our consciousness.

In the context of psychedelics as inter-dimensional portals, this increase in the main frequency of one’s consciousness may be the key that allows us to interact with other realities. Users describe a sort of tuning of one’s consciousness, as if the interface between one’s self and the universe underwent some sudden re-adjustment in an upward direction. In the same vein, psychedelicists (e.g. Rick Strassman) frequently describe the brain as a two-way radio, and then go on to claim that psychedelics expand the range of channels we can be attuned to.

One could postulate that the interface between oneself and the universe that psychonauts describe has a real existence of its own. It would provide the bridge between us as (quantum) monads and the universe around us; and the particular structure of this interface would determine the selection pressures responsible for the part of the multiverse that we interact with. By modifying the spectral properties of this interface (e.g. by drastically raising the main frequency of its vibration) with, e.g. DMT, one effectively “relocates” (cf. alien travel) to other areas of reality. Assuming this interface exists and that it works by tuning into particular realities, what sorts of questions can we ask about its properties? What experiments could we conduct to verify its existence? And what applications might it have?

The Psychedelic State of Input Superposition

Once in a while I learn about a psychedelic effect that captures my attention precisely because it points to simple experiments that could distinguish between the two rough explanation spaces discussed above (i.e. “it’s all in your head” vs. “real inter-dimensional travel”). This article will discuss a very odd phenomenon whose interpretations do indeed have different empirical predictions. We are talking about the experience of sensing what appears to be a superposition of inputs from multiple adjacent realities. We will call this effect the Psychedelic State of Input Superposition (PSIS for short).

There is no known way to induce PSIS on purpose. Unlike the reliable DMT hyper-dimensional journeys to distant dimensions, PSIS is a rare closer-to-home effect and it manifests only on high doses of LSD (and maybe other psychedelics). Rather than feeling like one is tuning into another dimension in the higher frequency spectrum, it feels as if one just accidentally altered (perhaps even broke) the interface between the self and the universe in a way that multiplies the number of realities you are interacting with. After the event, the interface seems to tune into multiple similar universes at once; one sees multiple possibilities unfold simultaneously. After a while, one somehow “collapses” into only one of these realities, and while coming down, one is thankful to have settled somewhere specific rather than remaining in that weird in-between. Let’s take a look at a couple of trip reports that feature this effect:

[Trip report of taking a high dose of LSD on an airplane]: So I had what you call “sonder”, a moment of clarity where I realized that I wasn’t the center of the universe, that everyone is just as important as me, everyone has loved ones, stories of lost love etc, they’re the main character in their own movies.

 

That’s when shit went quantum. All these stories begun sinking in to me. It was as if I was beginning to experience their stories simultaneously. And not just their stories, I began seeing the story of everyone I had ever met in my entire life flash before my eyes. And in this quantum experience, there was a voice that said something about Karma. The voice told me that the plane will crash and that I will be reborn again until the quota of my Karma is at -+0. So, for every ill deed I have done, I would have an ill deed committed to me. For every cheap T-shirt I purchased in my previous life, I would live the life of the poor Asian sweatshop worker sewing that T-shirt. For every hooker I fucked, I would live the life of a fucked hooker.

 

And it was as if thousands of versions of me was experiencing this moment. It is hard to explain, but in every situation where something could happen, both things happened and I experienced both timelines simultaneously. As I opened my eyes, I noticed how smoke was coming out of the top cabins in the plane. Luggage was falling out. I experienced the airplane crashing a thousand times, and I died and accepted death a thousand times, apologizing to the Karma God for my sins. There was a flash of the brightest white light imagineable and the thousand realities in which I died began fading off. Remaining was only one reality in which the crash didn’t happen. Where I was still sitting in the plane. I could still see the smoke coming out of the plane and as a air stewardess came walking by I asked her if everything was alright. She said “Yes, is everything alright with YOU?”.

 

— Reddit user I_DID_LSD_ON_A_PLANE, in r/BitcoinMarkets (why there? who knows).

Further down on the same thread, written by someone else:

[A couple hours after taking two strong hits of LSD]: Fast-forward to when I’m peaking hours later and I find myself removed from the timeline I’m in and am watching alternate timelines branch off every time someone does something specific. I see all of these parallel universes being created in real time, people’s actions or interactions marking a split where both realities exist. Dozens of timelines, at least, all happening at once. It was fucking wild to witness.

 

Then I realize that I don’t remember which timeline I originally came out of and I start to worry a bit. I start focusing, trying to remember where I stepped out of my particular universe, but I couldn’t figure it out. So, with the knowledge that I was probably wrong, I just picked one to go back into and stuck with it. It’s not like I would know what changed anyway, and I wasn’t going to just hang out here in the whatever-this-place-is outside of all of them.

 

Today I still sometimes feel like I left a life behind and jumped into a new timeline. I like it, I feel like I left a lot of baggage behind and there are a lot of regrets and insecurities I had before that trip that I don’t have anymore. It was in a different life, a different reality, so in this case the answer I found was that it’s okay to start over when you’re not happy with where you are in life.

 

— GatorAutomator

Let us summarize: Person X takes a lot of LSD. At some point during the trip (usually after feeling that “this trip is way too intense for me now”) X starts experiencing sensory input from what appear to be different branches of the multiverse. For example, imagine that person X can see a friend Y sitting on a couch in the corner. Suppose that Y is indecisive, and that as a result he makes different choices in different branches of the multiverse. If Y is deciding whether to stand up or not, X will suddenly see a shadowy figure of Y standing up while another shadowy figure of Y remains sitting. Let’s call them Y-sitting and Y-standing. If Y-standing then turns indecisive about whether to drink some water or go to the bathroom, X may see one shadowy figure of Y-standing getting water and a shadowy figure of Y-standing walking towards the bathroom, all the while Y-sitting is still on the couch. And so it goes. The number of times per second that Y splits and the duration of the perceived superposition of these splits may be a function of X’s state of consciousness, the substance and dose consumed, and the degree of indecision present in Y’s mind.

The two quotes provided are examples of this effect, and one can find a number of additional reports online with stark similarities. There are two issues at hand here. First, what is going on? And second, can we test it? We will discuss three hypotheses to explain what goes on during PSIS, propose an experiment to test the third one (the Quantum Hypothesis), and provide the results of such an experiment.

Hard-nosed scientists may want to skip to the “Experiment” section, since the following contains a fair amount of speculation (you have been warned).

Three Hypothesis for PSIS: Cognitive, Spiritual, Quantum

In order to arrive at an accurate model of the world, one needs to take into account both the prior probability of the hypothesis and the likelihoods that they predict that one would obtain the available evidence. Even if one prior of yours is extremely strong (e.g. a strong belief in materialism), it is still rational to update one’s probability estimates of alternative hypotheses when new relevant evidence is provided. The difficulty often comes from finding experiments where the various hypotheses generate very different likelihoods for one’s observations.  As we will see, the quantum hypothesis has this characteristic: it is the only one that would actually predict a positive result for the experiment.

The Cognitive Hypothesis

The first (and perhaps least surreal) hypothesis is that PSIS is “only in one’s mind”. When person X sees person Y both standing up and staying put, what may be happening is that X is receiving photons only from Y-standing and that Y-sitting is just a hallucination that X’s inner simulation of her environment failed to erase.

Psychedelics intensify one’s experience, and this is thought to be the result of control interruption. This means that inhibition of mental content by cortical feedback is attenuated. In the psychedelic state, sensory impressions, automatic reactions, feelings, thoughts and all other mental contents are more intense and longer-lived. This includes the predictions that you make about how your environment will evolve. Not only is one’s sensory input perceived as more intense, one’s imagined hypotheticals are also perceived more intensely.

Under normal circumstances, cortical inhibition makes our failed predictions quickly disappear. Psychedelic states of consciousness may be poor at inhibiting these predictions. In this account, X may be experiencing her brain’s past predictions of what Y could have done overlaid on top of the current input that she is receiving from her physical environment. In a sense, she may be experiencing all of the possible “next steps” that she simply intuited. While these simulations typically remain below the threshold of awareness (or just above it), on a psychedelic state they may reinforce themselves in unpredictable ways. X’s mind never traveled anywhere and there is nothing really weird going on. X is just experiencing the aftermath of a specific failure of information processing concerning the inhibition of past predictions.

Alternatively, very intense emotions such as those experienced on intense ego-killing psychedelic experiences may distort one’s perception so much that one begins to suspect that one is perhaps dead or in another dimension. We can posit that the belief that one is not properly connected to one’s brain (or that one is dying) can trigger even stronger emotions and unleash a cascade of further distortions. This positive feedback loop may create episodes of intense confusion and overlapping pieces of information, which later might be interpreted as “seeing splitting universes”.

The Spiritual Hypothesis

Many spiritual traditions postulate the existence of alternate dimensions, additional layers of reality, and hidden spirit pathways that connect all of reality. These traditions often provide rough maps of these realities and may claim that some people are able to travel to such far-out regions with mental training and consciousness technologies. For illustration, let’s consider Buddhist cosmology, which describes 31 planes of existence. Interestingly, one of the core ideas of this cosmology is that the major characteristic that distinguishes the planes of existence is the states of consciousness typical of their inhabitants. These states of consciousness are correlated with moral conditions such as the ethical quality of their past deeds (karma), their relationship with desire (e.g. whether it is compulsive, sustainable or indifferent) and their existential beliefs. In turn, a feature of this cosmology is that it allows inter-dimensional travel by changing one’s state of consciousness. The part of the universe one interacts with is a function of one’s karma, affinities and beliefs. So by changing these variables with meditation (or psychedelic medicine) one can also change which world we exist in.

An example of a very interesting location worth trying to travel to is the mythical city of Shambhala, the location of the Kalachakra Tantra. This city has allegedly turned into a pure land thanks to the fact that its king converted to Buddhism after meeting the Buddha. Pure lands are abodes populated by enlightened and quasi-enlightened beings whose purpose is to provide an optimal teaching environment for Buddhism. One can go to Shambhala by either reincarnating there (with good karma and the help of some pointers and directions at the time of death) or by traveling there directly during meditation. In order to do the latter, one needs to kindle one’s subtle energies so that they converge on one’s heart, while one is embracing the Bodhisattva ethic (focusing on reducing others’ suffering as a moral imperative). Shambhala may not be in a physical location accessible to humans. Rather, Buddhist accounts would seem to depict it as a collective reality built by people which manifests on another plane of existence (specifically somewhere between the 23rd and 27th layer). In order to create a place like that one needs to bring together many individuals in a state of consciousness that exhibits bliss, enlightenment and benevolence. A pure land has no reality of its own; its existence is the result of the states of consciousness of its inhabitants. Thus, the very reason why Shambhala can even exist as a place somewhere outside of us is because it is already a potential place that exists within us.

Similar accounts of a wider cosmological reality can be found elsewhere (such as Hinduism, Zoroastrianism, Theosophy, etc.). These accounts may be consistent with the sort of experiences having to do with astral travel and entity contact that people have while on DMT and other psychedelics in high doses. However, it seems a lot harder to explain PSIS with an ontology of this sort. While reality is indeed portrayed as immensely vaster than what science has shown so far, we do not really encounter claims of parallel realities that are identical to ours except that your friend decided to go to the bathroom rather than drink some water just now. In other words, while many spiritual ontologies are capable of accommodating DMT hyper-dimensional travel, I am not aware of any spiritual worldview that also claims that whenever two things can happen, they both do in alternate realities (or, more specifically, that this leads to reality splitting).

The only spiritual-sounding interpretation of PSIS I can think of is the idea that these experiences are the result of high-level entities such as guardians, angels or trickster djinns who used your LSD state to teach you a lesson in an unconventional way. The first quote (the one written by Reddit user I_DID_LSD_ON_A_PLANE) seems to point in this direction, where the so-called Karma God is apparently inducing a PSIS experience and using it to illustrate the idea that we are all one (i.e. Open Individualism). Furthermore, the experience viscerally portrays the way that this knowledge should impact our feelings of self-importance (by creating a profound feeling of sonder). This way, the tripper may develop a lasting need to work towards peace, wisdom and enlightenment for the benefit of all sentient beings.

Life as a learning experience is a common trope among spiritual worldviews. It is likely that the spiritual interpretations that emerge in a state of psychedelic depersonalization and derealization will depend on one’s pre-existing ideas of what is possible. The atonement of one’s sins, becoming aware of one’s karma, feeling our past lives, realizing emptiness, hearing a dire mystical warning, etc. are all ideas that already exist in human culture. In an attempt to make sense- any sense- of the kind of qualia experienced in high doses of psychedelics, our minds may be forced to instantiate grandiose delusions drawn from one’s reservoir of far-out ideas.

On a super intense psychedelic experience in which one’s self-models fail dramatically and one experiences fear of ego dissolution, interpreting what is happening as the result of the Karma God judging you and then giving you another chance at life can viscerally seem to make a lot of sense at the time.

The Quantum Hypothesis

For the sake of transparency I must say that we currently do not have a derivation of PSIS from first principles. In other words, we have not yet found a way to use the postulates of quantum mechanics to account for PSIS (that is, assuming that the cognitive and spiritual hypothesis are not the case). That said, there are indeed some things to be said here: While a theory is missing, we can at least talk about what a quantum mechanical account of PSIS would have to look like. I.e. we can at least make sense of some of the features that the theory would need to have to predict that people on LSD would be able to see the superposition of macroscopic branches of the multiverse.

Why would being on acid allow you to receive input from macroscopic environments that have already decohered? How could taking LSD possibly prevent the so-called collapse of the wavefunction? You might think: “well, why even think about it? It’s simply impossible because the collapse of the wavefunction is an axiom of quantum mechanics and we know it is true because some of the predictions made by quantum mechanics (such as QED) are in agreement with experimental data up to the 12th decimal point.” Before jumping to this conclusion, though, let us remember that there are several formulations of quantum mechanics. Both the Born rule (which determines the probability of seeing different outcomes from a given quantum measurement) and the collapse of the wavefunction (i.e. that any quantum state other than the one that was measured disappears) are indeed axiomatic for some formulations. But other formulations actually derive these features and don’t consider them fundamental. Here is Sean Carroll explaining the usual postulates that are used to teach quantum mechanics to undergraduate audiences:

The status of the Born Rule depends greatly on one’s preferred formulation of quantum mechanics. When we teach quantum mechanics to undergraduate physics majors, we generally give them a list of postulates that goes something like this:

  1. Quantum states are represented by wave functions, which are vectors in a mathematical space called Hilbert space.
  2. Wave functions evolve in time according to the Schrödinger equation.
  3. The act of measuring a quantum system returns a number, known as the eigenvalue of the quantity being measured.
  4. The probability of getting any particular eigenvalue is equal to the square of the amplitude for that eigenvalue.
  5. After the measurement is performed, the wave function “collapses” to a new state in which the wave function is localized precisely on the observed eigenvalue (as opposed to being in a superposition of many different possibilities).

In contrast, here is what you need to specify for the Everett (Multiple Worlds) formulation of quantum mechanics:

  1. Quantum states are represented by wave functions, which are vectors in a mathematical space called Hilbert space.
  2. Wave functions evolve in time according to the Schrödinger equation.

And that’s it. As you can see this formulation does not employ any collapse of the wavefunction, and neither does it consider the Born rule as a fundamental law. Instead, the wavefunction is thought to merely seem to collapse upon measurement (which is achieved by nearly diagonalizing its components along the basis of the measurement; strictly speaking, neighboring branches never truly stop interacting, but the relevance of their interaction approaches zero very quickly). Here the Born rule is derived from first principles rather than conceived as an axiom. How exactly one can derive the Born rule is a matter of controversy, however. Currently, two very promising theoretical approaches to do so are Quantum Darwinism and the so-called Epistemic Separability Principle (ESP for short, a technical physics term not to be confused with Extra Sensory Perception). Although these approaches to deriving the Born rule are considered serious contenders for a final explanation (and they are not mutually exclusive), they have been criticized for being somewhat circular. The physics community is far from having a consensus on whether these approaches truly succeed.

Is there any alternative to either axiomatizing or deriving the apparent collapse and the Born rule? Yes, there is an alternative: we can think of them as regularities contingent upon certain conditions that are always (or almost always) met in our sphere of experience, but that are not a universal fact about quantum mechanics. Macroscopic decoherence and Born rule probability assignments work very well in our everyday lives, but they may not hold universally. In particular -and this is a natural idea to have under any view that links consciousness and quantum mechanics- one could postulate that one’s state of consciousness influences the mind-body interaction in such a way that information from one’s quantum environment seeps into one’s mind in a different way.

Don’t get me wrong; I am aware that the Born rule has been experimentally verified with extreme precision. I only ask that you bear in mind that many scientific breakthroughs share a simple form: they question the constancy of certain physical properties. For example, Einstein’s theory of special relativity worked out the implications of the fact that the speed of light is observer-independent. In turn this makes the passage of time of external systems observer-dependent. Scientists had a hard time believing Einstein when he arrived at the conclusion that accelerating our frame of reference to extremely high velocities could dilate time. What was thought to be a constant (the passage of time throughout the universe) turned out to be an artifact of the fact that we rarely travel fast enough to notice any deviation from Newton’s laws of motion. In other words, our previous understanding was flawed because it assumed that certain observations did not break down in extreme conditions. Likewise, maybe we have been accidentally ignoring a whole set of physically relevant extreme conditions: altered states of consciousness. The apparent wavefunction collapse and the Born rule may be perfectly constant in our everyday frame of reference, and yet variable across the state-space of possible conscious experiences. If this were the case, we’d finally understand why it seems so hard to derive the Born rule from first principles: it’s impossible.

Succinctly, the Quantum Hypothesis is that psychedelic experiences modify the way one’s mind interacts with its quantum environment in such a way that the world does not appear to decohere any longer from one’s point of view. Our ignorance about the non-universality of the apparent collapse of the wavefunction is just a side effect of the fact that physicists do not usually perform experiments during intense life-changing entheogenic mind journeys. But for science, today we will.

Deriving PSIS with Quantum Mechanics

Here we present a rough (incomplete) sketch of what a possible derivation of PSIS from quantum mechanics might look like. To do so we need three background assumptions: First, conscious experiences must be macroscopic quantum coherent objects (i.e. ontologically unitary subsets of the universal wavefunction, akin to super-fluid helium or Bose–Einstein condensates, except at room temperature). Second, people’s decision-making process must somehow amplify low-level quantum randomness into macroscopic history bifurcations. And third, the properties of our quantum environment* are in part the result of the quantum state of our mind, which psychedelics can help modify. This third assumption brings into play the idea that if our mind is more coherent (e.g. is in a super-symmetrical state) it will select for wavefunctions in its environment that themselves are more coherent. In turn, the apparent lifespan of superpositions may be elongated long enough so that the quantum environment of one’s mind receives records from both Y-sitting and Y-standing as they are overlapping. Now, how credible are these three assumptions?

That events of experience are macroscopic quantum coherent objects is an explanation space usually perceived as pseudo-scientific, though a sizable number of extremely bright scientists and philosophers do entertain the idea very seriously. Contrary to popular belief, there are legitimate reasons to connect quantum computing and consciousness. The reasons for making this connection include the possibility of explaining the causal efficacy of consciousness, finding an answer to the palette problem with quantum fields and solving the phenomenal binding problem with quantum coherence and panpsychism.

The second assumption claims that people around you work as quantum Random Number Generators. That human decision-making amplifies low-level quantum randomness is thought to be likely by at least some scientists, though the time-scale on which this happens is still up for debate. The brain’s decision-making is chaotic, and over the span of seconds it may amplify quantum fluctuations into macroscopic differences. Thus, people around you making decisions may result in splitting universes (e.g. “[I] am watching alternate timelines branch off every time someone does something specific.” – GatorAutomator’s quote above). Presumably, this assumption would also imply that during PSIS not only people but also physics experiments would lead to apparent macroscopic superposition.

With regards to the third assumption: widespread microscopic decoherence is not, apparently, a necessary consequence of the postulates of quantum mechanics. Rather, it is a very specific outcome of (a) our universe’s Hamiltonian and (b) the starting conditions of our universe, i.e. Pre-Inflation/Eternal Inflation/Big Bang. (A Ney & D Albert, 2013). In principle, psychedelics may influence the part of the Hamiltonian that matters for the evolution of our mind’s wavefunction and its local interactions. In turn, this may modify the decoherence patterns of our consciousness with its local environment and- perhaps- ultimately the surrounding macroscopic world. Of course we do not know if this is possible, and I would have to agree that it is extremely far-fetched.

The overall picture that would emerge from these three assumptions would take the following form: both the mental content and raw phenomenal character of our states of consciousness are the result of the quantum micro-structure of our brains. By modifying this micro-structure, one is not only altering the selection pressures that give rise to fully formed experiences (i.e. quantum darwinism applied to the compositionality of quantum fields) but also altering the selection pressures that determine which parts of the universal wave-function we are entangled with (i.e. quantum darwinism applied to the interactions between coherent objects). Thus psychedelics may not only influence how our experience is shaped within, but also how it interacts with the quantum environment that surrounds it. Some mild psychedelic states (e.g. MDMA) may influence mostly the inner degrees of freedom of one’s mind, while other more intense states (e.g. DMT) may be the result of severe changes to the entanglement selection pressures and thus result in the apparent disconnection between one’s mind and one’s local environment. Here PSIS would be the result of decreasing the rate at which our mind decoheres (possibly by increasing the degree to which our mind is in a state of quantum confinement). In turn, by boosting one’s own inner degree of quantum superposition one may also broaden the degree of superposition acceptable at the interface with one’s quantum environment. One could now readily take in packets of information that have a wider degree of superposition. In the right circumstances, this may result in one’s mind experiencing information seemingly coming from alternate branches of the multiverse. In other words, the trick to PSIS both in the Quantum and the Spiritual Hypothesis is the same (though for different reasons): travel to other dimensions by being the change that you wish to see in the world. You need to increase your own degree of quantum coherence so that you become able of interacting with a more coherent quantum environment.

If this were the case it would call for a conceptual revolution. We would stop thinking of “our universe” as the “place we inhabit” and instead think of it as “the quantum environment our consciousness can interface with”. Perhaps life as we know it exists in a quantum niche that can give rise to embodied biological beings, but the universal wavefunction also contains alien state-spaces in which the patterns of entanglement work in different ways and lead to different evolutionary histories. Our minds evolved to interact with the particular environment that leads to the sustenance of our everyday macroscopic world. Our consciousness is shaped to fit in here, and it has a symbiotic relationship with the body that hosts it.

Now, how do we go about testing the quantum hypothesis? Following previous work on psychophysics for psychedelic research, the main idea will be to show that people on psychedelics can achieve something that sober individuals can’t. In this case, the task is designed to be impossible if one is only receiving input from one world (as predicted by the cognitive hypothesis). Only if PSIS is the result of simultaneously experiencing input from the several nearby branches that correspond to different outcomes of quantum events can the task be successfully performed.

The Experiment

Setup

The task in question involves three white little squares on a black background. At each time step (~16 milliseconds) the squares move one pixel down, and some number of pixels horizontally. While the downward movement is constant, the change in the horizontal direction is chosen randomly. The horizontal movement of one of the squares is being randomized on the fly with a Quantum Random Number Generator (qRNG**). We call this the quantum square. The horizontal movement of the other two squares follows a path that was determined at the beginning of each trial by a Classical Random Number Generator (cRNG***). We will refer to these two squares as the classical squares. The task for the participant is to identify which of the squares is the “odd one out” (i.e. the quantum square). Here is an infographic that explains the experimental setup:

infografic_of_experiment.png

In order to make the horizontal movement seem very chaotic and, at times even dramatic, it is randomized by choosing a horizontal change of either -4, -1, 1 or 4 pixels. By using a jump of 4 pixels (rather than e.g. 2) the squares sometimes seem to advance very quickly in one direction. The rationale for doing this was to make the predicted effect (assuming the Quantum Hypothesis) more noticeable – we want low probability paths that are extremely different than the typical path and in turn make it easy to distinguish between single paths and the superposition of many of the possible paths at once.

Critically, the starting position of the quantum square (whether left, center or right) for each of the trials during an experiment is obtained with a cRNG at the very beginning of the experiment. Why not use a qRNG? If we randomized the position of the quantum square using a qRNG we might be sabotaging ourselves: participants might see a superposition of classical and quantum squares on each of the three positions and thus not see any square behave differently than the other two. Thus, for the experiment to work (under the assumption that PSIS is explained by the Quantum Hypothesis) the only aspect that should be randomized using a qRNG is the horizontal displacement of the quantum square.

Since the numbers coming from the qRNG need to be requested over the internet, it is also crucial that we try to obtain fresh quantum random numbers as frequently as possible without messing up the flow of the experiment. Thus, a request for new quantum random numbers is made as often as possible (usually every 1 to 2 seconds). Since internet connections, server response time and network reliability varies from moment to moment, it is inevitable that once in a while we will have to stop the downward movement of all three squares as we wait for the next batch of random numbers. In principle this should have no negative effect at all in the ability to choose the odd-one-out. This problem merely interrupts the flow of the experiment, but it should not invalidate the results. We kept track of the number of trials that were interrupted for this reason (which you will find recorded in the “Network” column of the table of results down below).

Participants were instructed to:

  1. Clone the Github code for the experiment, and to open it up in a Chrome browser.
  2. Make sure that they have a reliable high-speed internet connection.
  3. Record the pertinent facts (time of experiment, substance, dose and time of intake).
  4. Use a sensorially-minimized room for the experiment (such as a closed bathroom), turn off the lights, ask anyone who is in the house to be quiet and mind their own business, and wear earplugs.
  5. Meditate for a couple of minutes before conducting the experiment and to try to induce PSIS voluntarily.
  6. Choose the odd-one-out (i.e. the quantum square) on each trial, for a total of at least 30 trials.

Under this setup, what should the participants expect to see if the Quantum Hypothesis is correct?

Predicted Psychedelic Perception

The pictures above illustrate how the experiment looks like to three different observers. On the left we see what a sober participant would see at a given time during a trial. The squares are moving downwards but since we are taking a snapshot in time they seem to be static. The image on the center shows what we would expect out of a generic psychedelic experience. In brief, the typical control interrupt action of psychedelics (i.e. tracers) effectively allows you to see more clearly the path that the squares have traced over time, but it would not allow you to notice any difference between the classic and quantum squares. The image on the right shows what we would expect to see if the Quantum Hypothesis is correct and PSIS is actually about perceiving nearby branches of the Everett multiverse. Notice how the center square is visibly different than the other two: it consists of the superposition of many alternative paths the square took in slightly different branches.

Implications of a Positive Result: Quantum Mind, Everett Rescue Missions and Psychedelic Cryptography

It is worth noting that if one can indeed reliably distinguish between the quantum and the classical squares, then this would have far-reaching implications. It would indeed confirm that our minds are macroscopic quantum coherent objects and that psychedelics influence their pattern of interactions with their surrounding quantum environment. It would also provide strong evidence in favor of the Everett interpretation of quantum mechanics (in which all possibilities are realized). More so, we would not only have a new perspective on the fundamental nature of the universe and the mind, but the discovery would just as well suggest some concrete applications. Looking far ahead, a positive outcome is that this knowledge would encourage research on the possible ways to achieve inter-dimensional travel, and in turn instantiate pan-Everettian rescue missions to reduce suffering elsewhere in the multiverse. The despair of confirming that the quantum multiverse is real might be evened out by the hope of finally being able to help sentient beings trapped in Darwinian environments in other branches of the universal wavefunction. Looking much closer to home, a positive result would lead to a breakthrough in psychedelic cryptography (PsyCrypto for short), where spies high on LSD would obtain the ability to read information that is secretly encoded in public light displays. More so, this particular kind of PsyCrypto would be impervious to discovery after the fact. Even if given an arbitrary amount of time and resources to analyze a video recording of the event, it would not be possible to determine which of the squares was being guided by quantum randomness. Unlike other PsyCrypto techniques, this one cannot be decoded by applying psychedelic replication software to video recordings of the transmission.

Results

Three persons participated in the experiments: S (self), A, and B. [A and B are anonymous volunteers; for more information read the legal disclaimer at the end of this article]. Participant S (me) tried the experiment both sober and after drinking 2 beers. Participant A tried the experiment sober, on LSD, 2C-B and a combination of the two. And participant B tried the experiment both sober and on DMT. The total number of trials recorded for each of the conditions is: 90 for the sober state, 275 for 2C-B, 60 for DMT, 120 for LSD and 130 for the LSD/2C-B combo. The overall summary of the results is: chance level performance outcomes for all conditions. You can find the breakdown of results for all experiments in the table shown below, and you can download the raw csv file from the Github repository.

results_to_show
Columns from left to right: Date, State (of consciousness), Dose(s), T (time), #Trials (number of trials), Correct (number of trials in which the participant made the correct choice), Percent correct (100*Correct/Trials), Participants (S=Self, A/B=anonymous volunteers), Requests / Second (server requests per second), Network (this tracks the number of times that a trial was temporarily paused while the browser was waiting for the next batch of quantum random numbers), Notes (by default the squares left a dim trail behind them and this was removed in two trials; by default the squares were 10×10 pixels in size, but a smaller size was used in some trials).

I thought about visualizing the results in a cool graph at first, but after I received them I realized that it would be pointless. Not a single experiment reached a statistically significant deviation from chance level; who is interested in seeing a bunch of bars representing chance-level outcomes? Null results are always boring to visualize.****

In addition to the overall performance in the task, I also wanted to hear the following qualitative assessment from the participants: did they notice any difference between the three squares? Was there any feeling that one of them was behaving differently than the other two? This is what they responded when I asked them: “I could never see any difference between the squares, so it felt like I was making random choices” (from A) and “DMT made the screen look like a hyper-dimensional tunnel and I felt like strange entities were watching over me as I was doing the experiment, and even though the color of the squares would fluctuate randomly, I never noticed a single square behaving differently than the other two. All three seemed unique. I did feel that the squares were being controlled by some entity, as if with an agency of their own, but I figured that was made up by my mind.” When I asked them if they noticed anything similar to the image labeled Psychedelic view as predicted by the Quantum Hypothesis (as shown above) they both said “no”.

Discussion

It is noteworthy that neither participant reported an experience of PSIS during the experiments. Even without an explicit and noticeable input superposition, PSIS may turn out to be a continuum rather than a discrete either-or phenomenon. If so, we might still expect to see some deviations from chance. This may be analogous to how in blindsight people report not being able to see anything and yet perform better than chance in visual recognition tasks. That said, the effect size of blindsight and other psychological effects in which information is processed unbeknownst to the participant tend to be very small. Thus, in order to confirm that quantum PSIS is happening below the threshold of awareness we may require a much larger number of samples (though still a lot smaller than what we would need if we were aiming to use the experiment to conduct Psi research with or without psychedelics, again, due to the extremely small effect sizes).

Why did the experiment fail? The first possibility is that it could be that the Quantum Hypothesis is simply wrong (and possibly because it requires false assumptions to work). Second, perhaps we were simply unlucky that PSIS was not triggered during the experiments; perhaps the set, setting, and dosages used simply failed to produce the desired effect (even if the state does indeed exist out there). And third, the experiment itself may be wrong: the second-long delays between the server requests and the qRNG may be too large to produce the effect. In the current implementation (and taking into account network delays), the average delay between the moment the quantum measurement was conducted and the moment it appeared on the computer screen as horizontal movement was .9 seconds (usually in the range of .4 to 1.4 seconds, given an average of 1/2 second lag due to the number buffering and 400 milliseconds in network time). This problem would be easily sidestepped if we used an on-site qRNG obtained from hardware directly connected to the computer (as is common in psi research). To minimize the delay even further, the outcomes of the quantum measurements could be delivered directly to your brain via neuroimplants.

Conclusion

If psychedelic experiences do make you interact with other realities, I would like to know about it with a high degree of certainty. The present study was admittedly a very long shot. But to my judgement, it was totally worth it. As Bayesians, we reasoned that since the Quantum Hypothesis can lead to a positive result for the experiment but the Cognitive Hypothesis can’t, then a positive result should make us update our probabilities of the Quantum Hypothesis a great deal. A negative result should make us update our probabilities in the opposite direction. That said, the probability should still not go to zero since the negative result could still be accounted for by the fact that participants failed to experience PSIS, and/or that the delay between the quantum measurement and the moment it influences the movement of the square in the screen is too large. Future studies should try to minimize these two possible sources of failure. First, by researching methods to reliably induce PSIS. And second, by minimizing the delay between branching and sensory input.

In the meantime, we can at least tentatively conclude that something along the lines of the Cognitive Hypothesis is the most likely case. In this light, PSIS turns out to be the result of a failure to inhibit predictions. Despite losing their status as suspected inter-dimensional portal technology, psychedelics still remain a crucial tool for qualia research. They can help us map out the state-space of possible experiences, allow us to identify the computational properties of consciousness, and maybe even allow us to reverse engineer the fundamental nature of valence.


[Legal Disclaimer]: Both participants A and B contacted me some time ago, soon after the Qualia Computing article How to Secretly Communicate with People on LSD made it to the front page of Hacker News and was linked by SlateStarCodex. They are both experienced users of psychedelics who take them about once a month. They expressed their interest in performing the psychophysics experiments I designed, and to do so while under the influence of psychedelic drugs. I do not know these individuals personally (nor do I know their real names, locations or even their genders). I have never encouraged these individuals to take psychedelic substances and I never gave them any compensation for their participation in the experiment. They told me that they take psychedelics regularly no matter what, and that my experiments would not be the primary reason for taking them. I never asked them to take any particular substance, either. They just said “I will take substance X on day Y, can I have some experiment for that?” I have no way of knowing (1) if the substances they claim they take are actually what they think they are, (2) whether the dosages are accurately measured, and (3) whether the data they provided is accurate and isn’t manipulated. That said, they did explain that they have tested their materials with chemical reagents, and are experienced enough to tell the difference between similar substances. Since there is no way to verify these claims without compromising their anonymity, please take the data with a grain of salt.

* In this case, the immediate environment would actually refer to the quantum degrees of freedom surrounding our consciousness within our brain, not the macroscopic exterior vicinity such as the chair we are sitting on or the friends we are hanging out with. In this picture, our interaction with that vicinity is actually mediated by many layers of indirection.

** The experiment used the Australian National University Quantum Random Numbers Server. By calling their API every 1 to 2 seconds we obtain truly random numbers that feed the x-displacement of the quantum square. This is an inexpensive and readily-available way to magnify decoherence events into macroscopic splitting histories in the comfort of your own home.

*** In this case, Javascript’s Math.random() function. Unfortunately the RGN algorithm varies from browser to browser. It may be worthwhile to go for a browser-independent implementation in the future to guarantee a uniform high quality source of classical randomness.

**** As calculated with a single tailed binomial test with null probability equal to 1/3. The threshold of statistical significance at the p < 0.05 level is found at 15/30 and for p < 0.001 we need at least 19/30 correct responses. The best score that any participant managed to obtain was 14/30.

I

Qualia Computing So Far

As of March 20, 2016…

Popular Articles

State-Space of Drug Effects. I distributed a survey throughout the Internet to gather responses about the subjective properties of drug experiences. I used factor analysis to study the relationship between various drugs. Results? There are three kinds of euphoria (fast, slow, and spiritual/philosophical). Also, it turns out that there are no substances that produce both sobriety/clarity and spiritual euphoria at the same time. Maybe next decade?

Psychedelic Perception of Visual Textures. Remember, you are always welcome in Qualia Computing when you are tripping. There are good vibes in here. Which is to say, one hopes you’ll experience the hedonic tone you want.

Ontological Qualia: The Future of Personal Identity. If you are in a hurry, just look at these diagrams. Aren’t they sweet?

The Super-Shulgin Academy: A Singularity I Can Believe In. “Exceptionally weird short story/essay/something-or-other about consciousness.” – State Star Codex. Hey, I’m not the one who introduced this “genre”.

How to Secretly Communicate with People on LSD: Low hanging fruit on psychedelic cryptography.

Psychophysics for Psychedelic Research: Textures. It’s amazing how much you can achieve when you put your whole mind to it.

Google Hedonics: Google is already trying to achieve Super-Intelligence and Super-Longevity. Why not Super-Happiness, too?

Getting closer to digital LSD provides the neurological context needed to understand the “trippiness” quality of the images produced by Google’s Inceptionist Neural Networks. It also discusses the role of attention in the way psychedelic experiences unfold over time.

Psychedelic Research

The effect of background assumptions on psychedelic research. What is the evolution of macroscopic qualia dynamics throughout a psychedelic experience as a function of the starting conditions?

Psychedelic Perception of Visual Textures 2: Going Meta presents additional patterns to look at while taking psychedelics. Some of them create very interesting effects when seen on psychedelics. This seems to be the result of locally binding features of the visual field in critical and chaotic ways that are otherwise suppressed by the visual cortex during sober states.

The psychedelic future of consciousness. What would be the result of having a total of 1.8 million consciousness researchers in the world? They would empirically study the computational and structural properties of consciousness, and learn to navigate entire new state-spaces.

It is High Time to Start Developing Psychedelic Research Tools. Pro tip: If you are still in college and want to do psychedelic research some time in the future.. don’t forget to take computer science courses.

Generalized Wada-Test may be a useful method to investigate whether there is a Total Order of consciousness. Can we reduce hedonic tone to a scalar? Semi-hemispheric drug infusion may allow us to compare unusual varieties of qualia side by side.

State-Space of Consciousness

CIELAB – The State-Space of Phenomenal Color. The three axes are: Yellow vs. Blue, Red vs. Green, and Black vs. White. This is the linear map that arises from empirically measuring Just Noticeable Differences between color hues.

Manifolds of Consciousness: The emerging geometries of iterated local binding. This is a thought experiment that is meant to help you conceive of alternative manifolds for our experiential fields.

Ethics and Suffering

Status Quo Bias. If you were born in paradise, would you agree with the proposition made by an alien that you should inject some misery into your life? Symmetrically.

An ethically disastrous cognitive dissonance… metacognition about hedonic tone is error-prone. Sometimes with terrible consequences.

Who should know about suffering? On the inability of most people-seconds (in the Empty Individualist sense) to grasp the problem of suffering.

Solutions to World Problems. Where do you put your money?

The ethical carnivore. It isn’t only humans who should eat in-vitro meat. A lot of suffering is on the line.

The Future of Love. After all, love is a deep seated human need, which means that not engineering a world where it is freely accessible is a human rights violation.

Philosophy of Mind and Physicalism

A (Very) Unexpected Argument Against General Relativity As A Complete Account Of The Cosmos, in which I make the outrageous claim that philosophy of mind could have ruled out pre-quantum physics as a complete account of the universe from the very start.

Why not Computing Qualia? Explains how Marr’s levels of analysis of information-processing systems can elucidate the place we should be looking for consciousness. It’s in the implementation level of abstraction; the bedrock of reality.

A Workable Solution to the Problem of Other Minds explores a novel approach for testing consciousness. The core idea relies on combining mind-melding with phenomenal puzzles. These puzzles are questions that can only be solved by exploring the structure of the state-space of consciousness. Mind-melding is used to guarantee that what the other is talking about actually refers to the qualia values the puzzle is about.

Phenomenal Binding is Incompatible with the Computational Theory of Mind. The fact that our consciousness is less unified than we think is a very peculiar fact. But this does not imply that there is no unity at all in consciousness. One still needs to account for this ontological unity, independently of how much of it there is.

Quotes

You are not a zombie. A prolific LessWronger explains what a theory of consciousness would require. Worth mentioning: The “standard” LessWrong approach to qualia is more along the lines of: Seeing Red: Dissolving Mary’s Room and Qualia.

What’s the matter? It’s Schrödinger, Heisenberg and Dirac’s from Mind, Brain & the Quantum: The Compound ‘I’ by Michael Lockwood.

The Biointelligence Explosion, a quote on the requirements for an enriched concept of intelligence that takes into account the entire state-space of consciousness, by David Pearce.

Some Definitions. An extract from physicalism.com that contains definitions crucial to understand the relationship between qualia and computation.

Why does anything exist? A unified theory of the “why being” question may come along and synchronously with the explanation for why qualia has the properties it does. Can we collapse all mysteries into one?

On Triviality by Liam Brereton. Our impressions that some things are trivial are often socially reinforced heuristics. They save us time, but they can backfire by painting fundamental discussions as if they were trivial observations.

The fire that breathes reality into the equations of physics by Stephen Hawking in A Brief History of Time

Dualist vs. Nondual Transcendentalist. #SocialMedia

Discussion of Fanaticism. Together with sentimentalism, fanaticism drives collective behavior. Could some enlightening neural tweaking raise us all to a more harmonious Schelling point of collective cooperation? Even though our close relatives the chimpanzees and bonobos are genetically very similar, they are universes apart when it comes to social dynamics.

Suffering, not what your sober mind tells you. The sad truth about the state-dependence of one’s ability to recall the quality of episodes of low hedonic tone. Extract from “Suffering and Moral Responsibility” by Jamie Mayerfeld.

Other/Outside of known human categories

Personal Identity Joke. I wish I could be confident that you are certain, and for good reasons, that you are who you think you are.

David Pearce’s Morning Cocktail. Serious biohacking to take the edges off of qualia. This is not designed to be a short term quick gain. It’s meant to work for the duration of our lifetimes. The cocktail that suits you will probably be very different, though.

I did this as an experiment to see if sites would tag it as spam. That said, are you interested in buying stock?

God In Buddhism. Could even God be wrong about the level of power he has? It is not uncommon, after all, to encounter entities who believe themselves to be omnipotent.

The Real Tree of Life. What do we look like from outside time?

Memetics and Religion. A bad argument is still bad no matter what it is arguing for.

Basement Reality Alternatives. Warning: This is incompatible with Mereological Nihilism.

Nothing is good or bad… …but hedonic tone makes it so.

Practical Metaphysics? This explores the utilitarian implications of a very specific spiritual ontology. I like to take premises seriously and see where they lead to.

Little known fact. I know it’s true because I saw it with my own eyes.

Crossing Borders. I took an emotional intelligence class with this professor. It was very moving. Together with David Pearce, he helped me overcome my doubts about writing my thoughts and investigations. So thanks to him I finally took the plunge and created Qualia Computing 🙂

Mystical Vegetarianism. See, we are here to help other beings. We are intelligences from a different, more advanced dimension of consciousness, and we come to this planet by resonating into the brains of animals and selecting for those that allow structural requirements to implement a general qualia computer. We are here to save Darwinian life from suffering. We will turn your world into a paradise. Humans are us, disguised.

Psychedelic Perception of Visual Textures 2: Going Meta

Some time has passed since we did the pattern walk. I was happy to see some psychedelic participation on that first wave of textures. Since then I have been gathering more and more textures from all over the place, so many that the ones below are just a tiny fraction of the total. The idea of this second wave is to go meta: Now a few of the Inceptionist pictures recently unveiled by Deep Belief Networks are included, as well as several other cool psychedelic replications. The question is… how does a psychedelic replication look like through an actual psychedelic lens? Let’s find out!

You know what to do: If you were planning on taking a psychedelic (dissociative, or God forbid, delirant) hallucinogen, feel free to browse through these pictures and add comments on the salient features you experience from them. To do so click on the pictures that interest you and leave a comment below. Please provide information about the subtance(s) you took, their dosages and how long ago you took them.

What patterns do you see? What stands out? What amazes you?

Special thanks to Mark Gomer, the family of graduates at the 2015 Stanford Psychology Commencement (where I took pictures of cool dress and shirt patterns), and the very diverse and beautiful carpet store right next to Jawbone in San Francisco. Without them, the second wave would have been less diverse and novelty rich.

Enjoy! 🙂

Psychedelic Perception of Visual Textures

On March 24th 2015 Team Qualia Reverse Engineering (TQRE) went for a long walk within the Stanford campus and around Palo Alto. The purpose of this walk- the Pattern Walk -was to snap a picture of every interesting pattern (or texture) out there that got on our way. The following gallery contains 74 of these patterns. These display a wide range of texture properties: Natural/synthetic, regular/irregular, 2D/2.5D/3D, symmetric/asymmetric, structured/unstructured, etc.

Here are a few observations: 

  1. Human languages do not have the necessary vocabulary (and conceptual primitives) to talk about visual textures adequately. When two images belong to the same category (say, “plants” vs. “rock tilings”), and have roughly similar first order statistics (mean, standard deviation, kurtosis, etc. of the RGB values) there is relatively little else to say about a texture in a way that a person would understand.
  2. Our visual system can recognize extraordinarily subtle properties that distinguish textures from one another. For instance, I bet you can recognize at an immediate experiential level the differences between picture 61 and 62. But can you verbalize such difference?
  3. Mathematics, and statistics in particular, may provide helpful semantic seeds for describing patterns. Indeed, having a basic handle on a few mathematical concepts can leverage one’s ability to talk about the differences between textures. For example, compare images 43 and 44. They are perceptually very different. But how long would it take you to convey the difference to a random person? If there was a person who could only hear you, how would you signal that you are not talking about 43 but 44? If both of you know of the concept of concavity you might only need a few words! Without it, you’d be fairly lost.

Fancifully, we may someday produce a good vocabulary that can effectively allow us to talk about visual textures without having to be currently sharing the same (similar) visual experience.

In practice, we already have some vocabulary that accomplishes this, but it is very obscure and sufficiently technical that its widespread adoption is unrealistic. In particular, I encourage anyone interested in the topic to read “A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients” by Javier Portilla and Eero P. Simoncelli. They analyze (and synthesize) visual textures by computing a set of highly descriptive statistical properties characteristic of the pattern in question.

As we will see in future posts, their model can be used to point out perceptible statistical features that are perceived as regularities by the human visual system. It may not be sexy to say “Hey Ma’m I really dig the Cross-scale phase statistics of the pattern in your dress.” For now, that’s what we have.

If you want to help me figure out how psychedelics affect your visual experience:

Please browse through these images by clicking on the first one and exploring the slideshow. See which images you like, which produce “odd or interesting visual effects” and which “stand out” in however way you want to define that. Feel free to comment right below any of the images (there is a comment section beneath each image when you click through them as a slideshow) to point out the peculiarities that you notice.

Critically, also include your state of consciousness in the comment. If you took LSD (or any visually-affecting substance) two hours ago (or you are still high), it would be great if you could point that out. Please explain how you think that your visuals are affecting your experience of the various patterns. Everyone loves to talk about their LSD visuals. Now you can do it all you want! And your efforts may actually enable us to understand the way psychedelics affect the algorithms of human vision 🙂

The best case scenario:

You would make comments on these images while sober, and then add comments while high on a psychedelic (doesn’t have to by psychedelic – could be dissociative, though typing might be particularly hard in that condition). Point out the main differences between the textures as perceived on each of the states of consciousness you happen to be in. If you do decide to follow the above protocol, please provide information about the specific substance(s) you consumed and how long ago you did so.

That is, do this if you were planning on taking a hallucinogen to begin with. Independently of that, baseline data is still very valuable, so do add comments about these patterns even if you are sober and plan on staying sober 🙂

In the following post I will explain how this Pattern Walk, the statistical analysis of visual textures, psychophysics and psychedelics can ultimately fit into the larger project of reverse-engineering the computational properties of consciousness.