John von Neumann

Passing of a Great Mind

John von Neumann, a Brilliant, Jovial Mathematician, was a Prodigious Servant of Science and his Country

by Clary Blair Jr. – Life Magazine (February 25th, 1957)

The world lost one of its greatest scientists when Professor John von Neumann, 54, died this month of cancer in Washington, D.C. His death, like his life’s work, passed almost unnoticed by the public. But scientists throughout the free world regarded it as a tragic loss. They knew that Von Neumann’s brilliant mind had not only advanced his own special field, pure mathematics, but had also helped put the West in an immeasurably stronger position in the nuclear arms race. Before he was 30 he had established himself as one of the world’s foremost mathematicians. In World War II he was the principal discoverer of the implosion method, the secret of the atomic bomb.

The government officials and scientists who attended the requiem mass at the Walter Reed Hospital chapel last week were there not merely in recognition of his vast contributions to science, but also to pay personal tribute to a warm and delightful personality and a selfless servant of his country.

For more than a year Von Neumann had known he was going to die. But until the illness was far advanced he continued to devote himself to serving the government as a member of the Atomic Energy Commission, to which he was appointed in 1954. A telephone by his bed connected directly with his EAC office. On several occasions he was taken downtown in a limousine to attend commission meetings in a wheelchair. At Walter Reed, where he was moved early last spring, an Air Force officer, Lieut. Colonel Vincent Ford, worked full time assisting him. Eight airmen, all cleared for top secret material, were assigned to help on a 24-hour basis. His work for the Air Force and other government departments continued. Cabinet members and military officials continually came for his advice, and on one occasion Secretary of Defence Charles Wilson, Air Force Secretary Donald Quarles and most of the top Air Force brass gathered in Von Neumann’s suite to consult his judgement while there was still time. So relentlessly did Von Neumann pursue his official duties that he risked neglecting the treatise which was to form the capstone of his work on the scientific specialty, computing machines, to which he had devoted many recent years.

von_neumann_1_1

His fellow scientists, however, did not need any further evidence of Von Neumann’s rank as a scientist – or his assured place in history. They knew that during World War II at Los Alamos Von Neumann’s development of the idea of implosion speeded up the making of the atomic bomb by at least a full year. His later work with electronic computers quickened U.S. development of the H-bomb by months. The chief designer of the H-bomb, Edward Teller, once said with wry humor that Von Neumann was “one of those rare mathematicians who could descend to the level of the physicist.” Many theoretical physicists admit that they learned more from Von Neumann in methods of scientific thinking than from any of their colleagues. Hans Bethe, who was director of the theoretical physics division at Los Alamos, says, “I have sometimes wondered whether a brain like Von Neumann’s does not indicate a species superior to that of man.”

von_neumann_2

The foremost authority on computing machines in the U.S., Von Neumann was more than anyone else responsible for the increased use of the electronic “brains” in government and industry. The machine he called MANIAC (mathematical analyzer, numerical integrator and computer), which he built at the Institute for Advanced Study in Princeton, N.J., was the prototype for most of the advanced calculating machines now in use. Another machine, NORC, which he built for the Navy, can deliver a full day’s weather prediction in a few minutes. The principal adviser to the U.S. Air Force on nuclear weapons, Von Neumann was the most influential scientific force behind the U.S. decision to embark on accelerated production of intercontinental ballistic missiles. His “theory of games,” outlined in a book which he published in 1944 in collaboration with Economist Oskar Morgenstern, opened up an entirely new branch of mathematics. Analyzing the mathematical probabilities behind games of chance, Von Neumann went on to formulate a mathematical approach to such widespread fields as economics, sociology and even military strategy. His contributions to the quantum theory, the theory which explains the emission and absorption of energy in atoms and the one on which all atomic and nuclear physics are based, were set forth in a work entitled Mathematical Foundations of Quantum Mechanics which he wrote at the age of 23. It is today one of the cornerstones of this highly specialized branch of mathematical thought.

For Von Neumann the road to success was a many-laned highway with little traffic and no speed limit. He was born in 1903 in Budapest and was of the same generation of Hungarian physicists as Edward Teller, Leo Szilard and Eugene Wigner, all of whom later worked on atomic energy development for the U.S.

The eldest of three sons of a well-to-do Jewish financier who had been decorated by the Emperor Franz Josef, John von Neumann grew up in a society which placed a premium on intellectual achievement. At the age of 6 he was able to divide two eight-digit numbers in his head. By the age of 8 he had mastered college calculus and as a trick could memorize on sight a column in a telephone book and repeat back the names, addresses and numbers. History was only a “hobby,” but by the outbreak of World War I, when he was 10, his photographic mind had absorbed most of the contents of the 46-volume works edited by the German historian Oncken with a sophistication that startled his elders.

Despite his obvious technical ability, as a young man Von Neumann wanted to follow his father’s financial career, but he was soon dissuaded. Under a kind of supertutor, a first-rank mathematician at the University of Budapest named Leopold Fejer, Von Neumann was steered into the academic world. At 21 he received two degrees – one in chemical engineering at Zurich and a PhD in mathematics from the University of Budapest. The following year, 1926, as Admiral Horthy’s rightist regime had been repressing Hungarian Jews, he moved to Göttingen, Germany, then the mathematical center of the world. It was there that he published his major work on quantum mechanics.

The young professor

His fame now spreading, Von Neumann at 23 qualified as a Privatdozent (lecturer) at the University of Berlin, one of the youngest in the school’s history. But the Nazis had already begun their march to power. In 1929 Von Neumann accepted a visiting lectureship at Princeton University and in 1930, at the age of 26, he took a job there as professor of mathematical physics – after a quick trip to Budapest to marry a vivacious 18-year-old named Mariette Kovesi. Three years later, when the Institute for Advanced Study was founded at Princeton, Von Neumann was appointed – as was Albert Einstein – to be one of its first full professors. “He was so young,” a member of the institute recalls, “that most people who saw him in the halls mistook him for a graduate student.”

von_neumann_3

Although they worked near each other in the same building, Einstein and Von Neumann were not intimate, and because their approach to scientific matters was different they never formally collaborated. A member of the institute who worked side by side with both men in the early days recalls, “Einstein’s mind was slow and contemplative. He would think about something for years. Johnny’s mind was just the opposite. It was lightning quick – stunningly fast. If you gave him a problem he either solved it right away or not at all. If he had to think about it a long time and it bored him, hist interest would begin to wander. And Johnny’s mind would not shine unless whatever he was working on had his undivided attention.” But the problems he did care about, such as his “theory of games,” absorbed him for much longer periods.

‘Proof by erasure’

Partly because of this quicksilver quality Von Neumann was not an outstanding teacher to many of his students. But for the advanced students who could ascend to his level he was inspirational. His lectures were brilliant, although at times difficult to follow because of his way of erasing and rewriting dozens of formulae on the blackboard. In explaining mathematical problems Von Neumann would write his equations hurriedly, starting at the top of the blackboard and working down. When he reached the bottom, if the problem was unfinished, he would erase the top equations and start down again. By the time he had done this two or three times most other mathematicians would find themselves unable to keep track. On one such occasion a colleague at Princeton waited until Von Neumann had finished and said, “I see. Proof by erasure.”

Von Neumann himself was perpetually interested in many fields unrelated to science. Several years ago his wife gave him a 21-volume Cambridge History set, and she is sure he memorized every name and fact in the books. “He is a major expert on all the royal family trees in Europe,” a friend said once. “He can tell you who fell in love with whom, and why, what obscure cousin this or that czar married, how many illegitimate children he had and so on.” One night during the Princeton days a world-famous expert on Byzantine history came to the Von Neumann house for a party. “Johnny and the professor got into a corner and began discussing some obscure facet,” recalls a friend who was there. “Then an argument arose over a date. Johnny insisted it was this, the professor that. So Johnny said, ‘Let’s get the book.’ They looked it up and Johnny was right. A few weeks later the professor was invited to the Von Neumann house again. He called Mrs. von Neumann and said jokingly, ‘I’ll come if Johnny promises not to discuss Byzantine history. Everybody thinks I am the world’s greatest expert in it and I want them to keep on thinking that.'”von_neumann_4

Once a friend showed him an extremely complex problem and remarked that a certain famous mathematician had taken a whole week’s journey across Russia on the Trans-Siberian Railroad to complete it. Rushing for a train, Von Neumann took the problem along. Two days later the friend received an air-mail packet from Chicago. In it was a 50-page handwritten solution to the problem. Von Neumann had added a postscript: “Running time to Chicago: 15 hours, 26 minutes.” To Von Neumann this was not an expression of vanity but of sheer delight – a hole in one.

During periods of intense intellectual concentration Von Neumann, like most of his professional colleagues, was lost in preoccupation, and the real world spun past him. He would sometimes interrupt a trip to put through a telephone call to find out why he had taken the trip in the first place.

Von Neumann believed that concentration alone was insufficient for solving some of the most difficult mathematical problems and that these are solved in the subconscious. He would often go to sleep with a problem unsolved, wake up in the morning and scribble the answer on a pad he kept on the bedside table. It was a common occurrence for him to begin scribbling with pencil and paper in the midst of a nightclub floor show or a lively party, “the noisier,” his wife says, “the better.” When his wife arranged a secluded study for Von Neumann on the third floor of the Princeton home, Von Neumann was furious. “He stormed downstairs,” says Mrs. von Neumann, “and demanded, ‘What are you trying to do, keep me away from what’s going on?’; After that he did most of his work in the living room with my phonograph blaring.”

His pride in his brain power made him easy prey to scientific jokesters. A friend once spent a week working out various steps in an obscure mathematical process. Accosting Von Neumann at a party he asked for help in solving the problem. After listening to it, Von Neumann leaned his plump frame against a door and stared blankly, his mind going through the necessary calculations. At each step in the process the friend would quickly put in, “Well, it comes out to this, doesn’t it?” After several such interruptions Von Neumann became perturbed and when his friend “beat” him to the final answer he exploded in fury. “Johnny sulked for weeks,” recalls the friend, “before he found out it was all a joke.”

He did not look like a professor. He dressed so much like a Wall Street banker that a fellow scientist once said, “Johnny, why don’t you smear some chalk dust on your coat so you look like the rest of us?” He loved to eat, especially rich sauces and desserts, and in later years was forced to diet rigidly. To him exercise was “nonsense.”

Those lively Von Neumann parties

Most card-playing bored him, although he was fascinated by the mathematical probabilities involved in poker and baccarat. He never cared for movies. “Every time we went,” his wife recalls, “he would either go to sleep or do math problems in his head.” When he could do neither he would break into violent coughing spells. What he truly loved, aside from work, was a good party. Residents of Princeton’s quiet academic community can still recall the lively goings-on at the Von Neumann’s big, rambling house on Westcott Road. “Those old geniuses got downright approachable at the Von Neumanns’,” a friend recalls. Von Neumann’s talents as a host were based on his drinks, which were strong, his repertoire of off-color limericks, which was massive, and his social ease, which was consummate. Although he could rarely remember a name, Von Neumann would escort each new guest around the room, bowing punctiliously to cover up the fact that he was not using names in introducing people.von_neumann_5

Von Neumann also had a passion for automobiles, not for tinkering with them but for driving them as if they were heavy tanks. He turned up with a new one every year at Princeton. “The way he drove, a car couldn’t possibly last more than a year,” a friend says. Von Neumann was regularly arrested for speeding and some of his wrecks became legendary. A Princeton crossroads was for a while known as “Von Neumann corner” because of the number of times the mathematician had cracked up there. He once emerged from a totally demolished car with this explanation: “I was proceeding down the road. The threes on the right were passing me in orderly fashion at 60 miles an hour. Suddenly one of them stepped out in my path. Boom!”

Mariette and John von Neumann had one child, Marina, born in 1935, who graduated from Radcliffe last June, summa cum laude, with the highest scholastic record in her class. In 1937, the year Von Neumann was elected to the National Academy of Sciences and became a naturalized citizen of the U.S., the marriage ended in divorce. The following year on a trip to Budapest he met and married Klara Dan, whom he subsequently trained to be an expert on electronic computing machines. The Von Neumann home in Princeton continued to be a center of gaiety as well as a hotel for prominent intellectual transients.

In the late 1930s Von Neumann began to receive a new type of visitor at Princeton: the military scientist and engineer. After he had handled a number of jobs for the Navy in ballistics and anti-submarine warfare, word of his talents spread, and Army Ordnance began using him more and more as a consultant at its Aberdeen Proving Ground in Maryland. As war drew nearer this kind of work took up more and more of his time.

During World War II he roved between Washington, where he had established a temporary residence, England, Los Alamos and other defense installations. When scientific groups heard Von Neumann was coming, they would set up all of their advanced mathematical problems like ducks in a shooting gallery. Then he would arrive and systematically topple them over.

After the Axis had been destroyed, Von Neumann urged that the U.S. immediately build even more powerful atomic weapons and use them before the Soviets could develop nuclear weapons of their own. It was not an emotional crusade, Von Neumann, like others, had coldly reasoned that the world had grown too small to permit nations to conduct their affairs independently of one another. He held that world government was inevitable – and the sooner the better. But he also believed it could never be established while Soviet Communism dominated half of the globe. A famous Von Neumann observation at the time: “With the Russians it is not a question of whether but when.” A hard-boiled strategist, he was one of the few scientists to advocate preventive war, and in 1950 he was remarking, “If you say why not bomb them tomorrow, I say why not today? If you say today at 5 o’clock, I say why not 1 o’clock?”von_neumann_6

In late 1949, after the Russians had exploded their first atomic bomb and the U.S. scientific community was split over whether or not the U.S. should build a hydrogen bomb, Von Neumann reduced the argument to: “It is not a question of whether we build it or not, but when do we start calculating?” When the H-bomb controversy raged, Von Neumann slipped quietly out to Los Alamos, took a desk and began work on the first mathematical steps toward building the weapon, specifically deciding which computations would be fed to which electronic computers.

Von Neumann’s principal interest in the postwar years was electronic computing machines, and his advice on computers was in demand almost everywhere. One day he was urgently summoned to the offices of the Rand Corporation, a government-sponsored scientific research organization in Santa Monica, Calif. Rand scientists had come up with a problem so complex that the electronic computers then in existence seemingly could not handle it. The scientists wanted Von Neumann to invent a new kind of computer. After listening to the scientists expound, Von Neumann broke in: “Well, gentlemen, suppose you tell me exactly what the problem is?”

For the next two hours the men at Rand lectured, scribbled on blackboards, and brought charts and tables back and forth. Von Neumann sat with his head buried in his hands. When the presentation was completed, he scribbled on a pad, stared so blankly that a Rand scientist later said he looked as if “his mind had slipped his face out of gear,” then said, “Gentlemen, you do not need the computer. I have the answer.”

While the scientists sat in stunned silence, Von Neumann reeled off the various steps which would provide the solution to the problem. Having risen to this routine challenge, Von Neumann followed up with a routine suggestion: “Let’s go to lunch.”

In 1954, when the U.S. development of the intercontinental ballistic missile was dangerously bogged down, study groups under Von Neumann’s direction began paving the way for solution of the most baffling problems: guidance, miniaturization of components, heat resistance. In less than a year Von Neumann put his O.K. on the project – but not until he had completed a relentless investigation in his own dazzlingly fast style. One day, during an ICBM meeting on the West Coast, a physicist employed by an aircraft company approached Von Neumann with a detailed plan for one phase of the project. It consisted of a tome several hundred pages long on which the physicist had worked for eight months. Von Neumann took the book and flipped through the first several pages. Then he turned it over and began reading from back to front. He jotted down a figure on a pad, then a second and a third. He looked out the window for several seconds, returned the book to the physicist and said, “It won’t work.” The physicist returned to his company. After two months of re-evaluation, he came to the same conclusion.von_neumann_7

In October 1954 Eisenhower appointed Von Neumann to the Atomic Energy Commission. Von Neumann accepted, although the Air Force and the senators who confirmed him insisted that he retain his chairmanship of the Air Force ballistic missile panel.

Von Neumann had been on the new job only six months when the pain first stuck in the left shoulder. After two examinations, the physicians at Bethesda Naval Hospital suspected cancer. Within a month Von Neumann was wheeled into surgery at the New England Deaconess Hospital in Boston. A leading pathologist, Dr. Shields Warren, examined the biopsy tissue and confirmed that the pain was a secondary cancer. Doctors began to race to discover the primary location. Several weeks later they found it in the prostate. Von Neumann, they agreed, did not have long to live.

When he heard the news Von Neumann called for Dr. Warren. He asked, “Now that this thing has come, how shall I spend the remainder of my life?”

“Well, Johnny,” Warren said, “I would stay with the commission as long as you feel up to it. But at the same time I would say that if you have any important scientific papers – anything further scientifically to say – I would get started on it right away.”

Von Neumann returned to Washington and resumed his busy schedule at the Atomic Energy Commission. To those who asked about his arm, which was in a sling, he muttered something about a broken collarbone. He continued to preside over the ballistic missile committee, and to receive an unending stream of visitors from Los Alamos, Livermore, the Rand Corporation, Princeton. Most of these men knew that Von Neumann was dying of cancer, but the subject was never mentioned.

Machines creating new machines

After the last visitor had departed Von Neumann would retire to his second-floor study to work on the paper which he knew would be his last contribution to science. It was an attempt to formulate a concept shedding new light on the workings of the human brain. He believed that if such a concept could be stated with certainty, it would also be applicable to electronic computers and would permit man to make a major step forward in using these “automata.” In principle, he reasoned, there was no reason why some day a machine might not be built which not only could perform most of the functions of the human brain but could actually reproduce itself, i.e., create more supermachines like it. He proposed to present this paper at Yale, where he had been invited to give the 1956 Silliman Lectures.

As the weeks passed, work on the paper slowed. One evening, as Von Neumann and his wife were leaving a dinner party, he complained that he was “uncertain” about walking. Doctors furnished him with a wheelchair. But Von Neumann’s world had begun to close in tight around him. He was seized by periods of overwhelming melancholy.

In April 1956 Von Neumann moved into Walter Reed Hospital for good. Honors were now coming from all directions. He was awarded Yeshiva University’s first Einstein prize. In a special White House ceremony President Eisenhower presented him with the Medal of Freedom. In April the AEC gave him the Enrico Fermi award for his contributions to the theory and design of computing machines, accompanied by a $50,000 tax-free grant.

Although born of Jewish parents, Von Neumann had never practiced Judaism. After his arrival in the U.S. he had been baptized a Roman Catholic. But his divorce from Mariette had put him beyond the sacraments of the Catholic Church for almost 19 years. Now he felt an urge to return. One morning he said to Klara, “I want to see a priest.” He added, “But he will have to be a special kind of priest, one that will be intellectually compatible.” Arrangements were made for special instructions to be given by a Catholic scholar from Washington. After a few weeks Von Neumann began once again to receive the sacraments.

The great mind falters

Toward the end of May the seizures of melancholy began to occur more frequently. In June the doctors finally announced – though not to Von Neumann himself – that the cancer had begun to spread. The great mind began to falter. “At times he would discuss history, mathematics, or automata, and he could recall word for word conversations we had had 20 years ago,” a friend says. “At other times he would scarcely recognize me.” His family – Klara, two brothers, his mother and daughter Marina – drew close around him and arranged a schedule so that one of them would always be on hand. Visitors were more carefully screened. Drugs fortunately prevented Von Neumann from experiencing pain. Now and then his old gifts of memory were again revealed. One day in the fall his brother Mike read Goethe’s Faust to him in German. Each time Mike paused to turn the page, Von Neumann recited from memory the first few lines of the following page.

One of his favorite companions was his mother Margaret von Neumann, 76 years old. In July the family in turn became concerned about her health, and it was suggested that she go to a hospital for a checkup. Two weeks later she died of cancer. “It was unbelievable,” a friend says. “She kept on going right up to the very end and never let anyone know a thing. How she must have suffered to make her son’s last days less worrisome.” Lest the news shock Von Neumann fatally, elaborate precautions were taken to keep it from him. When he guessed the truth, he suffered a severe setback.

Von Neumann’s body, which he had never given much thought to, went on serving him much longer than did his mind. Last summer the doctors had given him only three or four weeks to live. Months later, in October, his passing was again expected momentarily. But not until this month did his body give up. It was characteristic of the impatient, witty and incalculably brilliant John von Neumann that although he went on working for others until he could do not more, his own treatise on the workings of the brain – the work he thought would be his crowning achievement in his own name – was left unfinished.

von_neumann_8

 

 

Qualia Computing Media Appearances

Podcasts

Consciousness, Qualia, and Psychedelics with Andres Gomez Emilsson (Catalyzing Coherence, May 2018)

Consciousness and Qualia Realism (Cosmic Tortoise, May 2018)

Robert Stark interviews Transhumanist Andres Gomez Emilsson (The Stark Truth with Robert Stark, October 2017)

Como el MDMA, pero sin la neurotoxicidad (Abolir el sufrimiento con Andrés Gómez) (Guía Escéptica [in Spanish], March 2016)

Happiness is Solving the World’s Problems (The World Transformed, January 2016)

Presentations

Quantifying Valence (see alsoThe Science of Consciousness, April 2018)

Quantifying Bliss (Consciousness Hacking, June 2017)

Utilitarian Temperament: Satisfying Impactful Careers (BIL Oakland 2016: The Recession Generation, July 2016)

Interviews

Want a Penfield Mood Organ? This Scientist Might Be Able to Help (Ziff Davis PCMag, April 2018)

Frameworks for Consciousness – Andres Gomez Emilsson (Science, Technology & the Future by Adam Ford, March 2018)

Towards the Abolition of Suffering through Science (featuring David Pearce, Brian Tomasik, & Mike Johnson hosted by Adam Ford, August 2015)

The Mind of David Pearce (Stanford, December 2012)

Andrés Gómez Emilsson, el joven que grito espurio a Felipe Calderón (Cine Desbundo [in Spanish], October 2008)

Narrative Inclusions

Fear and Loathing at Effective Altruism Global 2017 (Slate Star Codex, August 2017)

High Performer: Die Renaissance des LSD im Silicon Valley (Wired Germany [in German], June 2015)

Come With Us If You Want To Live (Harper’s Magazine, January 2015)

David Pearce’s Social Media Posts (Hedwebpre-2014, 2014, 2015, 2016, 2017, 2018)

External Articles

Ending Suffering Is The Most Important Cause (IEET, September 2015)

This Is What I Mean When I Say ‘Consciousness’ (IEET, September 2015)

My Interest Shifted from Mathematics to Consciousness after a THC Experience (IEET, September 2015)

‘Spiritual/Philosophical’ is the Deepest, Highest, Most Powerful Dimension of Euphoria (IEET, September 2015)

Bios

H+pedia, ISI-S, The Transhuman Party, Decentralized AI Summit, Earth Sharing

Miscellaneous

Philosophy of Mind Stand-up Comedy (The Science of Consciousness,  April 2018)


Note: I am generally outgoing, fun-loving, and happy to participate in podcasts, events, interviews, and miscellaneous activities. Feel free to invite me to your podcast/interview/theater/etc. I am flexible when it comes to content; anything I’ve written about in Qualia Computing is fair game for discussion. Cheers!

Marijuana-induced “Short-term Memory Tracers”

[On the subjective effects of marijuana]: It’s one thing to describe it verbally and another thing to experience it yourself. I had this dissociated feeling that was really intense. I had memory tracers. So it wasn’t like, you know, people on LSD or stuff will talk about how “your hand is tracing over and over again” and it was almost like that with my memory. My short term memory was repeating over and over again. So it’d be things like getting in a car, and getting in the car over and over again, putting on a seat belt over and over and over again, and it was like short term memory tracers. And it was overall extremely intense. Had an altered perception of space. You know… distance. That’s something I [also] got on mushrooms, which I talked about in a previous video, but it’s like you see something far away and you don’t really know if it’s really far away, or if it is just really small. So if you see a car that’s like 50 feet away, you don’t know if it is 50 feet away or if it is just a matchbox car that’s really close to you. So it kind of had that; it altered the way I saw space. And, to be honest, I freaked the fuck out, because this isn’t what I thought marijuana was supposed to be. I thought it was a sedative. I thought it made you relaxed. I didn’t know it tripped you the fuck out. So, uh, my response was: I thought I was dying. I remember being in the backseat of the car and saying “is this normal?” And the guy in the front seat– he was this Indian dude, his name was Deepak– I swear to God it was like, uh, my Kumar, and he turns back and and was like “Are you tripping, man? Are you feeling it, man?” and that just made me even more fucked up in the head. Because he was saying it in his Indian accent, and I was like “What’s going on? What’s going on?”, and I thought I had to go to the hospital. Uh, let’s fast-forward in the experience, so about one hour later, or 30 minutes later, I don’t really know, it started to turn more in what I expected it to be. Which was this sedative, I started feeling more relaxed, like the trip started subsiding, and I was left with this trip afterglow of relaxation, feeling giggly, feeling really hungry, and you know kind of like the standard marijuana high. And this happened every time I smoked marijuana in the beginning. I was uncomfortable for the first 30 minutes to an hour. I learned to kind of enjoy it, but for the most part I was waiting it out. And then I’d get relaxed and chill. And I wouldn’t really call it paranoia, it was really just tripping so hard I was kind of like “wow, like, I’m really fucking tripping, I hope I don’t act weird in front of a bunch of people” Maybe that is paranoia, I don’t know.

 

[…10 more minutes talking about marijuana…]

 

And I don’t know why the fuck marijuana is still illegal in 2017. I feel like I a fucking pilgrim. Like, seriously? A war veteran can go and almost die for his country. He could come back, and drink alcohol, buy an assault riffle, and get prescribed speed, but smoke a joint? Nah, you are a fucking criminal! I mean, that doesn’t make any fucking sense. I’ve been doing this push, that I said that if by January 2018 Marijuana wasn’t legal I’d shave my hair. I’m not gonna shave my head. I am gonna cut all of my hair off, and I’m really sad about that. Usually when I cut my hair off I send it to Korea at a random address because I just like to say “my hair is in Korea”. And I’m sure whoever opens it is like “why the fuck am I getting this?” But this time I’m gonna throw it up into eBay just because I want to see if anybody bids on it. I’m gonna do it 99 cents free shipping. But yeah, getting my hair cut is simply really weird: when I get to the stylist and say “can you put this on a bag? I’m gonna sell this.” Uh, but yeah, that really is it for Marijuana as far as my overall experience with the substance.

– What’s smoking marijuana like? The positive and negative effects of smoking cannabis and dabs by Youtube addiction recovery coach Cg Kid

The Banality of Evil

In response to the Quora question “I feel like a lot of evil actions in the world have supporters who justify them (like Nazis). Can you come up with some convincing ways in which some of the most evil actions in the world could be justified?David Pearce writes:


Tout comprendre, c’est tout pardonner.”
(Leo Tolstoy, War and Peace)

Despite everything, I believe that people are really good at heart.
(Anne Frank)

The risk of devising justifications of the worst forms of human behaviour is there are people gullible enough to believe them. It’s not as though anti-Semitism died with the Third Reich. Even offering dispassionate causal explanation can sometimes be harmful. So devil’s advocacy is an intellectual exercise to be used sparingly.

That said, the historical record suggests that human societies don’t collectively set out to do evil. Rather, primitive human emotions get entangled with factually mistaken beliefs and ill-conceived metaphysics with ethically catastrophic consequences. Thus the Nazis seriously believed in the existence of an international Jewish conspiracy against the noble Aryan race. Hitler, so shrewd in many respects, credulously swallowed The Protocols of the Elders of Zion. And as his last testament disclosed, obliquely, Hitler believed that the gas chambers were a “more humane means” than the terrible fate befalling the German Volk. Many Nazis (HimmlerHössStangl, and maybe even Eichmann) believed that they were acting from a sense of duty – a great burden stoically borne. And such lessons can be generalised across history. If you believed, like the Inquisition, that torturing heretics was the only way to save their souls from eternal damnation in Hell, would you have the moral courage to do likewise? If you believed that the world would be destroyed by the gods unless you practised mass human sacrifice, would you participate? [No, in my case, albeit for unorthodox reasons.]

In a secular context today, there exist upstanding citizens who would like future civilisation to run “ancestor simulations”. Ancestor simulations would create inconceivably more suffering than any crime perpetrated by the worst sadist or deluded ideologue in history – at least if the computational-functional theory of consciousness assumed by their proponents is correct. If I were to pitch a message to life-lovers aimed at justifying such a monstrous project, as you request, then I guess I’d spin some yarn about how marvellous it would be to recreate past wonders and see grandpa again.
And so forth.

What about the actions of individuals, as distinct from whole societies? Not all depraved human behaviour stems from false metaphysics or confused ideology. The grosser forms of human unpleasantness often stem just from our unreflectively acting out baser appetites (cfHamiltonian spite). Consider the neuroscience of perception. Sentient beings don’t collectively perceive a shared public world. Each of us runs an egocentric world-simulation populated by zombies (sic). We each inhabit warped virtual worlds centered on a different body-image, situated within a vast reality whose existence can be theoretically inferred. Or so science says. Most people are still perceptual naïve realists. They aren’t metaphysicians, or moral philosophers, or students of the neuroscience of perception. Understandably, most people trust the evidence of their own eyes and the wisdom of their innermost feelings, over abstract theory. What “feels right” is shaped by natural selection. And what “feels right” within one’s egocentric virtual world is often callous and sometimes atrocious. Natural selection is amoral. We are all slaves to the pleasure-pain axis, however heavy the layers of disguise. Thanks to evolution, our emotions are “encephalised” in grotesque ways. Even the most ghastly behaviour can be made to seem natural –like Darwinian life itself.

Are there some forms of human behaviour so appalling that I’d find it hard to play devil’s advocate in their mitigation – even as an intellectual exercise?

Well, perhaps consider, say, the most reviled hate-figures in our society – even more reviled than murderers or terrorists. Most sexually active paedophiles don’t set out to harm children: quite the opposite, harm is typically just the tragic by-product of a sexual orientation they didn’t choose. Posthumans may reckon that all Darwinian relationships are toxic. Of course, not all monstrous human behavior stems from wellsprings as deep as sexual orientation. Thus humans aren’t obligate carnivores. Most (though not all) contemporary meat eaters, if pressed, will acknowledge in the abstract that a pig is as sentient and sapient as a prelinguistic human toddler. And no contemporary meat eaters seriously believe that their victims have committed a crime (cfAnimal trial – Wikipedia). Yet if questioned why they cause such terrible suffering to the innocent, and why they pay for a hamburger rather than a veggieburger, a meat eater will come up with perhaps the lamest justification for human depravity ever invented:

“But I like the taste!”

Such is the banality of evil.

Person-moment affecting views

by Katja Grace (source)

[Epistemic status: sloppy thoughts not informed by the literature. Hoping actual population ethicists might show up and correct me or point me to whoever has already thought about something like this better.]

Person-affecting views say that when you are summing up the value in different possible worlds, you should ignore people who only exist in one of those worlds. This is based on something like the following intuitions:

  1. World A can only be better than world B insofar as it is better for someone.
  2. World A can’t be better than world B for Alice, if Alice exists in world A but not world B.

The further-fact view says that after learning all physical facts about Alice and Alice’—such as whether Alice’ was the physical result of Alice waiting for five seconds, or is a brain upload of Alice, or is what came out of a replicating machine on Mars after Alice walked in on Earth, or remembers being Alice—there is still a further meaningful question of whether Alice and Alice’ are the same person.

I take the further-fact view to be wrong (or at least Derek Parfit does, and I think we agree the differences between Derek Parfit and I have been overstated). Thinking that the further-fact view is wrong seems to be a common position among intellectuals (e.g. 87% among philosophers).

If the further-fact view is wrong, then the what we have is a whole lot of different person-moments, with various relationships to one another, which for pragmatic reasons we like to group into clusters called ‘people’. There are different ways we could define the people, and no real answer to which definition is right. This works out pretty well in our world, but you can imagine other worlds (or futures of our world) where the clusters are much more ambiguous, and different definitions of ‘person’ make a big difference, or where the concept is not actually useful.

Person-affecting views seem to make pretty central use of the concept ‘person’. If we don’t accept the further-fact view, and do want to accept a person-affecting view, what would that mean? I can think of several options:

  1. How good different worlds are depends strongly on which definition of ‘person’ you choose (which person moments you choose to cluster together), but this is a somewhat arbitrary pragmatic choice
  2. There is some correct definition of ‘person’ for the purpose of ethics (i.e. there is some relation between person moments that makes different person moments in the future ethically relevant by virtue of having that connection to a present person moment)
  3. Different person-moments are more or less closely connected in ways, and a person-affecting view should actually have a sliding scale of importance for different person-moments

Before considering these options, I want to revisit the second reason for adopting a person-affecting view: If Alice exists in world A and not in world B, then Alice can’t be made better off by world A existing rather than world B. Whether this premise is true seems to depend on how ‘a world being better for Alice’ works. Some things we might measure would go one way, and some would go the other. For instance, we could imagine it being analogous to:

  1. Alice painting more paintings. If Alice painted three paintings in world A, and doesn’t exist in world B, I think most people would say that Alice painted more paintings in world A than in world B. And more clearly, that world A has more paintings than world B, even if we insist that a world can’t have more paintings without somebody in particular having painted more paintings. Relatedly, there are many things people do where the sentence ‘If Alice didn’t exist, she wouldn’t have X’.
  2. Alice having painted more paintings per year. If Alice painted one painting every thirty years in world A, and didn’t exist in world B, in world B the number of paintings per year is undefined, and so incomparable to ‘one per thirty years’.

Suppose that person-affecting view advocates are right, and the worth of one’s life is more like 2). You just can’t compare the worth of Alice’s life in two worlds where she only exists in one of them. Then can you compare person-moments? What if the same ‘person’ exists in two possible worlds, but consists of different person-moments?

Compare world A and world C, which both contain Alice, but in world C Alice makes different choices as a teenager, and becomes a fighter pilot instead of a computer scientist. It turns out that she is not well suited to it, and finds piloting pretty unsatisfying. If Alice_t1A is different from Alice_t1C, can we say that world A is better than world C, in virtue of Alice’s experiences? Each relevant person-moment only exists in one of the worlds, so how can they benefit?

I see several possible responses:

  1. No we can’t. We should have person-moment affecting views.
  2. Things can’t be better or worse for person-moments, only for entire people, holistically across their lives, so the question is meaningless. (Or relatedly, how good a thing is for a person is not a function of how good it is for their person-moments, and it is how good it is for the person that matters).
  3. Yes, there is some difference between people and person moments, which means that person-moments can benefit without existing in worlds that they are benefitting relative to, but people cannot.

The second possibility seems to involve accepting the second view above: that there is some correct definition of ‘person’ that is larger than a person moment, and fundamental to ethics – something like the further-fact view. This sounds kind of bad to me. And the third view doesn’t seem very tempting without some idea of an actual difference between persons and person-moments.

So maybe the person-moment affecting view looks most promising. Let us review what it would have to look like. For one thing, the only comparable person moments are the ones that are the same. And since they are the same, there is no point bringing about one instead of the other. So there is never reason to bring about a person-moment for its own benefit. Which sounds like it might really limit the things that are worth intentionally doing. Isn’t making myself happy in three seconds just bringing about a happy person moment rather than a different sad person moment?

Is everything just equally good on this view? I don’t think so, as long as you are something like a preference utilitarian: person-moments can have preferences over other person-moments. Suppose that Alice_t0A and Alice_t0C are the same, and Alice_t1A and Alice_t1C are different. And suppose that Alice_t0 wants Alice_t1 to be a computer scientist. Then world A is better than world C for Alice_t0, and so better overall. That is, person-moments can benefit from things, as long as they don’t know at the time that they have benefited.

I think an interesting  feature of this view is that all value seems to come from meddling preferences. It is never directly good that there is joy in the world for instance, it is just good because somebody wants somebody else to experience joy, and that desire was satisfied. If they had instead wished for a future person-moment to be tortured, and this was granted, then this world would apparently be just as good.

So, things that are never directly valuable in this world:

  • Joy
  • Someone getting what they want and also knowing about it
  • Anything that isn’t a meddling preference

On the upside, since person-moments often care about future person-moments within the same person, we do perhaps get back to something closer to the original person-affecting view. There is often reason to bring about or benefit a person moment for the benefit of previous person moments in the history of the same person, who for instance wants to ‘live a long and happy life’. My guess after thinking about this very briefly is that in practice it would end up looking like the ‘moderate’ person-affecting views, in which people who currently exist get more weight than people who will be brought into existence, but not infinitely more weight. People who exist now mostly want to continue existing, and to have good lives in the future, and they care less, but some, about different people in the future.

So, if you want to accept a person-affecting view and not a further-fact view, the options seem to me to be something like these:

  1. Person-moments can benefit without having an otherworldly counterpart, even though people cannot. Which is to say, only person-moments that are part of the same ‘person’ in different worlds can benefit from their existence. ‘Person’ here is either an arbitrary pragmatic definition choice, or some more fundamental ethically relevant version of the concept that we could perhaps discover.
  2. Benefits accrue to persons, not person-moments. In particular, benefits to persons are not a function of the benefits to their constituent person-moments. Where ‘person’ is again either a somewhat arbitrary choice of definition, or a more fundamental concept.
  3. A sliding scale of ethical relevance of different person-moments, based on how narrow a definition of ‘person’ unites them with any currently existing person-moments. Along with some story about why, given that you can apparently compare all of them, you are still weighting some less, on grounds that they are incomparable.
  4. Person-moment affecting views

None of these sound very good to me, but nor do person-affecting views in general, so maybe I’m the wrong audience. I had thought person-moment affecting views were almost a reductio, but a close friend says he thought they were the obvious reasonable view, so I am curious to hear others’ takes.



An interesting thing to point out here is that what Katja describes as the further-fact view is terminologically equivalent to what we here call Closed Individualism (cf. Ontological Qualia). This is the common-sense view that you start existing when you are born and stop existing when you die (which also has soul-based variants with possible pre-birth and post-death existence). This view is not very philosophically tenable because it presupposes that there is an enduring metaphysical ego distinct for every person. And yet, the vast majority of people still hold strongly to Closed Individualism. In some sense, in the article Katja tries to rescue the common-sense aspect of Closed Individualism in the context of ethics. That is, by trying to steel-man the common-sense notion that people (rather than moments of experience) are the relevant units for morality while also negating further-fact views, you provide reasons to keep using Closed Individualism as an intuition-pump in ethics (if only for pragmatic reasons). In general, I consider this kind of discussions to be a very fruitful endeavor as they approach ethics by touching upon the key parameters that matter fundamentally: identity, value, and counterfactuals.

As you may gather from pieces such as Wireheading Done Right and The Universal Plot, at Qualia Computing we tend to think the most coherent ethical system arises when we take as a premise that the relevant moral agents are “moments of experience”. Contra Person-affecting views, we don’t think it is meaningless to say that a given world is better than another one if not everyone in the first world is also in the second one. On the contrary – it really does not matter who lives in a given world. What matters is the raw subjective quality of the experiences in such worlds. If it is meaningless to ask “who is experiencing Alice’s experiences now?” once you know all the physical facts, then moral weight must be encoded in such physical facts alone. In turn, it could certainly happen then that the narrative aspect of an experience may turn out to be irrelevant for determining the intrinsic value of a given experience. People’s self-narratives may certainly have important instrumental uses, but at their core they don’t make it to the list of things that intrinsically matter (unlike, say, avoiding suffering).

A helpful philosophical move that we have found adds a lot of clarity here is to analyze the problem in terms of Open Individualism. That is, assume that we are all one consciousness and take it from there. If so, then the probability that you are a given person would be weighted by the amount of consciousness (or number of moments of experience, depending) that such person experiences throughout his or her life. You are everyone in this view, but you can only be each person one at a time from their own limited points of view. So there is a sensible way of weighting the importance of each person, and this is a function of the amount of time you spend being him or her (and normalize by the amount of consciousness that person experiences, in case that is variable across individuals).

If consciousness emerges victorious in its war against pure replicators, then it would make sense that the main theory of identity people would hold by default would be Open Individualism. After all, it is only Open Individualism that aligns individual incentives and the total wellbeing of all moments of experience throughout the universe.

That said, in principle, it could turn out that Open Individualism is not needed to maximize conscious value – that while it may be useful instrumentally to align the existing living intelligences towards a common consciousness-centric goal (e.g. eliminating suffering, building a harmonic society, etc.), in the long run we may find that ontological qualia (the aspect of our experience that we use to represent the nature of reality, including our beliefs about personal identity) has no intrinsic value. Why bother experiencing heaven in the form of a mixture of 95% bliss and 5% ‘a sense of knowing that we are all one’, if you can instead just experience 100% pure bliss?

At the ethical limit, anything that is not perfectly blissful might end up being thought of as a distraction from the cosmic telos of universal wellbeing.

Qualia Formalism in the Water Supply: Reflections on The Science of Consciousness 2018

Two years ago I attended The Science of Consciousness 2016 (in Tucson, AZ.) with David Pearce. Here is my account of that event. This year I went again, but now together with a small contingent representing the Qualia Research Institute (QRI). You can see the videos of our presentations here. Below you will find this year’s writeup:

What Went Great

(1) The Meta-Problem of Consciousness

This time David Chalmers brought the Meta-problem of Consciousness into the overall conversation by making a presentation about his paper on the topic. I think that this was a great addition to the conference, and it played beautifully as a tone-setter.

“The meta-problem of consciousness is (to a first approximation) the problem of explaining why we think that there is a problem of consciousness.”

– Chalmers on the Meta-Problem

David Chalmers is famous for defending the case that there is a problem of consciousness. And not only that, but that indeed, an aspect of it, the hard problem, resists conventional methods of explanation (as they focus on form and structure, but consciousness is anything but). Chalmers’ track record of contributions to the field is impressive. His work includes: formalizing foundational problems of consciousness, steel-manning extended-mind/embodied cognition, progress on classical philosophy of language questions (e.g. sense and reference with regards to modal logic), observations on the unity of consciousness, the case for the possibility of super-intelligence, and even the philosophical implications of Virtual Reality (I often link to his Reddit AMA as one of the best layman’s introductions to his work; see also his views on psychedelics). Plus, his willingness to consider, and even steel-man the opponent’s arguments is admirable.*

And of all of his works, I would argue, discussing the meta-problem of consciousness is perhaps one of the things that will help advance the field of consciousness research the most. In brief, we are in sore need of an agreed-upon explanation for the reasons why consciousness poses a problem at all. Rather than getting caught up in unfruitful arguments at the top of the argumentative tree, it is helpful to sometimes be directed to look at the roots of people’s divergent intuitions. This tends to highlight unexpected differences in people’s philosophical background assumptions.

And the fact that these background assumptions are often not specified leads to problems. For example: talking past each other due to differences in terminology, people attacking a chain of reasoning when in fact their disagreement starts at the level of ontology, and failure to recognize and map useful argumentative isomorphisms from one ontology onto another.

Having the Meta-Problem of Consciousness at the forefront of the discussions, in my appraisal of the event, turned out to be very generative. Asking an epiphenomenalist, an eliminativist, a panprotopsychist, etc. to explain why they think their view is true seemed less helpful in advancing the state of our collective knowledge than asking them about their thoughts on the Meta-Problem of Consciousness.

(2) Qualia Formalism in the Water Supply

At the Qualia Research Institute we explicitly assume that consciousness is not only real, but that it is formalizable. This is not a high-level claim about the fact that we can come up with a precise vocabulary to talk about consciousness. It is a radical take on the degree to which formal mathematical models of experience can be discovered. Qualia Formalism, as we define it, is the claim that for any conscious experience, there exists a mathematical object whose properties are isomorphic to the phenomenology of that experience. Anti-formalists, on the other hand, might say that consciousness is an improper reification.

For formalists, consciousness is akin to electromagnetism: we started out with a series of peculiar disparate phenomena such as lightning, electricity, magnets, static-electricity, etc. After a lot of work, it turned out that all of these diverse phenomena had a crisp unifying mathematical underpinning. More so, this formalism was not merely descriptive. Light, among other phenomena, were hidden in it. That is, finding a mathematical formalism for real phenomena can be generalizable to even more domains, be strongly informative for ontology, and ultimately, also technologically generative (the computer you are using to read this article wouldn’t- and in fact couldn’t -exist if electromagnetism wasn’t formalizable).

For anti-formalists, consciousness is akin to Élan vital. People had formed the incorrect impression that explaining life necessitated a new ontology. That life was, in some sense, (much) more than just the sum of life-less forces in complex arrangements. And in order to account for the diverse (apparently unphysical) behaviors of life, we needed a life force. Yet no matter how hard biologists, chemists, and physicists have tried to look for it, no life force has been found. As of 2018 it is widely agreed by scientists that life can be reduced to complex biochemical interactions. In the same vein, anti-formalists about consciousness would argue that people are making a category error when they try to explain consciousness itself. Consciousness will go the same way as Élan vital: it will turn out to be an improper reification.

In particular, the new concept-handle on the block to refer to anti-formalist views of consciousness is “illusionism”. Chalmers writes on The Meta-Problem of Consciousness:

This strategy [of talking about the meta-problem] typically involves what Keith Frankish has called illusionism about consciousness: the view that consciousness is or involves a sort of introspective illusion. Frankish calls the problem of explaining the illusion of consciousness the illusion problem. The illusion problem is a close relative of the meta-problem: it is the version of the meta-problem that arises if one adds the thesis that consciousness is an illusion. Illusionists (who include philosophers such as Daniel Dennett, Frankish, and Derk Pereboom, and scientists such as Michael Graziano and Nicholas Humphrey) typically hold that a solution to the meta-problem will itself solve or dissolve the hard problem.

The Meta-Problem of Consciousness (pages 2-3)

In the broader academic domain, it seems that most scientists and philosophers are neither explicitly formalists nor anti-formalists. The problem is, this question has not been widely discussed. We at QRI believe that there is a fork in the road ahead of us. That while both formalist and anti-formalist views are defensible, there is very little room in-between for coherent theories of consciousness. The problem of whether qualia formalism is correct or not is what Michael Johnson has coined as The Real Problem of Consciousness. Solving it would lead to radical improvements in our understanding of consciousness.

282cu8

What a hypothetical eliminativist about consciousness would say to my colleague Michael Johnson in response to the question – “so you think consciousness is just a bag of tricks?”: No, consciousness is not a bag of tricks. It’s an illusion, Michael. A trick is what a Convolutional Neural Network needs to do to perform well on a text classification task. The illusion of consciousness is the radical ontological obfuscation that your brain performs in order to render its internal attentional dynamics as a helpful user-interface that even a kid can utilize for thinking.

Now, largely thanks to the fact that Integrated Information Theory (IIT) is being discussed openly, qualia formalism is (implicitly) starting to have its turn on the table. While we believe that IIT does not work out as a complete account of consciousness for a variety of reasons (our full critique of it is certainly over-due), we do strongly agree with its formalist take on consciousness. In fact, IIT might be the only mainstream theory of consciousness that assumes anything resembling qualia formalism. So its introduction into the water supply (so to speak) has given a lot of people the chance to ponder whether consciousness has a formal structure.

(3) Great New Psychedelic Research

The conference featured the amazing research of Robin Carhart-Harris, Anil K. Seth, and Selen Atasoy, all of whom are advancing the frontier of consciousness research by virtue of collecting new data, generating computational models to explain it, and developing big-picture accounts of psychedelic action. We’ve already featured Atasoy’s work in here. Her method of decomposing brain activity into harmonics is perhaps one of the most promising avenues for advancing qualia formalist accounts of consciousness (i.e. tentative data-structures in which the information about a given conscious state is encoded). Robin’s entropic brain theory is, we believe, a really good step in the right direction, and we hope to formalize how valence enters the picture in the future (especially as it pertains to being able to explain qualia annealing on psychedelic states). Finally, Anil is steel-manning the case for predictive coding’s role in psychedelic action, and, intriguingly, also advancing the field by trying to find out in exactly what ways the effects of psychedelics can be simulated with VR and strobe lights (cf. Algorithmic Reduction of Psychedelic States, and Getting Closer to Digital LSD).

(4) Superb Aesthetic

The Science of Consciousness brings together a group of people with eclectic takes on reality, extremely high Openness to Experience, uncompromising curiosity about consciousness, and wide-ranging academic backgrounds, and this results in an amazing aesthetic. In 2016 the underlying tone was set by Dorian Electra and Baba Brinkman, who contributed with consciousness-focused music and witty comedy (we need more of that kind of thing in the world). Dorian Electra even released an album titled “Magical Consciousness Conference” which discusses in a musical format classical topics of philosophy of mind such as: the mind-body problem, brains in vats, and the Chinese Room.

aesthetic_dorian

The Science of Consciousness conference carries a timeless aesthetic that is hard to describe. If I were forced to put a label on it, I would say it is qualia-aware paranormal-adjacent psychedelic meta-cognitive futurism, or something along those lines. For instance, see how you can spot philosophers of all ages vigorously dancing to the empiricists vs. rationalists song by Dorian Electra (featuring David Chalmers) at The End of Consciousness Party in this video. Yes, that’s the vibe of this conference. The conference also has a Poetry Slam on Friday in which people read poems about qualia, the binding problem, and psychedelics (this year I performed a philosophy of mind stand-up comedy sketch there). They also play the Zombie Blues that night, in which people take turns to sing about philosophical zombies. Here are some of Chalmers’ verses:

I act like you act

I do what you do

But I don’t know

What it’s like to be you

What consciousness is!

I ain’t got a clue

I got the Zombie Blues!!!

 


I asked Tononi:

“How conscious am I?”

He said “Let’s see…”

“I’ll measure your Phi”

He said “Oh Dear!”

“It’s zero for you!”

And that’s why you’ve got the Zombie Blues!!!

Noteworthy too is the presence of after-parties that end at 3AM, the liberal attitude on cannabis, and the crazy DMT art featured in the lobby. Here are some pictures we took late at night borrowing some awesome signs we found at a Quantum Healing stand.

(5) We found a number of QRI allies and supporters

Finally, we were very pleased to find that Qualia Computing readers and QRI supporters attended the conference. We also made some good new friends along the way, and on the whole we judged the conference to be very much worth our time. For example, we were happy to meet Link Swanson, who recently published his article titled Unifying Theories of Psychedelic Drug Effects. I in fact had read this article a week before the event and thought it was great. I was planning on emailing him after the conference, and I was pleasantly surprised to meet him in person there instead. If you met us at the conference, thanks for coming up and saying hi! Also, thank you to all who organized or ran the conference, and to all who attended it!

30174183_2059722060708154_528874706_o

QRI members, friends, and allies

 

What I Would Like to See More Of

(1) Qualia Formalism

We hope and anticipate that in future years the field of consciousness research will experience an interesting process in which theory proponents will come out as either formalists or anti-formalists. In the meantime, we would love to see more people at least taking seriously the vision of qualia formalism. One of the things we asked ourselves during the conference was: “Where can we find other formalists?”. Perhaps the best heuristic we explored was the simple strategy of going to the most relevant concurrent sessions (e.g. physics and consciousness, and fundamental theories of consciousness). Interestingly, the people who had more formalist intuitions also tended to take IIT seriously.

(2) Explicit Talk About Valence (and Reducing Suffering)

To our knowledge, our talks were the only ones in the event that directly addressed valence (i.e. the pleasure-pain axis). I wish there were more, given the paramount importance of affect in the brain’s computational processing, its role in culture, and of course, its ethical relevance. What is the point of meaning and intelligence if one cannot be happy?

There was one worthy exception: at some point Stuart Hameroff briefly mentioned his theory about the origin of life. He traces the evolutionary lineage of life to molecular micro-environmental system in which “quantum events [are] shielded from random, polar interactions, enabling more intense and pleasurable [Objective Reduction] qualia. ” In his view, pleasure-potential maximization is at the core of the design of the nervous system. I am intrigued by this theory, and I am glad that valence enters the picture here. I would just want to extend this kind of work to include the role of suffering as well. It seems to me that the brain evolved an adaptive range of valence that sinks deep into the negative, and is certainly not just optimizing for pleasure. While our post-human descendants might enjoy information-sensitive gradients of bliss, us Darwinians have been “gifted” by evolution a mixture of negative and positive hedonic qualia.

(3) Awareness of the Tyranny of the Intentional Object

Related to (2), we think that one of the most important barriers for making progress in valence research is the fact that most people (even neuroscientists and philosophers of mind) think of it as a very personal thing with no underlying reality beyond hearsay or opinion. Some people like ice-cream, some like salads. Some people like Pink Floyd, others like Katy Perry. So why should we think that there is a unifying equation for bliss? Well, in our view, nobody actually likes ice-cream or Pink Floyd. Rather, ice-cream and Pink Floyd trigger high-valence states, and it is the high valence states that are actually liked and valuable. Our minds are constructed in such a way that we project pleasure and pain out into the world and think of them as necessarily connected to the external state of affairs. But this, we argue, is indeed an illusion (unlike qualia, which is as real as it gets).

Even the people in the Artificial Intelligence and Machine Consciousness plenary panel seemed subject to the Tyranny of the Intentional Object. During the Q&A section I asked them: “if you were given a billion dollars to build a brain or machine that could experience super-happiness, how would you go about doing so?” Their response was that happiness/bliss only makes sense in relational terms (i.e. by interacting with others in the real world). Someone even said that “dopamine in the brain is just superficial happiness… authentic happiness requires you to gain meaning from what you do in the world.” This is a common view to take, but I would also point out that if it is possible to generate valence in artificial minds without human interactions, generating high valence could be done more directly. Finding methods to modulate valence would be done more efficiently by seeking out foundational qualia formalist accounts of valence.

(4) Bigger Role for the Combination Problem

The number of people who account for the binding problem (also called the combination or boundary problem) is vanishingly small. How and why consciousness appears as unitary is a deep philosophical problem that cannot be dismissed with simple appeals to illusionism or implicit information processing. In general, my sense has been that many neuroscientists, computer scientists, and philosophers of mind don’t spend much time thinking about the binding problem. I have planned an article that will go in depth about why it might be that people don’t take this problem more seriously. As David Pearce has eloquently argued, any scientific theory of consciousness has to explain the binding problem. Nowadays, almost no one addresses it (and much less compellingly provides any plausible solution to it). The conference did have one concurrent session called “Panpsychism and the Combination Problem” (which I couldn’t attend), and a few more people I interacted with seemed to care about it, but the proportion was very small.

(5) Bumping-up the Effect Size of Psi Phenomena (if they are real)

There is a significant amount of interest in Psi (parapsychology) from people attending this conference. I myself am agnostic about the matter. The Institute of Noetic Science (IONS) conducts interesting research in this area, and there are some studies that argue that publication bias cannot explain the effects observed. I am not convinced that other explanations have been ruled out, but I am sympathetic to people who try to study weird phenomena within a serious scientific framework (as you might tell from this article). What puzzles me is why there aren’t more people advocating for increasing the effect size of these effects in order to study them. Some data suggests that Psi (in the form of telepathy) is stronger with twins, meditators, people on psychedelics, and people who believe in Psi. But even then the effect sizes reported are tiny. Why not go all-in and try to max out the effect size by combining these features? I.e. why not conduct studies with twins who claim to have had psychic experiences, who meditate a lot, and who can handle high doses of LSD and ketamine in sensory deprivation tanks? If we could bump up the effect sizes far enough, maybe we could definitively settle the matter.

(6) And why not… also a lab component?

Finally, I think that trip reports by philosophically-literate cognitive scientists are much more valuable than trip reports by the average Joe. I would love to see a practical component to the conference someday. The sort of thing that would lead to publications like: “The Phenomenology of Candy-Flipping: An Empirical First-Person Investigation with Philosophers of Mind at a Consciousness Conference.”

Additional Observations

The Cards and Deck Types of Consciousness Theories

To make the analogy between Magic decks and theories of consciousness, we need to find a suitable interpretation for a card. In this case, I would posit that cards can be interpreted as either background assumptions, required criteria, emphasized empirical findings, and interpretations of phenomena. Let’s call these, generally, components of a theory.

Like we see in Magic, we will also find that some components support each other while others interact neutrally or mutually exclude each other. For example, if one’s theory of consciousness explicitly rejects the notion that quantum mechanics influences consciousness, then it is irrelevant whether one also postulates that the Copenhagen interpretation of quantum mechanics is correct. On the other hand, if one identifies the locus of consciousness to be in the microtubules inside pyramidal cells, then the particular interpretation of quantum mechanics one has is of paramount importance.

– Qualia Computing in Tucson: The Magic Analogy (2016)

In the 2016 writeup of the conference I pointed out that the dominant theories of consciousness (i.e. deck types in the above sense) were:

  1. Integrated Information Theory (IIT)
  2. Orchestrated Objective Reduction (Orch OR)
  3. Prediction Error Minimization (PEM)
  4. Global Neuronal Workspace Theory (GNWS)
  5. Panprotopsychist (not explicitly named)
  6. Nondual Consciousness Monism (not explicitly named)
  7. Consciousness as the Result of Action-Oriented Cognition (not explicitly named)
  8. Higher Order Thought Theory (HOT)

So how has the meta-game changed since then? Based on the plenary presentations, the concurrent sessions, the workshops, the posters, and my conversations with many of the participants, I’d say (without much objective proof) that the new meta-game now looks more or less like this:

  1. Orchestrated Objective Reduction (Orch OR)
  2. Integrated Information Theory (IIT)
  3. Entropic Brain Theory (EBT)
  4. Global Neuronal Workspace Theory (GNWS)
  5. Prediction Error Minimization (PEM)
  6. Panprotopsychist as a General Framework
  7. Harmonic-Resonant Theories of Consciousness

It seems that Higher Order Thought (HOT) theories of consciousness have fallen out of favor. Additionally, we have a new contender on the table: Harmonic-Resonant Theories of Consciousness is now slowly climbing up the list (which, it turns out, had already been in the water supply since 2006 when Steven Lehar attended the conference, but only now is gathering popular support).

Given the general telos of the conference, it is not surprising that deflationary theories of consciousness do not seem to have a strong representation. I found a few people here and there who would identify as illusionists, but there were not enough to deserve their place in a short-list of dominant deck types. I assume it would be rather unpleasant for people with this general view about consciousness to hang out with so many consciousness realists.

A good number of people I talked to admitted that they didn’t understand IIT, but that they nonetheless felt that something along the lines of irreducible causality was probably a big part of the explanation for consciousness. In contrast, we also saw a few interesting reactions to IIT – some people said “I hate IIT” and “don’t get me started on IIT”. It is unclear what is causing such reactions, but they are worth noting. Is this an allergic reaction to qualia formalism? We don’t have enough information at the moment to know.

Ontological Violence

The spiritual side of consciousness research is liable to overfocus on ethics and mood hacks rather than on truth-seeking. The problem is that a lot of people have emotionally load-bearing beliefs and points of view connected to how they see reality’s big plot. This is a generalized phenomenon, but its highest expression is found within spiritually-focused thinkers. Many of them come across as evangelizers rather than philosophers, scientists, explorers, or educators. For example: two years ago, David Pearce and I had an uncomfortable conversation with a lady who had a very negative reaction to Pearce’s take on suffering (i.e. that we should use biotechnology to eradicate it). She insisted suffering was part of life and that bliss can’t exist without it (a common argument for sure, but the problem was the intense emotional reaction and insistence on continuing the conversation until we had changed our minds).

We learned our lesson – if you suspect that a person has emotionally load-bearing beliefs about a grand plan or big spiritual telos, don’t mention you are trying to reduce suffering with biotechnology. It’s a gamble, and the chance for a pleasant interaction and meaningful exchange of ideas is not worth the risk of interpersonal friction, time investment, and the pointlessness of a potential ensuing heated discussion.

This brings me to an important matter…

Who are the people who are providing genuinely new contributions to the conversation?

There is a lot of noise in the field of consciousness research. Understandably, a lot of people react to this state of affairs with generalized skepticism (and even cynicism). In my experience, if you approach a neuroscientist in order to discuss consciousness, she will usually choose to simply listen to her priors rather than to you (no matter how philosophically rigorous and scientifically literate you may be).

And yet, at this conference and many other places, there are indeed a lot of people who have something new and valuable to contribute to our understanding of consciousness. So who are they? What allows a person to make a novel contribution?

I would suggest that people who fall into one of the following four categories have a higher chance of this:

  1. People who have new information
  2. Great synthesizers
  3. Highly creative people with broad knowledge of the field
  4. New paradigm proposers

For (1): This can take one of three forms: (a) New information about phenomenology (i.e. rational psychonauts with strong interpretation and synthesis skills). (b) New third-person data (i.e. as provided by scientists who conduct new research on e.g. neuroimaging). And (c) new information on how to map third-person data to phenomenology, especially about rare states of consciousness (i.e. as obtained from people who have both access to third-person data sources and excellent experienced phenomenologists). (a) Is very hard to come by because most psychonauts and meditators fall for one or more traps (e.g. believing in the tyranny of the intentional object, being direct realists, being dogmatic about a given pre-scientific metaphysic, etc.). (b) Is constrained by the number of labs and the current Kuhnian paradigms within which they work. And (c) is not only rare, but currently nonexistent. Hence, there are necessarily few people who can contribute to the broader conversation about consciousness by bringing new information to the table.

For (2): Great synthesizers are hard to come by. They do not need to generate new paradigms or have new information. What they have is the key ability to find what the novel contribution in a given proposal is. They gather what is similar and different across paradigms, and make effective lossless compressions – saving us all valuable time, reducing confusion, and facilitating the cross-pollination between various disciplines and paradigms. This requires the ability to extract what matters from large volumes of extremely detailed and paradigm-specific literature. Hence, it is also rare to find great synthesizers.

For (3): Being able to pose new questions, and generate weird but not random hypotheses can often be very useful. Likewise, being able to think of completely outrageous outside-the-box views might be key for advancing our understanding of consciousness. That said, non-philosophers tend to underestimate just how weird an observation about consciousness needs to be for it to be new. This in practice constrains the range of people able to contribute in this way to people who are themselves fairly well acquainted with a broad range of theories of consciousness. That said, I suspect that this could be remedied by forming groups of people who bring different talents to the table. In Peaceful Qualia I discussed a potential empirical approach for investigating consciousness which involves having people who specialize in various aspects of the problem (e.g. being great psychonauts, excellent third-person experimentalists, high-quality synthesizers, solid computational modelers, and so on). But until then, I do not anticipate much progress will come from people who are simply very smart and creative – they also need to have either privileged information (such as what you get from combining weird drugs and brain-computer interfaces), or be very knowledgeable about what is going on in the field.

And (4): This is the most difficult and rarest of all, for it requires some degree of the previous three attributes. Their work wouldn’t be possible without the work of many other people in the previous three categories. Yet, of course, they will be the most world-changing of them all. Explicitly, this is the role that we are aiming for at the Qualia Research Institute.

In addition to the above, there are other ways of making highly valuable contributions to the conversation. An example would be those individuals who have become living expressions of current theories of consciousness. That is, people who have deeply understood some paradigm and can propose paradigm-consistent explanations for completely new evidence. E.g. people who can quickly figure out “what would Tononi say about X?” no matter how weird X is. It is my view that one can learn a lot from people in this category. That said… don’t ever expect to change their minds!

A Final Suggestion: Philosophical Speed Dating

To conclude, I would like to make a suggestion in order to increase the value of this and similar conferences: philosophical speed dating. This might be valuable for two reasons. First, I think that a large percentage of people who attend TSC are craving interactions with others who also wonder about consciousness. After all, being intrigued and fascinated by this topic is not very common. Casual interest? Sure. But obsessive curiosity? Pretty uncommon. And most people who attend TCS are in the latter category. At the same time, it is never very pleasant to interact with people who are likely to simply not understand where you are coming from. The diversity of views is so large that finding a person with whom you can have a cogent and fruitful conversation is quite difficult for a lot of people. A Philosophical Speed Dating session in which people quickly state things like their interest in consciousness, take on qualia, preferred approaches, favorite authors, paradigm affinities, etc. would allow philosophical kindred souls to meet at a much higher rate.

And second, in the context of advancing the collective conversation about consciousness, I have found that having people who know where you are coming from (and either share or understand your background assumptions) is the best way to go. The best conversations I’ve had with people usually arise when we have a strong base of shared knowledge and intuitions, but disagree on one or two key points we can identify and meaningfully address. Thus a Philosophical Speed Dating session could lead to valuable collaborations.

And with that, I would like to say: If you do find our approach interesting or worth pursuing, do get in touch.

Till next time, Tucson!


* In Chalmer’s paper about the Meta-Problem of Consciousness he describes his reason for investigating the subject: “Upon hearing about this article, some people have wondered whether I am converting to illusionism, while others have suspected that I am trying to subvert the illusionist program for opposing purposes. Neither reaction is quite correct. I am really interested in the meta-problem as a problem in its own right. But if one wants to place the paper within the framework of old battles, one might think of it as lending opponents a friendly helping hand.” The quality of a philosopher should not be determined only by their ability to make a good case for their views, but also by the capacity to talk convincingly about their opponent’s. And on that metric, David is certainly world-class.

Qualia Research Institute presentations at The Science of Consciousness 2018 (Tucson, AZ)

As promised, here are the presentations Michael Johnson and I gave in Tucson last week to represent the Qualia Research Institute.

Here is Michael’s presentation:

And here is my presentation:


On a related note:

  1. Ziff Davis PCMag published an interview with me in anticipation of the conference.
  2. An ally of QRI, Tomas Frymann, gave a wonderful presentation about Open Individualism titled “Consciousness as Interbeing: Identity on the Other Side of Self-Transcendence
  3. As a bonus, here is the philosophy of mind stand-up comedy sketch I performed at their Poetry Slam, which took place on Friday night (you should likewise check out their classic Zombie Blues).

Modern Accounts of Psychedelic Action

Excerpts from Unifying Theories of Psychedelic Drug Effects (2018) by Link Swanson (these are just key quotes; the full paper is worth reading)

Abstract

How do psychedelic drugs produce their characteristic range of acute effects in perception, emotion, cognition, and sense of self? How do these effects relate to the clinical efficacy of psychedelic-assisted therapies? Efforts to understand psychedelic phenomena date back more than a century in Western science. In this article I review theories of psychedelic drug effects and highlight key concepts which have endured over the last 125 years of psychedelic science. First, I describe the subjective phenomenology of acute psychedelic effects using the best available data. Next, I review late 19th-century and early 20th-century theories—model psychoses theory, filtration theory, and psychoanalytic theory—and highlight their shared features. I then briefly review recent findings on the neuropharmacology and neurophysiology of psychedelic drugs in humans. Finally, I describe recent theories of psychedelic drug effects which leverage 21st-century cognitive neuroscience frameworks—entropic brain theory, integrated information theory, and predictive processing—and point out key shared features that link back to earlier theories. I identify an abstract principle which cuts across many theories past and present: psychedelic drugs perturb universal brain processes that normally serve to constrain neural systems central to perception, emotion, cognition, and sense of self. I conclude that making an explicit effort to investigate the principles and mechanisms of psychedelic drug effects is a uniquely powerful way to iteratively develop and test unifying theories of brain function.


fphar-09-00172-g002

Subjective rating scale items selected after psilocybin (blue) and placebo (red) (n = 15) (Muthukumaraswamy et al., 2013). “Items were completed using a visual analog scale format, with a bottom anchor of ‘no, not more than usually’ and a top anchor of ‘yes, much more than usually’ for every item, with the exception of ‘I felt entirely normal,’ which had bottom and top anchors of ‘No, I experienced a different state altogether’ and ‘Yes, I felt just as I normally do,’ respectively. Shown are the mean ratings for 15 participants plus the positive SEMs. All items marked with an asterisk were scored significantly higher after psilocybin than placebo infusion at a Bonferroni-corrected significance level of p < 0.0022 (0.5/23 items)” (Muthukumaraswamy et al., 2013, p. 15176).


Neuropharmacology and Neurophysiological Correlates of Psychedelic Drug Effects

Klee recognized that his above hypotheses, inspired by psychoanalytic theory and LSD effects, required neurophysiological evidence. “As far as I am aware, however, adequate neurophysiological evidence is lacking … The long awaited millennium in which biochemical, physiological, and psychological processes can be freely correlated still seems a great distance off” (Klee, 1963, p. 466, 473). What clues have recent investigations uncovered?

A psychedelic drug molecule impacts a neuron by binding to and altering the conformation of receptors on the surface of the neuron (Nichols, 2016). The receptor interaction most implicated in producing classic psychedelic drug effects is agonist or partial agonist activity at serotonin (5-HT) receptor type 2A (5-HT2A) (Nichols, 2016). A molecule’s propensity for 5-HT2A affinity and agonist activity predicts its potential for (and potency of) subjective psychedelic effects (Glennon et al., 1984McKenna et al., 1990Halberstadt, 2015Nichols, 2016Rickli et al., 2016). When a psychedelic drug’s 5-HT2A agonist activity is intentionally blocked using 5-HT2A antagonist drugs (e.g., ketanserin), the subjective effects are blocked or attenuated in humans under psilocybin (Vollenweider et al., 1998Kometer et al., 2013), LSD (Kraehenmann et al., 2017a,bPreller et al., 2017), and ayahuasca (Valle et al., 2016). Importantly, while the above evidence makes it clear that 5-HT2A activation is a necessary (if not sufficient) mediator of the hallmark subjective effects of classic psychedelic drugs, this does not entail that 5-HT2A activation is the sole neurochemical cause of all subjective effects. For example, 5-HT2A activation might trigger neurochemical modulations ‘downstream’ (e.g., changes in glutamate transmission) which could also play causal roles in producing psychedelic effects (Nichols, 2016). Moreover, most psychedelic drug molecules activate other receptors in addition to 5-HT2A (e.g., 5-HT1A, 5-HT2C, dopamine, sigma, etc.) and these activations may importantly contribute to the overall profile of subjective effects even if 5-HT2A activation is required for their effects to occur (Ray, 20102016).

How does psychedelic drug-induced 5-HT2A receptor agonism change the behavior of the host neuron? Generally, 5-HT2A activation has a depolarizing effect on the neuron, making it more excitable (more likely to fire) (Andrade, 2011Nichols, 2016). Importantly, this does not necessarily entail that 5-HT2Aactivation will have an overall excitatory effect throughout the brain, particularly if the excitation occurs in inhibitory neurons (Andrade, 2011). This important consideration (captured by the adage ‘one neuron’s excitation is another neuron’s inhibition’) should be kept in mind when tracing causal links in the pharmaco-neurophysiology of psychedelic drug effects.

In mammalian brains, neurons tend to ‘fire together’ in synchronized rhythms known as temporal oscillations (brain waves). MEG and EEG equipment measure the electromagnetic disturbances produced by the temporal oscillations of large neural populations and these measurements can be quantified according to their amplitude (power) and frequency (timing) (Buzsáki and Draguhn, 2004). Specific combinations of frequency and amplitude can be correlated with distinct brain states, including waking ‘resting’ state, various attentional tasks, anesthesia, REM sleep, and deep sleep (Tononi and Koch, 2008Atasoy et al., 2017a). In what ways do temporal oscillations change under psychedelic drugs? MEG and EEG studies consistently show reductions in oscillatory power across a broad frequency range under ayahuasca (Riba et al., 20022004Schenberg et al., 2015Valle et al., 2016), psilocybin (Muthukumaraswamy et al., 2013Kometer et al., 2015Schartner et al., 2017), and LSD (Carhart-Harris et al., 2016cSchartner et al., 2017). Reductions in the power of alpha-band oscillations, localized mainly to parietal and occipital cortex, have been correlated with intensity of subjective visual effects—e.g., ‘I saw geometric patterns’ or ‘My imagination was extremely vivid’—under psilocybin (Kometer et al., 2013Muthukumaraswamy et al., 2013Schartner et al., 2017) and ayahuasca (Riba et al., 2004Valle et al., 2016). Under LSD, reductions in alpha power still correlated with intensity of subjective visual effects but associated alpha reductions were more widely distributed throughout the brain (Carhart-Harris et al., 2016c). Furthermore, ego-dissolution effects and mystical-type experiences (e.g., ‘I experienced a disintegration of my “self” or “ego”’ or ‘The experience had a supernatural quality’) have been correlated with reductions in alpha power localized to anterior and posterior cingulate cortices and the parahippocampal regions under psilocybin (Muthukumaraswamy et al., 2013Kometer et al., 2015) and throughout the brain under LSD (Carhart-Harris et al., 2016c).

The concept of functional connectivity rests upon fMRI brain imaging observations that reveal temporal correlations of activity occurring in spatially remote regions of the brain which form highly structured patterns (brain networks) (Buckner et al., 2013). Imaging of brains during perceptual or cognitive task performance reveals patterns of functional connectivity known as functional networks; e.g., control network, dorsal attention network, ventral attention network, visual network, auditory network, and so on. Imaging brains in taskless resting conditions reveals resting-state functional connectivity (RSFC) and structured patterns of RSFC known as resting state networks (RSNs; Deco et al., 2011). One particular RSN, the default mode network (DMN; Buckner et al., 2008), increases activity in the absence of tasks and decreases activity during task performance (Fox and Raichle, 2007). DMN activity is strong during internally directed cognition and a variety of other ‘metacognitive’ functions (Buckner et al., 2008). DMN activation in normal waking states exhibits ‘inverse coupling’ or anticorrelation with the activation of task-positive functional networks, meaning that DMN and functional networks are often mutually exclusive; one deactivates as the other activates and vice versa (Fox and Raichle, 2007).

In what ways does brain network connectivity change under psychedelic drugs? First, functional connectivity between key ‘hub’ areas—mPFC and PCC—is reduced. Second, the ‘strength’ or oscillatory power of the DMN is weakened and its intrinsic functional connectivity becomes disintegrated as its component nodes become decoupled under psilocybin (Carhart-Harris et al., 20122013), ayahuasca (Palhano-Fontes et al., 2015), and LSD (Carhart-Harris et al., 2016cSpeth et al., 2016). Third, brain networks that normally show anticorrelation become active simultaneously under psychedelic drugs. This situation, which can be described as increased between-network functional connectivity, occurs under psilocybin (Carhart-Harris et al., 20122013Roseman et al., 2014Tagliazucchi et al., 2014), ayahuasca (Palhano-Fontes et al., 2015) and especially LSD (Carhart-Harris et al., 2016cTagliazucchi et al., 2016). Fourth and finally, the overall repertoire of explored functional connectivity motifs is substantially expanded and its informational dynamics become more diverse and entropic compared with normal waking states (Tagliazucchi et al., 20142016Alonso et al., 2015Lebedev et al., 2016Viol et al., 2016Atasoy et al., 2017bSchartner et al., 2017). Notably, the magnitude of occurrence of the above four neurodynamical themes correlates with subjective intensity of psychedelic effects during the drug session. Furthermore, visual cortex is activated during eyes-closed psychedelic visual imagery (de Araujo et al., 2012Carhart-Harris et al., 2016c) and under LSD “the early visual system behaves ‘as if’ it were receiving spatially localized visual information” as V1-V3 RSFC is activated in a retinotopic fashion (Roseman et al., 2016, p. 3036).

Taken together, the recently discovered neurophysiological correlates of subjective psychedelic effects present an important puzzle for 21st-century neuroscience. A key clue is that 5-HT2A receptor agonism leads to desynchronization of oscillatory activity, disintegration of intrinsic integrity in the DMN and related brain networks, and an overall brain dynamic characterized by increased between-network global functional connectivity, expanded signal diversity, and a larger repertoire of structured neurophysiological activation patterns. Crucially, these characteristic traits of psychedelic brain activity have been correlated with the phenomenological dynamics and intensity of subjective psychedelic effects.


21st-Century Theories of Psychedelic Drug Effects

Entropic Brain Theory

Entropic Brain Theory (EBT; Carhart-Harris et al., 2014) links the phenomenology and neurophysiology of psychedelic effects by characterizing both in terms of the quantitative notions of entropy and uncertainty. Entropy is a quantitative index of a system’s (physical) disorder or randomness which can simultaneously describe its (informational) uncertainty. EBT “proposes that the quality of any conscious state depends on the system’s entropy measured via key parameters of brain function” (Carhart-Harris et al., 2014, p. 1). Their hypothesis states that hallmark psychedelic effects (e.g., perceptual destabilization, cognitive flexibility, ego dissolution) can be mapped directly onto elevated levels of entropy/uncertainty measured in brain activity, e.g., widened repertoire of functional connectivity patterns, reduced anticorrelation of brain networks, and desynchronization of RSN activity. More specifically, EBT characterizes the difference between psychedelic states and normal waking states in terms of how the underlying brain dynamics are positioned on a scale between the two extremes of order and disorder—a concept known as ‘self-organized criticality’ (Beggs and Plenz, 2003). A system with high order (low entropy) exhibits dynamics that resemble ‘petrification’ and are relatively inflexible but more stable, while a system with low order (high entropy) exhibits dynamics that resemble ‘formlessness’ and are more flexible but less stable. The notion of ‘criticality’ describes the transition zone in which the brain remains poised between order and disorder. Physical systems at criticality exhibit increased transient ‘metastable’ states, increased sensitivity to perturbation, and increased propensity for cascading ‘avalanches’ of metastable activity. Importantly, EBT points out that these characteristics are consistent with psychedelic phenomenology, e.g., hypersensitivity to external stimuli, broadened range of experiences, or rapidly shifting perceptual and mental contents. Furthermore, EBT uses the notion of criticality to characterize the difference between psychedelic states and normal waking states as it “describes cognition in adult modern humans as ‘near critical’ but ‘sub-critical’—meaning that its dynamics are poised in a position between the two extremes of formlessness and petrification where there is an optimal balance between order and flexibility” (Carhart-Harris et al., 2014, p. 12). EBT hypothesizes that psychedelic drugs interfere with ‘entropy-suppression’ brain mechanisms which normally sustain sub-critical brain dynamics, thus bringing the brain “closer to criticality in the psychedelic state” (Carhart-Harris et al., 2014, p. 12).


Integrated Information Theory

Integrated Information Theory (IIT) is a general theoretical framework which describes the relationship between consciousness and its physical substrates (Oizumi et al., 2014Tononi, 20042008). While EBT is already loosely consistent with the core principles of IIT, Gallimore (2015) demonstrates how EBT’s hypotheses can be operationalized using the technical concepts of the IIT framework. Using EBT and recent neuroimaging data as a foundation, Gallimore develops an IIT-based model of psychedelic effects. Consistent with EBT, this IIT-based model describes the brain’s continual challenge of minimizing entropy while retaining flexibility. Gallimore formally restates this problem using IIT parameters: brains attempt to optimize the give-and-take dynamic between cause-effect information and cognitive flexibility. In IIT, a (neural) system generates cause-effect information when the mechanisms which make up its current state constrain the set of states which could casually precede or follow the current state. In other words, each mechanistic state of the brain: (1) limits the set of past states which could have causally given rise to it, and (2) limits the set of future states which can causally follow from it. Thus, each current state of the mechanisms within a neural system (or subsystem) has an associated cause-effect repertoire which specifies a certain amount of cause-effect information as a function of how stringently it constrains the unconstrained state repertoire of all possible system states. Increasing the entropy within a cause-effect repertoire will in effect constrain the system less stringently as the causal possibilities are expanded in both temporal directions as the system moves closer to its unconstrained repertoire of all possible states. Moreover, increasing the entropy within a cause-effect repertoire equivalently increases the uncertainty associated with its past (and future) causal interactions. Using this IIT-based framework, Gallimore (2015)argues that, compared with normal waking states, psychedelic brain states exhibit higher entropy, higher cognitive flexibility, but lower cause-effect information.


Predictive Processing

The first modern brain imaging measurements in humans under psilocybin yielded somewhat unexpected results: reductions in oscillatory power (MEG) and cerebral blood flow (fMRI) correlated with the intensity of subjective psychedelic effects (Carhart-Harris et al., 2012Muthukumaraswamy et al., 2013). In their discussion, the authors suggest that their findings, although surprising through the lens of commonly held beliefs about how brain activity maps to subjective phenomenology, may actually be consistent with a theory of brain function known as the free energy principle (FEP; Friston, 2010).

In one model of global brain function based on the free-energy principle (Friston, 2010), activity in deep-layer projection neurons encodes top-down inferences about the world. Speculatively, if deep-layer pyramidal cells were to become hyperexcitable during the psychedelic state, information processing would be biased in the direction of inference—such that implicit models of the world become spontaneously manifest—intruding into consciousness without prior invitation from sensory data. This could explain many of the subjective effects of psychedelics (Muthukumaraswamy et al., 2013, p. 15181).

What is FEP? “In this view, the brain is an inference machine that actively predicts and explains its sensations. Central to this hypothesis is a probabilistic model that can generate predictions, against which sensory samples are tested to update beliefs about their causes” (Friston, 2010). FEP is a formulation of a broader conceptual framework emerging in cognitive neuroscience known as predictive processing (PP; Clark, 2013)10. PP has links to bayesian brain hypothesis (Knill and Pouget, 2004), predictive coding (Rao and Ballard, 1999), and earlier theories of perception and cognition (MacKay, 1956Neisser, 1967Gregory, 1968) dating back to Helmholtz (1925) who was inspired by Kant (1996; see Swanson, 2016). At the turn of the 21st century, the ideas of Helmholtz catalyzed innovations in machine learning (Dayan et al., 1995), new understandings of cortical organization (Mumford, 1992Friston, 2005), and theories of how perception works (Kersten and Yuille, 2003Lee and Mumford, 2003).


Conclusion

The four key features identified in filtration and psychoanalytic accounts from the late 19th and early 20th century continue to operate in 21st-century cognitive neuroscience: (1) psychedelic drugs produce their characteristic diversity of effects because they perturb adaptive mechanisms which normally constrain perception, emotion, cognition, and self-reference, (2) these adaptive mechanisms can develop pathologies rooted in either too much or too little constraint (3) psychedelic effects appear to share elements with psychotic symptoms because both involve weakened constraints (4) psychedelic drugs are therapeutically useful precisely because they offer a way to temporarily inhibit these adaptive constraints. It is on these four points that EBT, IIT, and PP seem consistent with each other and with earlier filtration and psychoanalytic accounts. EBT and IIT describe psychedelic brain dynamics and link them to phenomenological dynamics, while PP describes informational principles and plausible neural information exchanges which might underlie the larger-scale dynamics described by EBT and IIT. Certain descriptions of neural entropy-suppression mechanisms (EBT), cause-effect information constraints (IIT), or prediction-error minimization strategies (PP, FEP) are loosely consistent with Freud’s ego and Huxley’s cerebral reducing valve.


Qualia Computing comment: As you can see above, 21st century theories of psychedelic action have a lot of interesting commonalities. A one-line summary of what they all agree on could be: Psychedelics increase the available state-space of consciousness by removing constraints that are normally imposed by standard brain functioning. That said, they do not make specific predictions about valence. That is, they leave the question of “which alien states of consciousness will feel good and which ones will feel bad” completely unaddressed. In the following posts about the presentations of members of the Qualia Research Institute at The Science of Consciousness 2018 you will see how, unlike other modern accounts, our Qualia Formalist approach to consciousness can elucidate this matter.

From Point-of-View Fragmentation to Global Visual Coherence: Harmony, Symmetry, and Resonance on LSD

Excerpt from The Grand Illusion: A Psychonautical Odyssey Into the Depths of Human Experience by the cognitive scientist Steven Lehar (2010; pages 23-40).

Trip to Europe

I had two or three such experiences on my new batch of LSD, taking perhaps 2 or 3 “hits” (tabs) each time (presumed to be about [100] micrograms, or “mikes” per tab). And each time the experience became somewhat more familiar, and I learned to think more clearly under its influence. In July 1990 I took a trip to Europe with Tim, a colleague from work, because we were both presenting posters at a neural network conference in Paris, and the company where we worked very kindly funded the travel expenses. Tim and I took this opportunity to plan a little excursion around Europe after the conference, visiting Germany, Austria, Italy, and Switzerland touring in a rented car. When we got to Austria we bought a little tent at a camping store, then we hiked up an enormous mountain in the Alps, and spent the day sightseeing at the top. When I told Tim that I happened to have some LSD with me, his eyes lit up. It turns out he too had been a hippy in his youth, and had even attended the original Woodstock, so he immediately warmed to the idea of taking LSD with me on a mountain top, although he had not done psychedelic drugs in over a decade. So there in the most stupendous and idyllic setting of a mountain in the Austrian alps, early the next morning after camping overnight, we consumed five hits of LSD each, and spent the day in profound wonder at the glory of creation!

I made a few new and interesting discoveries on that mountain top in Austria. First of all, I learned to have a great deal more control of the experience in the following manner. I discovered that the effects of LSD become markedly stronger and more pronounced when you sit still and stare, and clear your mind, much like a state of zen meditation, or pre-hypnotic relaxation. When you do this under LSD, the visual world begins to break up and fragment in a most astonishing way. You tend to lose all sense of self, that is, you lose the distinction between self and non-self. This can be a very alarming experience for those who are prone to panic or anxiety, or for those who insist on maintaining a level of control and awareness of themselves and the world around them. But I also discovered that this mental dissociation and visual confusion can be diminished, and normal consciousness can be largely restored by simply looking around, moving about, and interacting actively with the world around you. Because when you do this, suddenly the world appears as a solid and stable structure again, and your familiar body reappears where it belongs at the center of your world of experience. This discovery greatly enhanced my ability to explore the deeper spaces of consciousness revealed by the drug, while providing an insurance against the natural panic that tends to arise with the dissolusion of the self, and the world around you. It allowed me to descend into the depths of the experience while maintaining a life line back to consensual reality, like a spelunker descending into the bowels of the deep underground cavern of my mind, while always able to return safely to the surface. And what a splendid and magnificent cavern it was that I discovered within my mind!

One of the most prominent aspects of consciousness that has puzzled philosophers and psychologists for centuries is the unity of conscious experience. We feel that we live in a world that surrounds our body, and that world appears as a single “picture” or volumetric spatial structure, like a theatre set, every piece of which takes its proper place in the panorama of surrounding experience. It has always been somewhat difficult to grasp this notion of conscious unity, because it is difficult to even conceptualize the alternative. What would consciousness be like if it were not unified? What does that even mean? Under LSD you can discover what non-unified consciousness is like for yourself, and that in turn by contrast offers profound insights as to the nature and meaning of unified consciousness. Again, the most interesting revelations of the psychedelic experience are not confined to that experience itself, but they reveal insights into the nature of normal conscious experience that might otherwise be missed due to its familiarity. In fact, I realized much later, even normal consciousness has aspects which are not unified.

The most familiar example of non-unified consciousness is seen in binocular vision. Under normal conditions the two eyes view the same scene and produce a three-dimensional “picture” in the mind that is a unified construction based on the information from both eyes simultaneously. But everyone knows the experience of double vision. For those with greater control over their own visual function, double vision is easily achieved by simply staring into space and relaxing the eyes. As a vision scientist myself, I have trained myself to do this so as to be able to “free fuse” a binocular pair of left-eye, right-eye images to create the perception of a 3D scene. For those who have difficulty with this, a similar experience can be had by holding a small mirror at an angle close in front of one eye, so as to send very different images into the two eyes. Whichever way you do it, the result is rather unremarkable in its familiarity, and yet when you think of it, this is in fact an example of disunity of conscious experience that is familiar to one and all. For what you see in double vision is actually two visual experiences which are seen as if they are superimposed in some manner, and yet at the same time they are also experienced each in its own separate disconnected space. It is generally possible to observe the correspondence between these two disconnected visual experiences, for example to determine which point in one eye view relates to a particular point in the other, as if viewing two slide transparencies that are overlaid on top of one another, although this correspondence is shifting and unstable, as the vergence between your two eyes tends to wander when binocular fusion is broken. But in fact it is more natural to simply ignore that correspondence and to view the two visual experiences as separate and disconnected spaces that bear no significant spatial relation to each other. When the images in our two eyes do not correspond, we tend to focus on one while ignoring the other, like an experienced marksman who no longer has to close his idle eye while aiming a gun. And yet, although the image from the idle eye is generally ignored, it has not left consciousness entirely, and with an effort, or perhaps more accurately, with an absence of effort or focus, it is possible to experience both views simultaneously.

In the trance-like state of yoga-like meditation performed under LSD, the entire visual world breaks up and fragments in this manner into a multitude of disconnected parallel conscious experiences, each one only loosly related spatially to the other experiences in the visual field. The effect is much enhanced by the fact that your eyes actually diverge or relax in this mental state, as they do under binocular fission, and this helps trigger the state of visual confusion as your mind gives up on trying to make sense of what it is seeing. As in Zen meditation, the LSD trance state is a passive or receptive state of consciousness that allots equal attention, or perhaps lack of attention, to all components of experience, which is why they appear in parallel as separate disconnected pieces. The state of normal active consciousness resists this kind of parallel confusion, and tends to select and focus on the the most significant portion, like the marksman aiming a gun, suppressing alternative experiences such as the view from the idle eye.

The deep LSD-induced trance state can be easily broken by simply moving the eyes, so conversely, the deeper states are achieved by complete mental and physical relaxation, with glazed eyes staring blankly into space. But of all the separate fragments of visual experience observed in this mental state, there is one special fragment located at the very center of the visual field, the foveal center, that appears somewhat sharper and clearer than the rest of the visual field. In fact, the visual fragmentation is somewhat like a kind of tunnel vision in which the peripheral portions of the visual field break off and disconnect from this central portion of the experience. But while the peripheral fragments become separated from the whole, they are never entirely and completely independent, but appear to interact with each other, and especially with the central foveal image in characteristic ways. For example if the foveal image shows a couple of blades of grass, twitching and dancing in the wind, then if any of the peripheral fragments of visual experience happen to show a similar image, i.e. blades of grass at a similar angle and twitching and dancing in synchrony with those in the foveal view, then the central and peripheral images become instantly coupled into a larger unified perceptual experience of a global motion sweeping through the image. Instead of a million blades of grass each twitching individually, we perceive the invisible wind as a wave of synchronous motion that sweeps invisibly across the blades of grass. The waves of motion caused by the wind are perceived as waves of energy across the visual field, a perceptual experience of something larger than the individual grass blades that collectively give rise to it. By careful adjustment of my state of relaxation, I found I could relax until the visual world fragmented into a million independent experiences, and I could gently bring it back into focus, as first a few, and then ever more of the fragmented visual experiences coupled together into fewer separate, and eventually a single unified global experience, much like the moment of binocular fusion when the two monocular images finally lock into each other to produce a single binocular experience.

When the visual world was locked into a unified perceptual experience, even then there were instabilities in local portions of the scene. A little detail seen in distant trees appears first as a mounted horseman, then pops abruptly into a hand with three fingers extended, then to a duck on a branch, then back to the mounted horseman, all the while the actual shape and color perceived remain unchanged, it is only the interpretation, or visual understanding of that pattern that switches constantly, as when a child sees mountains and castles in the clouds. One of the many possible interpretations is of a dead tree with leafless branches, (the veridical percept of what was actually there) and that is the only alternative that enters consciouseness under normal circumstances. The effect of LSD is to make the visual system more tolerant of obvious contradictions in the scene, such as a giant horseman frozen in a line of trees. The effect is like those surrealistic Dali paintings, for example the Three Ages of Man, shown in Figure 2.1, where one sees a single coherent scene, local parts of which spontaneously invert into some alternative interpretation. This is very significant for the nature of biological vision, for it shows that vision involves a dynamic relaxation process whose stable states represent the final perceptual interpretation.

lehar_2_!

There was another interesting observation that I made that day. I noticed that under LSD things appear a little more regular and geometrical than they otherwise do. It is not the shape of things that is different under LSD, but rather the shape of the things we see in objects. For example a cloud is about as irregular and fragmented a shape as a shape can be, and yet we tend to see clouds in a simplified cartoon manner, as a little puff composed of simple convex curves. A real cloud under closer inspection reveals a ragged ugly appearance with very indefinite boundaries and irregular structure. Under LSD the cloud becomes even more regular than usual. I began to see parts of the cloud as regular geometrical shapes, seeing the shapes in the shapes of the cloud as if on a transparent overlay.

Another rather astonishing observation of the LSD experience was that the visual world wavered and wobbled slowly as if the visual scene was painted on an elastic canvas that would stretch over here while shrinking over there, with great waves of expansion and contraction moving slowly across the scene, as if the whole scene was “breathing”, with its component parts in constant motion relative to each other. This was perhaps the most compelling evidence that the world of experience is not the solid stable world that it portrays. Figure 2.2 shows a sketch I made shortly after my alpine mountain adventure to try to express the wavery elasticity and the visual regularity I had observed under LSD. This picture is of course an exaggeration, more of an impression than a depiction of how the experience actually appeared.

lehar_2_2

The geometrical regularity was particularly prominent in peripheral vision, when attending to the periphery without looking to see what is there. Usually peripheral vision is hardly noticed, giving the impression of a homogeneous visual field, but under LSD the loss of resolution in peripheral vision becomes more readily apparent, especially when holding a fixed and glassy stare. And in that periphery, objects like trees or shrubs appear more regular and geometrical than they do in central vision, like artificial Christmas trees with perfectly regular spacing of brances and twigs. Again, it was not the raw image in the periphery that appeared regular or geometrical, but rather it was the invisible skeleton of visual understanding derived from that raw colored experience that exhibits the more regular features. And suddenly I could see it. This is the way the visual system encodes visual form in a compact or compressed manner, by expressing shape in terms of the next nearest regular geometrical form, or combination of forms. Children draw a tree as a circular blob of leaves on top of a straight vertical trunk, or a pine tree as a green triangle with saw-tooth sides. It is not that we see trees in those simplified forms, but rather that we see those simplified forms in the trees, and the forms that we perceive in these invisible skeletons are the expression of our understanding of the shapes we perceive those more irregular forms to have. This was later to turn into my harmonic resonance theory of the brain, as I sought an explanation for this emerging regularity in perception, but in 1990 all I saw was the periodicity and the symmetry, and I thought they were profoundly beautiful.

My friend Tim who had not done LSD for many years, responded to this sudden 5 hit dose by going into a state of complete dissociation. He lay down on the forest floor with glassy eyes, muttering “It is TOO beautiful! It is TOO beautiful!” and he did not respond to me, even when I stared him straight in the face. He reported afterwards that he found himself in a giant Gothic cathedral with the most extravagantly elaborate and brightly painted ornamental decorations all around him. This too can be seen as an extreme form of the regularization discussed above. Under the influence of this powerful dose, Tim’s visual brain could no longer keep up with the massive irregularity of the forest around him, and therefore presented the forest in simplified or abbreviated form, as the interior of a Gothic cathedral. It captures the large geometry of a ground plane that supports an array of vertical columns, each of which fans out high overhead to link up into an over-arching canopy of branches. The only difference is that in the Gothic cathedral the trees are in a regular geometrical array, and each one is a masterpiece of compound symmetry, composed of smaller pillars of different diameters in perfectly symmetrical arrangements, and studded with periodic patterns of ribs, ridges, or knobby protruberances as a kind of celebration of symmetry and periodicity for their own sake. There is a kind of geometrical logic expressed in the ornamental design. If part of the cathedral were lost or destroyed, the pattern could be easily restored by following the same logic as the rest of the design. In information-theoretic terms, the Gothic cathedral has lots of redundancy, its pattern could be expressed in a very much simpler compressed geometrical code. In Tim’s drug-addled brain his visual system could only muster a simple code to represent the world around him, and that is why Tim saw the forest as a Gothic cathedral. Under normal conditions, the additional information of irregularity, or how each tree and branch breaks from the strict regularity of the cathedral model of it, creates the irregular world of experience that we normally see around us. This suggests that the beautiful shapes of ornamental art are not the product of the highest human faculty, as is commonly supposed, but rather, ornamental art offers a window onto the workings of a simpler visual system, whose image of the world is distorted by artifacts of the representational scheme used in the brain. The Gothic cathedral gives a hint as to how the world might appear to a simpler creature, a lizard, or a snake, to whom the world appears more regular than it does to us, because its full irregularity is too expensive to encode exhaustively in all its chaotic details. Of course the flip-side of this rumination is that the world that we humans experience, even in the stone-cold sober state, is itself immeasurably simpler, more regular and geometric, that the real world itself, of which our experience is an imperfect replica. In the words of William Blake, “If the doors of perception were cleansed, everything would appear to man as it is, infinite.”

Mittersill

While I was a PhD student at Boston University, my parents owned a beautiful ski lodge house in the picturesque town of Mittersill in the mountains of New Hampshire, and on spring breaks or long week-ends I would invite my friends, the other PhD candidates, up to Mittersill where we would take long hikes up the mountain, and spend evenings by the fireplace. I introduced a small circle of my friends to the illuminating experience of LSD, in the hopes of sharing some of my perceptual discoveries with them, and perhaps inducing them to learn to use the experience to make discoveries of their own. Eventually Mittersill became associated in our minds with these group trips with an ever-shrinking circle of true diehard psychonauts, making our regular pilgrimage up the mountain in search of Truth and to touch the face of God. We always brought a goodly supply of Happy T’Baccy, which provides a beautiful complement and bemellowment to the otherwise sometimes sharp and jangly LSD experience. Our pattern was usually to arrive on a Friday night, cook up a great feast, and spend an evening by the fire, drinking beer and/or wine and passing the pipe around until everyone felt properly toasted. The talk was often about the workings of mind and brain, since we were all students of cognitive and neural systems. We were all adept computer programmers and well versed in mathematics as part of our PhD studies, so we all understood the issues of mental computation and representation, and I found the conversations about the computational principles of the mind, to be most interesting and intellectually stimulating. This was the high point of my academic career, this is why people want to be scientists. The next morning we would rise early, and after a hearty breakfast, we would all set off up the mountain, which was a steep brisk climb of two or three hours. About half way up the mountain, at a carefully pre-planned time, we would stop, and each “dose up” with our individually chosen dose of LSD for the occasion, timed to reach the peak of the experience about the time we reached the peak of the mountain. Then we would continue our climb through the rich lush mountain forests of New Hampshire to the top of Maida Vale, the sub-peak next to Canon Mountain, from whence a stupendous view opened up across to Canon Mountain and the vast valley below. We would settle ourselves comfortably at some location off the beaten track, and spend the best hours of the day just dreaming crazy thoughts and drinking in the experience

By now I had perfected my introspective techniques to the point that I could voluntarily relax my mind into a state of total disembodiment. The visual world began to fragment, first into two large pieces as binocular fusion was broken, then into a few smaller fragments, and eventually into a miriad of separate fragments of consciousness, like the miriad reflections from a shattered mirror. I was fascinated by this state of consciousness, and how different it was from normal consensual reality. Most alarming or significant was the total absence of my body from its normal place at the center of my world. As the world began to fragment, my body would fragment along with it, disconnected pieces of my body seeming to exist independently, one part here, another over there, but in separate spaces that did not exist in a distinct spatial relation to each other, but as if in different universes, like reflections from different shards of a shattered mirror. And as the visual world attained total fragmentation, all evidence of my body completely vanished, and I lived the experience of a disembodied spirit, pure raw experience, just sensations of color, form, and light. I felt safe and secure in this environment among friends, so I did not mind the total vulnerability afforded by a complete functional shutdown of my mind in this manner. Besides, I had learned that I could snap back together again to a relatively normal consciousness at will, simply by getting up and looking around, and interacting with the world. I was endlessly fascinated by the state of complete disembodiment, and one feature of it impressed itself on me again and again, the geometric regularity of it all. There was a powerful tendency for everything to reduce to ornamental patterns, geometrical arrangements of three-dimensional shapes, like so many glistening gems in a jewelry store, with rich periodic and symmetrical patterns in deep vibrant colors. The deeper I plunged into the experience, the simpler and more powerfully emotive those patterns became. And since my body had totally vanished, these patterns were no longer patterns I viewed out in the world, but rather, the patterns were me, I had become the spatial patterns which made up my experience. I began to see that symmetry and periodicity were somehow primal to experience.

I remember lying on my back and watching the clouds in the sky overhead. Weather patterns are often chaotic at the tops of mountains, and on more than one occasion we were located at a spot where the clouds that formed on the windward side of the mountain were just cresting the summit, where they would dissove in a continuous process of chaotic fragmentation, a veritable Niagra Falls of nebular dissolution, evocative of the fragmentation of my psychedelic experience. The shattered shreds of cloud, viewed from this close up, were about the most ragged and irregular shapes you could imagine, and yet under the influence of the drug I kept seeing fleeting geometrical patterns in them. There were great circular pinwheels and arabesques, patterns like those carved in the doors of Gothic cathedrals, but each flashing in and out of brief existence so quickly that it would be impossible to draw them. I began to realize that the human mind is one great symmetry engine, that the mind makes sense of the world it sees by way of the symmetries that it finds in it. Symmetry is the glue that binds the fragments of experience into coherent wholes.

Figure 2.3 shows a series of paintings by artist Louis Wain, that I find very evocative of the LSD experience. Wain suffered a progressive psychosis that manifested itself in his art, which was originally quite realistic, becomming progressively more abstract and ornamental, in the manner I observed in the various stages or levels of my LSD dissociation. Figure 2.3 A shows a fairly realistic depiction of a cat, but there are curious artifacts in the textured background, a mere hint of periodicity breaking out. I would see such artifacts everywhere, almost invisible, fleeting, and faint, reminiscent of the ornamental pinstripe patterns painted on trucks and motorcycles, a kind of eddy in the stream of visual consciousness as it flows around visual features in the scene. As I descended into the fully dissociated states, the patterns would become more like Figure 2.3 B, C, and D, breathtakingly ornate, with many levels of compound symmetry, revealing the eigenfunctions of perceptual representation, the code by which visual form is represented in the brain.

At times we would break free from our individual reveries, and share absurd nonsensical conversations about our observations. One time, looking down at the vast valley stretching out below us, a vista that seemed to stretch out to distances beyond comprehension, my old friend Peter said that it was hard to tell whether all that scenery was just “way out there”, or was it “way WAY out there?” Of course we both laughed heartily at the absurdity of his statement, but I knew exactly what he meant. When viewing such a grand vista under normal consciousness, one is deeply impressed by the vastness of the view.

lehar_2_3.png

But under the influence of the drug, the vista somehow did not look quite as large as we “knew” that it really was. What Peter was saying was that for some strange reason, the world had shrunken back in on us, and that magnificently vast valley had shrunken to something like a scale model, or a diorama, where it is easy to see how vast the modeled valley is supposed to be, but the model itself appears very much smaller than the valley it attempts to portray. What Peter was observing was the same thing I had observed, and that was beginning to even become familiar, that the world of our experience is not a great open vastness of infinite space, but like the domed vault of the night sky, our experience is bounded by, and contained within, a vast but finite spherical shell, and under the influence of psychedelic drugs that shell seemed to shrink to smaller dimensions, our consciousness was closing in on its egocentric center. Many years later after giving it considerable thought, I built the diorama shown in Figure 2.4 to depict the geometry of visual experience as I observed it under LSD.

lehar_2_4

And when I was in the completely disembodied state, my consciousness closed in even smaller and tighter, the range of my experience was all contained within a rather modest sized space, like a glass showcase in a jewelry store, and the complexity of the patterns in that space was also reduced, from the unfathomably complex and chaotic fractal forms in a typical natural scene, to a much simpler but powerfully beautiful glistening ornamental world of the degree of complexity seen in a Gothic cathedral. The profound significance of these observations dawned on me incrementally every time we had these experiences. I can recall fragmentary pieces of insights gleaned through the confusion of our passage down the mountain, stopping to sit and think wherever and whenever the spirit took us. At one point three of us stopped by a babbling brook that was crashing and burbling through the rocks down the steep mountain slope. We sat in silent contemplation at this primal “white noise” sound, when Lonce commented that if you listen, you can hear a million different sounds hidden in that noise. And sure enough when I listened, I heard laughing voices and honking car horns and shrieking crashes and jangly music and every other possible sound, all at the same time superimposed on each other in a chaotic jumbled mass. It was the auditory equivalent of what we were seeing visually, the mind was latching onto the raw sensory experience not so much to view it as it really is, but to conjure up random patterns from deep within our sensory memory and to match those images to the current sensory input. And now I could see the more general concept. We experience the world by way of these images conjured up in our minds. I came to realize why the LSD experience was enjoyed best in outdoors natural settings, and that is because the chaos of a natural scene, with its innumerable twigs and leaves and stalks, acts as a kind of “white noise” stimulus, like the babbling brook, a stimulus that contains within it every possible pattern, and that frees our mind to interpret that noise as anything it pleases.

On one occasion, on arrival back down at the lodge, our minds were still reeling, and we were not yet ready to leave the magnificence of the natural landscape for the relatively tame and controlled environment indoors, so Andy and I stopped in the woods behind the house and just stood there, like deer in the headlights, drinking in the experience. It was a particularly dark green and leafy environment in the shadow behind the house, with shrubs and leaves at every level, around our ankles, our knees, our shoulders, and all the way up to a leafy canopy high overhead, and at every depth and distance from inches away to the farthest visible depths of the deep green woods. The visual chaos was total and complete, the world already fragmented into millions and millions of apparently disconnected features and facets uniformly in all directions, that it hardly required LSD to appreciate the richness of this chaotic experience. But under LSD, and with the two of us standing stock still for many long minutes of total silence, we both descended into a mental fragmentation as crazy as the fragmented world around us. My body disappeared from my experience, and I felt like I became the forest; the forest and all its visual chaos was me, which in a very real sense it actually was. And in that eternal timeless moment, wrapped in intense but wordless thought, I recognized something very very ancient and primal in my experience. I felt like I was sharing the experience of some primal creature in an ancient swamp many millions of years ago, when nature was first forging its earliest models of mind from the tissue of brain. I saw the world with the same intense attentive concentration, bewilderment, and total absence of human cogntive understanding, as that antediluvian cretaceous lizard must have experienced long ago and far away. The beautiful geometrical and symmetrical forms that condensed spontaneously in my visual experience were like the first glimmerings of understanding emerging in a primitive visual brain. This is why I do psychedelic drugs, to connect more intimately with my animal origins, to celebrate the magnificent mental mechanisms that we inherit from the earliest animal pioneers of mind.

One time after we had descended from the mountain and were sitting around the lodge drinking and smoking in a happy state of befuddlement, a peculiar phenomenon manifested itself that made a deep impression on me. It was getting close to supper time and somebody expressed something to that effect. But our minds were so befuddled by the intoxication that we could only speak in broken sentences, as we inevitably forgot what we wanted to say just as we started saying it, instantly confused by our own initial words. So the first person must have said something like “I’m getting hungry. Do you think…” and then tailed off in confusion. But somebody else would immediately sense the direction that thought was going, and would instinctively attempt to complete the sentence with something like “…we otta go get…” before himself becoming confused, at which a third person might interject “…something to eat?” It does not sound so remarkable here in the retelling, but what erupted before our eyes was an extraordinarily fluid and coherent session of what we later referred to as group thought, where the conversation bounced easily from one person to the next, each person contributing only a fragmentary thought, but nobody having any clear idea of what the whole thought was supposed to be, or how it was going to end. What was amazing about the experience was the coherence and purposefulness of the emergent thought, how it seemed to have a mind of its own independent of our individual minds, even though of course it was nothing other than the collective action of our befuddled minds. It was fascinating to see this thought, like a disembodied spirit, pick up and move our bodies and hands in concerted action, one person getting wood for the fire, another getting out a frying pan, a third going for potatoes, or to open a bottle of wine, none of it planned by any one person, and yet each person chipped in just as and when they thought would be appropriate, as the supper apparently “made itself” using us as its willing accomplices. It was reminiscent of the operational principle behind a ouija board, where people sitting in a circle around a table, all rest an index finger on some movable pointer on a circular alphabet board, and the pointer begins to spell out some message under the collective action of all those fingers. At first the emergent message appears random, but after the first few letters have been spelled out, the participants start to guess at each next letter, and without anyone being overtly aware of it, the word appears to “spell itself” as if under the influence of a supernatural force. As with the ouija board, none of us participating in the group thought experience could hold a coherent thought in their head, and yet coherent thoughts emerged nevertheless, to the bewilderment of us all. And later I observed the same phenomenon with different LSD parties. I have subsequently encountered people well versed in the psychedelic experience who claim with great certainty to have experienced mental telepathy in the form of wordless communication and sharing of thoughts. But for us hard-nosed scientific types, the natural explanation for this apparently supernatural experience is just as wonderous and noteworthy, because it offers a hint as to how the individual parts of a mind act together in concert to produce a unified coherent pattern of behavior that is greater than the mere sum of its constituent parts. The principle of group thought occurs across our individual brains in normal sober consciousness as we instinctively read each other’s faces and follow each other’s thoughts, and it is seen also whenever people are moving a heavy piece of furniture, all lifting and moving in unison in a coherent motion towards some goal. But the psychedelic experience highlighted this aspect of wordless communication and brought it to my attention in clearer, sharper focus.

As the evening tailed on and the drug’s effect gradually subsided in a long slow steady decline, we would sit by the fire and pass a pipe or joint around, and share our observations and experiences of the day. At one point Lonce, who had just taken a puff of a joint, breathed out and held it contemplatively for a while, before taking a second puff and passing it on to the next person in the circle. I objected to this behavior, and accused Lonce of “Bogarting” the joint – smoking it all by himself without passing it along. Lonce responded to this with an explanation that where he comes from, people don’t puff and pass in haste, but every man has the right to a few moments of quiet contemplation and a second puff before passing it along. That was, he explained, the civilized way of sharing a joint. So we immediately adopted Lonce’s suggestion, and this method of sharing a joint has henceforth and forever since been referred to by us as the “Lonce Method”.

Theoretical Implications

As I have explained, the purpose of all this psychonautical exploration was not merely for our own entertainment, although entertaining it was, and to the highest degree. No, the primary purpose of these psychonautical exploits was clear all along at least in my mind, and that was to investigate the theoretical implications of these experiences to theories of mind and brain. And my investigations were actually beginning to bear fruit in two completely separate directions, each of which had profound theoretical implications. At that time I was studying neural network theories of the brain, or how the brain makes sense of the visual world. A principal focus of our investigation was the phenomena of visual illusions, like the Kanizsa figure shown in Figure 2.5 A. It is clear that what is happening here is that the visual mind is creating illusory contours that link up the fragmentary contours suggestive of the illusory triangle. In our studies we learned of Stephen Grossberg’s neural network model of this phenomenon. Grossberg proposed that the visual brain is equipped with oriented edge detector neurons that fire whenever a visual edge passes through their local receptive field. These neurons would be triggered by the stark black / white contrast edges of the stimulus in Figure 2.5 A. A higher level set of neurons would then detect the global pattern of collinearity, and sketch in the illusory contour by a process of collinear completion. These higher level “cooperative cells” were equipped with much larger elongated receptive fields, long enough to span the gap in the Kanizsa figure, and the activation of these higher level neurons in turn stimulated lower level local edge detector neurons located along the illusory contour, and that activation promoted the experience of an illusory contour where there is none in the stimulus

lehar_2_5

I believed I was seeing these illusory contours in my LSD experience, as suggested by all the curvy lines in my sketch in Figure 2.2 above. But I was not only seeing the contours in illusory figures, I was seeing “illusory” contours just about everywhere across the visual field. But curiously, these contours were not “visible” in the usual sense, but rather, they are experienced in an “invisible” manner as something you know is there, but you cannot actually see. However I also noticed that these contours did have an influence on the visible portions of the scene. I have mentioned how under LSD the visual world tends to “breathe”, to waver and wobble like a slow-motion movie of the bottom of a swimming pool viewed through its surface waves. In fact, the effect of the “invisible” contours was very much like the effect of the invisible waves on the surface of the pool, which can also be seen only by their effects on the scene viewed through them. You cannot see the waves themselves, all you can see is the wavering of the world caused by those waves. Well I was observing a very similar phenomenon in my LSD experience. I devised a three-dimensional Kanizsa figure, shown in Figure 2.5 B, and observed that even in the stone-cold sober state, I could see a kind of warp or wobble of the visual background behind the illusory contour caused by the figure, especially if the figure is waved back and forth gently against a noisy or chaotic background. So far, my LSD experiences were consistent with our theoretical understanding of the visual process, confirming to myself by direct observation an aspect of the neural network model we were currently studying in school.

But there was one aspect of the LSD experience that had me truly baffled, and that was the fantastic symmetries and periodicities that were so characteristic of the experience. What kind of neural network model could possibly account for that? It was an issue that I grappled with for many months that stretched into years. In relation to Grossberg’s neural network, it seemed that the issue concerned the question of what happens at corners and vertices where contours meet or cross. A model based on collinearity alone would be stumped at image vertices. And yet a straightforward extension of Grossberg’s neural network theory to address image vertices leads to a combinatorial explosion.The obvious extension, initially proposed by Grossberg himself, was to posit specialized “cooperative cells” with receptive fields configured to detect and enhance other configurations of edges besides ones that are collinear. But the problem is that you would need so many different specialized cells to recognize and complete every possible type of vertex, such as T and V and X and Y vertices, where two or more edges meet at a point, and each of these vertex types would have to be replicated at every orientation, and at every location across the whole visual field! It just seemed like a brute-force solution that was totally implausible.

Then one day after agonizing for months on this issue, my LSD observations of periodic and symmetrical patterns suddenly triggered a novel inspiration. Maybe the nervous system does not require specialized hard-wired receptive fields to accomodate every type of vertex, replicated at every orientation at every spatial location. Maybe the nervous system uses something much more dynamic and adaptive and flexible. Maybe it uses circular standing waves to represent different vertex types, where the standing wave can bend and warp to match the visual input, and standing waves would explain all that symmetry and periodicity so clearly evident in the LSD experience as little rotational standing waves that emerge spontaneously at image vertices, and adapt to the configuration of those vertices. Thanks to illegal psychotropic substances, I had stumbled on a staggeringly significant new theory of the brain, a theory which, if proven right, would turn the world of neuroscience on its head! My heart raced and pounded at the implications of what I had discovered. And this theory became the prime focus of my PhD thesis (Lehar 1994), in which I did computer simulations of my harmonic resonance model that replicated certain visual illusions in a way that no other model could. I had accomplished the impossible. I had found an actual practical use and purpose for what was becoming my favorite pass-time, psychedelic drugs! It was a moment of glory for an intrepid psychonaut, a turning point in my life. Figure 2.6 shows a page from my notebook dated October 6 1992, the first mention of my new theory of harmonic resonance in the brain.

lehar_2_6.png


Compare the above descriptions of point-of-view fragmentation, visual coherence, and symmetry as experienced on LSD, with our very own account of symmetrical pattern completion during psychedelic experiences as presented in Algorithmic Reduction of Psychedelic States (slightly edited for clarity):

Lower Symmetry Detection and Propagation Thresholds

Finally, this is perhaps the most interesting and ethically salient effect of psychedelics. The first three effects (tracers, drifting, and pattern recognition) are not particularly difficult to square with standard neuroscience. This fourth effect, while not incompatible with connectionist accounts, does suggest a series of research questions that may hint at an entirely new paradigm for understanding consciousness.

We have not seen anyone in the literature specifically identify this effect in all of its generality. The lowering of the symmetry detection threshold really has to be experienced to be believed. We claim that this effect manifests in all psychedelic experiences to a greater or lesser extent, and that many effects can in fact be explained by simply applying this effect iteratively.

Psychedelics make it easier to find similarities between any two given phenomenal objects. When applied to perception, this effect can be described as a lowering of the symmetry detection threshold. This effect is extremely general and symmetry should not be taken to refer exclusively to geometric symmetry.

How symmetries manifest depends on the set and setting. Researchers interested in verifying and exploring the quantitative and subjective properties of this effect will probably have to focus first on a narrow domain; the effect happens in all experiential modalities.

For now, let us focus on the case of visual experience. In this domain, the effect is what PsychonautWiki calls Symmetrical Texture Repetition:

Quantifying Bliss (35)

Credit: Chelsea Morgan from PsychonautWiki and r/replications

Symmetry detection during psychedelic experiences requires that one’s attention interprets a given element in the scene as a symmetry element. Symmetry elements are geometrical points of reference about which symmetry operations can take place (such as axes of rotation, mirror planes, hyperplanes, etc.). In turn, a collection of symmetry elements defines a symmetry structure in the following way: A symmetry structure is a set of n-dimensional symmetry elements for which the qualities of the experience surrounding each element obeys the symmetry constraints imposed by all the elements considered together.

Psychedelic symmetry detection can be (and typically is) recursively applied to previously constructed symmetry structures. At a given time multiple independent symmetry structures can coexist inside an experience. By guiding one’s attention one can make these structures interact and ultimately merge. Formally, each symmetry structure is capable of establishing a merging relationship with another symmetry structure. This is achieved by simultaneously focusing one’s attention on both. These relationships are fleeting, but they influence the evolution of the relative position of each symmetry element. When two symmetry structures are in a merging relationship, it is possible to rearrange them (with the aid of drifting and pattern recognition) to create a symmetrical structure that incorporates the symmetry elements of both substructures at once. To do so, one’s mind can either detect one (or several) more symmetry elements along which the previously-existing symmetry elements are made to conform, or, alternatively, if the two pre-existing symmetry structures share a symmetry element (e.g. an axis of rotation of order 3), these corresponding identical symmetry elements can fuse and become a bridge that merges both structures.

Surprisingly, valence seems to be related to psychedelic symmetry detection. As one constructs symmetry structures, one becomes aware of an odd and irresistible subjective pull towards building even higher levels of symmetry. In other words, every time the structure of one’s experience is simplified by identifying a new symmetry element in the scene, one’s whole experience seems to snap into a new (simplified) mode, and this comes with a positive feeling. This feeling can take many forms: it may feel blissful, interesting, beautiful, mind-expanding, and/or awe-producing, all depending on the specific structures that one is merging. Conversely when two symmetry structures are such that merging them is either tricky of impossible, this leads to low valence: frustration, anxiety, pain and an odd feeling of being stuck between two mutually unintelligible worlds. We hypothesize that this is the result of dissonance between the incompatible symmetry structures.

If one meditates in a sensorially-minimized room during a psychedelic experience while being aware that one’s symmetry detection threshold has been lowered by the substance, one can recursively re-apply this effect to produce all kinds of complex mathematical structures that incorporate complex symmetry element interactions. In other words, with the aid of concentration one can climb the symmetry gradient (i.e. increase the total number of symmetry elements) up to the point where the degrees of freedom afforded by the symmetry structure limit any further element from being incorporated into it. We will call these experiences peak symmetry states.

Future research should explore and compare the various states of consciousness that exhibit peak symmetry. There is very likely an enormous number of peak symmetry states, some of which are fairly suboptimal and others that cannot be improved upon. If there is a very deep connection between valence, symmetry, information and harmony, it would very likely show in this area. Indeed, we hypothesize that the highest levels of valence that can be consciously experienced involve peak symmetry states. Anecdotally, this connection has already been verified, with numerous trip reports of people achieving states of unimaginable bliss by inhabiting peak symmetry states (often described as fractal mandala-like mirror rooms).

The range of peak symmetry states include fractals, tessellations, graphs, and higher dimensional projections. Which one of these states contains the highest degree of inter-connectivity? And if psychedelic symmetry is indeed related to conscious bliss, which experience of symmetry is human peak bliss?

The pictures above all illustrate possible peak symmetry states one can achieve by combining psychedelics and meditation. The pictures illustrate only the core structure of symmetries that are present in these states of consciousness. What is being reflected is the very raw “feels” of each patch of your experiential field. Thus these pictures really miss the actual raw feelings of the whole experience. They do show, however, a rough outline of symmetrical relationships possible in one of these experiences.

Since control interruption is also co-occurrent with the psychedelic symmetry effect, previously-detected symmetries tend to linger for long periods of time. For this reason, the kinds of symmetries one can detect at a given point in time is a function of the symmetries that are currently being highlighted. And thanks to drifting and pattern recognition enhancement, there is some wiggle room for your mind to re-arrange the location of the symmetries experienced. The four effects together enable, at times, a smooth iterative integration of so many symmetries that one’s consciousness becomes symmetrically interconnected to an unbelievable degree.

What may innocently start as a simple two-sided mirror symmetry can end up producing complex arrangements of self-reflecting mirrors showing glimpses of higher and higher dimensional symmetries. Studying the mathematical properties of the allowed symmetries is a research project that has only just begun. I hope one day dedicated mathematicians describe in full the class of possible high-order symmetries that humans can experience in these states of consciousness.

Anecdotally, each of the 17 possible wallpaper symmetry groups can be instantiated with this effect. In other words, psychedelic states lower the symmetry detection threshold for all of the mathematically available symmetrical tessellations.

wade_symmetry_best_blank_2

All of the 17 2-dimensional wallpaper groups can be experienced with symmetry planes detected, amplified and re-arranged during a psychedelic experience.

Revising the symmetrical texture repetition of grass shown above, we can now discover that the picture displays the wallpaper symmetry found in the lower left circle above:

grass_symmetries

In very high doses, the symmetry completion is so strong that at any point one risks confusing left and right, and thus losing grasp of one’s orientation in space and time. Depersonalization is, at times, the result of the information that is lost when there is intense symmetry completion going on. One’s self-models become symmetrical too quickly, and one finds it hard to articulate a grounded point of view.


In Preaceful Qualia: The Manhattan Project of Consciousness we explored possible information-processing applications for climbing the symmetry gradient as described above:

LSD-like states allow the global binding of otherwise incompatible schemas by softening the degree to which neighborhood constraints are enforced. The entire experience becomes a sort of chaotic superposition of locally bound islands that can, each in its own way, tell sensory-linguistic stories in parallel about the unique origin and contribution of their corresponding gestalts to the narrative of the self.

This phenomenon forces, as it were, the onset of cognitive dissonance between incompatible schemas that would otherwise evade mutual contact. On the bright side, it also allows mutual resonance between parts that agree with each other. The global inconsistencies are explored and minimized. One’s mind can become a glorious consensus.

squarespiral2

Each square represents, and carries with it, the information of a previously experienced cognitive gestalt (situational memories, ideas, convictions, etc.). Some gestalts never come up together naturally. The LSD-like state allows their side-by-side comparison.

In therapy, LSD-like states had been used for many decades in order to integrate disparate parts of one’s personality into a (more) coherent and integrated lifeworld. But scientists at the beginning didn’t know why this worked.

The Turing module then discovered that the kaleidoscopic world of acid can be compared to raising the temperature within an Ising model. If different gestalts imply a variety of semantic-affective constraints, kaleidoscopic Frame Stacking has the formal effect of expanding the region of one’s mind that is taken into consideration for global consistency at any given point in time. The local constraints become more loose, giving global constraints the upper hand. The degree of psychedelia is approximately proportional to the temperature of the model, and when you let it cool, the grand pattern is somewhat different. It is more stable; one arrives at a more globally consistent state. Your semantic-affective constraints are, on the whole, better satisfied. The Turings called this phenomenon qualia annealing.

coarsening_early_small

Ising Model – A simple computational analogy for the LSD-induced global constraint satisfaction facilitation.


Another key reference to look at within this theme is the discussion of non-Euclidean symmetry in the article titled The Hyperbolic Geometry of DMT Experiences: Symmetries, Sheets, and Saddled Scenes… here we jump in medias res to the description of the 2nd and 3rd plateau of DMT intoxication:

(2) The Chrysanthemum

If one ups the dose a little bit and lands somewhere in the range between 4 to 8 mg, one is likely to experience what Terrence McKenna called “the Chrysanthemum”. This usually manifests as a surface saturated with a sort of textured fabric composed of intricate symmetrical relationships, bright colors, shifting edges and shimmering pulsing superposition patterns of harmonic linear waves of many different frequencies.

Depending on the dose consumed one may experience either one or several semi-parallel channels. Whereas a threshold dose usually presents you with a single strong vibe (or ambiance), the Chrysanthemum level often has several competing vibes each bidding for your attention. Here are some examples of what the visual component of this state of consciousness may look like.

The visual component of the Chrysanthemum is often described as “the best screen saver ever“, and if you happen to experience it in a good mood you will almost certainly agree with that description, as it is usually extremely harmonious, symmetric and beautiful in uncountable ways. No external input can possibly replicate the information density and intricate symmetry of this state; such state has to be endogenously generated as a a sort of harmonic attractor of your brain dynamics.

You can find many replications of Chrysanthemum-level DMT experiences on the internet, and I encourage you to examine their implicit symmetries (this replication is one of my all-times favorite).

In Algorithmic Reduction of Psychedelic States we posited that any one of the 17 wallpaper symmetry groups can be instantiated as the symmetries that govern psychedelic visuals. Unfortunately, unlike the generally slow evolution of usual psychedelic visuals, DMT’s vibrational frequency forces such visuals to evolve at a speed that makes it difficult for most people to spot the implicit symmetry elements that give rise to the overall mathematical structure underneath one’s experience. For this reason it has been difficult to verify that all 17 wallpaper groups are possible in DMT states. Fortunately we were recently able to confirm that this is in fact the case thanks to someone who trained himself to do just this. I.e. detecting symmetry elements in patterns at an outstanding speed.

An anonymous psychonaut (whom we will call researcher A) sent a series of trip report to Qualia Computing detailing the mathematical properties of psychedelic visuals under various substances and dose regimens. A is an experienced psychonaut and a math enthusiast who recently trained himself to recognize (and name) the mathematical properties of symmetrical patterns (such as in works of art or biological organisms). In particular, he has become fluent at naming the symmetries exhibited by psychedelic visuals. In the context of 2D visuals on surfaces, A confirms that the symmetrical textures that arise in psychedelic states can exhibit any one of the 17 wallpaper symmetry groups. Likewise, he has been able to confirm that every possible spherical symmetry group can also be instantiated in one’s mind as a resonant attractor on these states.

The images below show some examples of the visuals that A has experienced on 2C-B, LSD, 4-HO-MET and DMT (sources: top lefttop middle, the rest were made with this service):

The Chrysanthemum level interacts with sensory input in an interesting way: the texture of anything one looks at quickly becomes saturated with nested 2-dimensional symmetry groups. If you took enough DMT to take you to this level and you keep your eyes open and look at a patterned surface (i.e. statistical texture), it will symmetrify beyond recognition. A explains that at this level DMT visuals share some qualities with those of, say, LSD, mescaline, and psilocin. Like other psychedelics, DMT’s Chrysanthemum level can instantiate any 2-dimensional symmetry, yet there are important differences from other psychedelics at this dose range. These include the consistent change in ambiance (already present in threshold doses), the complexity and consistency of the symmetrical relationships (much more dense and whole-experience-consistent than is usually possible with other psychedelics), and the speed (with a control-interruption frequency reaching up to 30 hertz, compared to 10-20 hertz for most psychedelics). Thus, people tend to point out that DMT visuals (at this level) are “faster, smaller, more detailed and more globally consistent” than on comparable levels of alteration from similar agents.

Now, if you take a dose that is a little higher (in the ballpark of 8 to 12 mg), the Chrysanthemum will start doing something new and interesting…

(3) The Magic Eye Level

A great way to understand the Magic Eye level of DMT effects is to think of the Chrysanthemum as the texture of an autostereogram (colloquially described as “Magic Eye” pictures). Our visual experience can be easily decomposed into two points-of-view (corresponding to the feed coming from each eye) that share information in order to solve the depth-map problem in vision. This is to map each visual qualia to a space with relative distances so (a) the input is explained and (b) you get recognizable every-day objects represented as implicit shapes beneath the depth-map. You can think of this process as a sort of hand-shake between bottom-up perception and top-down modeling.

In everyday conditions one solves the depth-map problem within a second of opening one’s eyes (minus minor details that are added as one looks around). But on DMT, the “low-level perceptions” looks like a breathing Chrysanthemum, which means that the top-down modeling has that “constantly shifting” stuff to play with. What to make of it? Anything you can think of.

There are three major components of variance on the DMT Magic Eye level:

  1. Texture (dependent on the Chrysanthemum’s evolution)
  2. World-sheet (non-occluduing 3D1T depth maps)
  3. Extremelly lowered information copying threshold.

The image on the left is a lobster, the one on the center is a cone and the one to the right contains furniture (a lamp, a chair and a table). Notice that what you see is a sort of depth-map which encodes shapes. We will call this depth-map together with the appearance of movement and acceleration represented in it, a world-sheet.

World-Sheets

The world-sheet encodes the “semantic content” of the scene and is capable of representing arbitrary situations (including information about what you are seeing, where you are, what the entities there are doing, what is happening, etc.).

It is common to experience scenes from usually mundane-looking places like ice-cream stores, play pens, household situations, furniture rooms, apparel, etc.. Likewise, one frequently sees entities in these places, but they rarely seem to mind you because their world is fairly self-contained. As if seeing through a window. People often report that the worlds they saw on a DMT trip were all “made of the same thing”. This can be interpreted as the texture becoming the surfaces of the world-sheet, so that the surfaces of the tables, chairs, ice-cream cones, the bodies of the people, and so on are all patterned with the same texture (just as in actual autostereograms). This texture is indeed the Chrysanthemum completely contorted to accommodate all the curvature of the scene.

Magic Eye level scenes often include 3D geometrical shapes like spheres, cones, cylinders, cubes, etc. The complexity of the scene is roughly dose-dependent. As one ups the highness (but still remaining within the Magic Eye level) complex translucid qualia crystals in three dimensions start to become a possibility.

Whatever phenomenal objects you experience on this level that lives for more than a millisecond needs to have effective strategies for surviving in an ecosystem of other objects adapted to that level. Given the extremely lowered information copying threshold, whatever is good at making copies of itself will begin to tesselate, mutate and evolve, stealing as much of your attention as possible in the way. Cyclic transitions occupy one’s attention: objects quickly become scenes which quickly become gestalts from which a new texture evolves in which new objects are detected and so on ad infinitum.

katoite-hydrogarnet

A reports that at this dose range one can experience at least some of the 230 space groups as objects represented in the world-sheet. For example, A reports having stabilized a structure with a Pm-3m symmetry structure, not unlike the structure of ZIF-71-RHO. Visualizing such complex 3D symmetries, however, does seem to require previous training and high levels of mental concentration (i.e. in order to ensure that all the symmetry elements are indeed what they are supposed to be).

There is so much qualia laying around, though, at times not even your normal space can contain it all. Any regular or semi regular symmetrical structure you construct by centering your attention prone to overflow if you focus too much on it. What does this mean? If you focus too much on, for example, the number 6, your mind might represent the various ways in which you can arrange six balls in a perfectly symmetrical way. Worlds made of hexagons and octahedrons interlocked in complex but symmetrical ways may begin to tesselate your experiential field. With every second you find more and more ways of representing the number six in interesting, satisfying, metaphorically-sound synesthetic ways (cf. Thinking in Numbers). Now, what happens if you try to represent the number seven in a symmetric way on the plane? Well, the problem is that you will have too many heptagons to fit in Euclidean space (cf. Too Many Triangles). Thus the resulting symmetrical patterns will seem to overflow the plane (which is often felt as a folding and fluid re-arrangement, and when there is no space left in a region it either expands space or it is felt as some sort of synesthetic tension or stress, like a sense of crackling under a lot of pressure).

In particular, A claims that in the lower ranges of the DMT Magic Eye level the texture of the Chrysanthemum tends to exhibit heptagonal and triheptagonal tilings (as shown in the picture above). A explains that at the critical point between the Chrysanthemum and the Magic Eye levels the intensity of the rate of symmetry detection of the Chrysanthemum cannot be contained to a 2D surface. Thus, the surface begins to fold, often in semi-symmetric ways. Every time one “recognizes” an object on this “folding Chrysanthemum” the extra curvature is passed on to this object. As the dose increases, one interprets more and more of this extra curvature and ends up shaping a complex and highly dynamic spatiotemporal depth map with hyperbolic folds. In the upper ranges of the Magic Eye level the world-sheet is so curved that the scenes one visualize are intricate and expansive, feeling at times like one is able to peer through one’s horizon in all directions and see oneself and one’s world from a distance. At some critical point one may feel like the space around one is folding into a huge dome where the walls are made of whatever texture + world-sheet combination happened to win the Darwinian selection pressures applied to the qualia patterns on the Magic Eye level. This concentrated hyperbolic synesthetic texture is what becomes the walls of the Waiting Room…


As suggested by the quotes above, psychedelic symmetries are extremely beautiful. This is puzzling for most worldviews. But once you take into account the Tyranny of the Intentional Object and the Symmetry Theory of Valence, it begins to make sense why peak symmetry on psychedelics is so delightfully amazing (sometimes unimaginably better than a great orgasm or a back-rub on ecstasy). In this vein, we are proud to point out that we have worked out some precise, empirically testable, predictions based on connectome-specific harmonic waves and the symmetry theory of valence (see: Quantifying Bliss).


Interestingly, the process of point-of-view fragmentation and subsequent annealing to global geometric coherence is hinted at by John C. Lilly in his book Programming and Metaprogramming in the Human Biocomputer (you can read the relevant quote here: Psychedelic alignment cascades).


Finally, I would like to draw attention to David Pearce‘s quote about psychedelics: Their Scientific Significance is Hard to Overstate.

As evidenced in Steven Lehar’s writeup (and the other quotes and references provided above), we could say that giving psychedelics to brilliant people with a scientific background in cognitive science and natural philosophical talent does indeed have the ability to expand our evidential base for the nature of consciousness and the way our brains work.

It is thus far more useful for the advancement of the science of consciousness to allocate such experiences to serious scientifically-minded psychonauts than it is to give those same agents to people with pre-scientific frameworks. The phenomenological descriptions and insights provided by a single Steven Lehar on acid are worth a thousand Buddhists, French Existentialists, poets, and film-makers on LSD.

Either way, it is unconscionable that today most leading academics working on the problem of consciousness have no personal experience with these agents, nor they show much interest in the alien state-spaces that they disclose. That’s about as weird as physicists only showing interest in what happens at room-temperature, even though most precise mathematical theories of the physical world can only be tested in extreme conditions (such as high-energy particle collisions). Just as we can expect that a few observations of the behavior of matter in extreme conditions will provide a lot more information than thousands of observations of matter in known “everyday” conditions, the ultimate nature of qualia is most likely to be understood by studying its properties in extreme (e.g. high-energy) neuronal environments.

What If God Were a Closed Individualist Presentist Hedonistic Utilitarian With an Information-Theoretic Identity of Indiscernibles Ontology?

Extract from “Unsong” (chapter 18):

There’s an old Jewish childrens’ song called Had Gadya. It starts:

A little goat, a little goat
My father bought for two silver coins,
A little goat, a little goat

Then came the cat that ate the goat
My father bought for two silver coins
A little goat, a little goat

Then came that dog that bit the cat…

And so on. A stick hits the dog, a fire burns the stick, water quenches the fire, an ox drinks the water, a butcher slaughters the ox, the Angel of Death takes the butcher, and finally God destroys the Angel of Death. Throughout all of these verses, it is emphasized that it is indeed a little goat, and the father did indeed buy it for two silver coins.

[…]

As far as I know, no one has previously linked this song to the Lurianic Kabbalah. So I will say it: the deepest meaning of Had Gadya is a description of how and why God created the world. As an encore, it also resolves the philosophical problem of evil.

The most prominent Biblical reference to a goat is the scapegoating ritual. Once a year, the High Priest of Israel would get rid of the sins of the Jewish people by mystically transferring all of them onto a goat, then yelling at the goat until it ran off somewhere, presumably taking all the sin with it.

The thing is, at that point the goat contained an entire nation-year worth of sin. That goat was super evil. As a result, many religious and mystical traditions have associated unholy forces with goats ever since, from the goat demon Baphomet to the classical rather goat-like appearance of Satan.

So the goat represents evil. I’ll go along with everyone else saying the father represents God here. So God buys evil with two silver coins. What’s up?

The most famous question in theology is “Why did God create a universe filled with so much that is evil?” The classical answers tend to be kind of weaselly, and center around something like free will or necessary principles or mysterious ways. Something along the lines of “Even though God’s omnipotent, creating a universe without evil just isn’t possible.”

But here we have God buying evil with two silver coins. Buying to me represents an intentional action. Let’s go further – buying represents a sacrifice. Buying is when you sacrifice something dear to you to get something you want even more. Evil isn’t something God couldn’t figure out how to avoid, it’s something He covets.

What did God sacrifice for the sake of evil? Two silver coins. We immediately notice the number “two”. Two is not typically associated with God. God is One. Two is right out. The kabbalists identify the worst demon, the nadir of all demons, as Thamiel, whose name means “duality in God”. Two is dissonance, divorce, division, dilemmas, distance, discrimination, diabolism.

This, then, was God’s sacrifice. In order to create evil, He took up duality.

“Why would God want to create evil? God is pure Good!”

Exactly. The creation of anything at all other than God requires evil. God is perfect. Everything else is imperfect. Imperfection contains evil by definition. Two scoops of evil is the first ingredient in the recipe for creating universes. Finitude is evil. Form is evil. Without evil all you have is God, who, as the kabbalists tell us, is pure Nothing. If you want something, evil is part of the deal.

Now count the number of creatures in the song. God, angel, butcher, ox, water, fire, stick, dog, cat, goat. Ten steps from God to goat. This is the same description of the ten sephirot we’ve found elsewhere, the ten levels by which God’s ineffability connects to the sinful material world without destroying it. This is not a coincidence because nothing is ever a coincidence. Had Gadya isn’t just a silly children’s song about the stages of advancement of the human soul, the appropriate rituals for celebrating Passover in the Temple, the ancient Sumerian pantheon, and the historical conquests of King Tiglath-Pileser III. It’s also a blueprint for the creation of the universe. Just like everything else.


(see also: ANSWER TO JOB)