Consciousness Isn’t Substrate-Neutral: From Dancing Qualia & Epiphenomena to Topology & Accelerators

In this video I explain why substrate neutrality is so appealing to the modern educated mind. I zoom in on the Dancing Qualia argument presented by Chalmers which seems to show that if consciousness/qualia requires a specific substrate, then you can build a system where such qualia is epiphenomenal.

In this video I deconstruct this whole line of reasoning from several complementary points of view. In particular, I explain:

1) How substrate-specific hardware accelerators would generate something akin to a mysterious “consciousness discourse” in organisms that have hybrid computational substrates, with the meta-problem of consciousness (partly) explained via the interaction of two very different computational paradigms that struggle to make sense of each other.

2) How the Slicing Problem gives rise to epiphenomenalism for functionalist / computationalist theories of consciousness. This is as big of a problem, from the complete other side, as Dancing Qualia, yet somehow it doesn’t seem to receive much attention. To avoid epiphenomenalism here you require physical substrate properties to correspond to (at least in magnitude) degrees/amounts of qualia.

3) The idea that you can preserve “organizational invariance” by importing the “causal graph” of the system is question-begging. In particular, it assumes that reality breaks down into bit-sized point-like fundamental interactions between zero-dimensional entities. But this is an interpretation of physical facts, which is put into question by precisely things like field theories of physics (e.g. electromagnetism) and at a much deeper level, things like String Theory, where the substrate of reality is topologically non-trivial.

4) I show that beneath a computationalist frame for consciousness there is an implicit conception of frames of reference that are real from specific “points of view”. But as I explain, it is not possible to bootstrap integrated states out of frames of reference or points of view. Ultimately, any non-trivial integration of information that is happening in these ontologies is a projection of your own mind (you’re borrowing the unity of your consciousness to put together pieces of information that define a frame of reference or point of view!).

And

5) How the mind uses phenomenal binding for information processing can be explained with the lens of self-organizing principles set up in such a way that “following the valence gradient will take you closer to a state that satisfies the constraints of the problem”. Meaning that the very style of problem solving our experience utilizes has an entirely different logic than classical digital algorithms. No wonder it’s so difficult to square our experience with a computationalist frame of reference!

To end, I encourage the listener to enrich his or her conception of computation to include irreducible integrated states as valid inputs, outputs, and intermediate states. This way we put on the same “computational class” things like quantum computers, non-linear optics, soap bubbles, and yes, DMT entity computing systems 🙂 They all use non-trivially integrated bound states as part of their information processing pipeline.

In aggregate, these points explain why the substrate matters for computation in a way that satisfactorily addresses one of the biggest concerns that there is with this view. Namely, Dancing Qualia leading to epiphenomenalism – which gets turned on its head with the Slicing Problem (turns out computational theories were the epiphenomenalist views all along), self-organizing principles for computation, hybrid computing systems, hardware accelerators, field topology, and the insight that “reality as a causal graph is question-begging”. Reality, is, instead, a network of bound states that can interact in topologically non-trivial ways.


Relevant links:

The View From My Topological Pocket: An Introduction to Field Topology for Solving the Boundary Problem

[Epistemic Status: informal and conversational, this piece provides an off-the-cuff discussion around the topological solution to the boundary problem. Please note that this isn’t intended to serve as a bulletproof argument; rather, it’s a guide through an intuitive explanation. While there might be errors, possibly even in reasoning, I believe they won’t fundamentally alter the overarching conceptual solution.]

This post is an informal and intuitive explanation for why we are looking into topology as a tentative solution to the phenomenal binding (or boundary) problem. In particular, this solutions identifies moments of experience with topological pockets of fields of physics. We recently published a paper where we dive deeper into this explanation space, and concretely hypothesize that the key macroscopic boundary between subjects of experience is the result of topological segmentation in the electromagnetic field (see explainer video / author’s presentation at the Active Inference Institute).

The short explanation for why this is promising is that topological boundaries are objective and frame-invariant features of “basement reality” that have causal effects and thus can be recruited by natural selection for information-processing tasks. If the fields of physics are fields of qualia, topological boundaries of the fields corresponding to phenomenal boundaries between subjects would be an elegant way for a theory of consciousness to “carve nature at its joints”. This solution is very significant if true, because it entails, among other things, that classical digital computers are incapable of creating causally significant experiences: the experiences that emerge out of them are by default something akin to mind dust, and at best, if significant binding happens, they are epiphenomenal from the “point of view” of the computation being realized.

The route to develop an intuition about this topic that this post takes is to deconstruct the idea of a “point of view” as a “natural kind” and instead advocate for topological pockets being the place where information can non-trivially aggregate. This idea, once seen, is hard to unsee; it reframes how we think about what systems are, and even the nature of information itself.


One of the beautiful things about life is that you sometimes have the opportunity to experience a reality plot twist. We might believe one narrative has always been unfolding, only to realize that the true story was different all along. As they say, the rug can be pulled from under your feet.

The QRI memeplex is full of these reality plot twists. You thought that the “plot” of the universe was a battle between good and evil? Well, it turns out it is the struggle between consciousness and replicators instead. Or that what you want is particular states of the environment? Well, it turns out you’ve been pursuing particular configurations of your world simulation all along. You thought that pleasure and pain follow a linear scale? Well, it turns out the scales are closer to logarithmic in nature, with the ends of the distribution being orders of magnitude more intense than the lower ends. I think that along these lines, grasping how “points of view” and “moments of experience” are connected requires a significant reframe of how you conceptualize reality. Let’s dig in!

One of the motivations for this post is that I recently had a wonderful chat with Nir Lahav, who last year published an article that steelmans the view that consciousness is relativistic (see one of his presentations). I will likely discuss his work in more detail in the future. Importantly, talking to him reminded me that ever since the foundation of QRI, we have taken for granted the view that consciousness is frame-invariant, and worked from there. It felt self-evident to us that if something depends on the frame of reference from which you see it, it doesn’t have inherent existence. Our experiences (in particular, each discrete moment of experience), have inherent existence, and thus cannot be frame-dependent. Every experience is self-intimating, self-disclosing, and absolute. So how could it depend on a frame of reference? Alas, I know this is a rather loaded way of putting it and risks confusing a lot of people (for one, Buddhists might retort that experience is inherently “interdependent” and has no inherent existence, to which I would replay “we are talking about different things here”). So I am motivated to present a more fleshed out, yet intuitive, explanation for why we should expect consciousness to be frame-invariant and how, in our view, our solution to the boundary problem is in fact up to this challenge.

The main idea here is to show how frames of reference cannot boostrap phenomenal binding. Indeed, “a point of view” that provides a frame of reference is more of a convenient abstraction that relies on us to bind, interpret, and coalesce pieces of information, than something with a solid ontological status that exists out there in the world. Rather, I will try to show how we are borrowing from our very own capacity for having unified information in order to put together the data that creates the construct of a “point of view”; importantly, this unity is not bootstrapped from other “points of view”, but draws from the texture of the fabric of reality itself. Namely, the field topology.


A scientific theory of consciousness must be able to explain the existence of consciousness, the nature and cause for the diverse array of qualia values and varieties (the palette problem), how consciousness is causally efficacious (avoid epiphenomenalism), and explain how the information content of each moment of experience is presented “all at once” (namely, the binding problem). I’ve talked extensively about these constraints in writings, videos, and interviews, but what I want to emphasize here is that these problems need to be addressed head on for a theory of consciousness to work at all. Keep these constraints in mind as we deconstruct the apparent solidity of frames of reference and the difficulty that arises in order to bootstrap causal and computational effects in connection to phenomenal binding out of a relativistic frame.

At a very high level, a fuzzy (but perhaps sufficient) intuition for what’s problematic when a theory of consciousness doesn’t seek frame-invariance is that you are trying to create something concrete with real and non-trivial causal effects and information content, out of fundamentally “fuzzy” parts.

In brief, ask yourself, can something fuzzy “observe” something fuzzy? How can fuzzyness be used to boostrap something non-fuzzy?

In a world of atoms and forces, “systems” or “things” or “objects” or “algorithms” or “experiences” or “computations” don’t exist intrinsically because there are no objective, frame-invariant, and causally significant ways to draw boundaries around them!

I hope to convince you that any sense of unity or coherence that you get from this picture of reality (a relativistic system with atoms and forces) is in fact a projection from your mind, that inhabits your mind, and is not out there in the world. You are looking at the system, and you are making connections between the parts, and indeed you are creating a hierarchy of interlocking gestalts to represent this entire conception of reality. But that is all in your mind! It’s a sort of map and territory confusion to believe that two fuzzy “systems” interacting with each other can somehow bootstrap a non-fuzzy ontological object (aka. a requirement for a moment of experience). 

I reckon that these vague explanations are in fact sufficient for some people to understand where I’m going. But some of you are probably clueless about what the problem is, and for good reason. This is never discussed in detail, and this is largely, I think, because people who think a lot about the problem don’t usually end up with a convincing solution. And in some cases, the result is that thinkers bite the bullet that there are only fuzzy patterns in reality.

How Many Fuzzy Computations Are There in a System?

Indeed, thinking of the universe as being made of particles and forces implies that computational processes are fuzzy (leaky, porous, open to interpretation, etc.). Now imagine thinking that *you* are one of such fuzzy computations. Having this as an unexamined background assumption gives rise to countless intractable paradoxes. The notion of a point of view, or a frame of reference, does not have real meaning here as the way to aggregate information doesn’t ultimately allow you to identify objective boundaries around packets of information (at least not boundaries that are more than merely-conventional in nature).

From this point of view (about points of view!), you realize that indeed there is no principled and objective way to find real individuals. You end up in the fuzzy world of fuzzy individuals of Brian Tomasik, as helpfully illustrated by this diagram:

Source: Fuzzy, Nested Minds Problematize Utilitarian Aggregation by Brian Tomasik

Brian Tomasik indeed identifies the problem of finding real boundaries between individuals as crucial for utilitarian calculations. And then, incredibly, also admits that his ontological frameworks gives him no principled way of doing so (cf. Michael E. Johnson’s Against Functionalism for a detailed response). Indeed, according to Brian (from the same essay):

Eric Schwitzgebel argues that “If Materialism Is True, the United States Is Probably Conscious“. But if the USA as a whole is conscious, how about each state? Each city? Each street? Each household? Each family? When a new government department is formed, does this create a new conscious entity? Do corporate mergers reduce the number of conscious entities? These seem like silly questions—and indeed, they are! But they arise when we try to individuate the world into separate, discrete minds. Ultimately, “we are all connected”, as they say. Individuation boundaries are artificial and don’t track anything ontologically or phenomenally fundamental (except maybe at the level of fundamental physical particles and structures). The distinction between an agent and its environment is just an edge that we draw around a clump of physics when it’s convenient to do so for certain purposes.

My own view is that every subsystem of the universe can be seen as conscious to some degree and in some way (functionalist panpsychism). In this case, the question of which systems count as individuals for aggregation becomes maximally problematic, since it seems we might need to count all the subsystems in the universe.”

Are you confused now? I hope so. Otherwise I’d worry about you.

Banana For Scale

A frame of reference is like a “banana for scale” but for both time and space. If you assume that the banana isn’t morphing, you can use how long it takes for waves emitted from different points in the banana to bounce back and return in order to infer the distance and location of physical objects around it. Your technologically equipped banana can play the role of a frame of reference in all but the most extreme of conditions (it probably won’t work as you approach a black hole, for very non-trivial reasons involving severe tidal forces, but it’ll work fine otherwise).

Now the question that I want to ask is: how does the banana “know itself”? Seriously, if you are using points in the banana as your frame of reference, you are, in fact, the one who is capable of interpreting the data coming from the banana to paint a picture of your environment. But the banana isn’t doing that. It is you! The banana is merely an instrument that takes measurements. Its unity is assumed rather than demonstrated. 


In fact, for the upper half of the banana to “comprehend” the shape of the other half (as well as its own), it must also rely on a presumed fixed frame of reference. However, it’s important to note that such information truly becomes meaningful only when interpreted by a human mind. In the realm of an atom-and-force-based ontology, the banana doesn’t precisely exist as a tangible entity. Your perception of it as a solid unit, providing direction and scale, is a practical assumption rather than an ontological certainty.

In fact, the moment we try to get a “frame of reference to know itself” you end up in an infinite regress, where smaller and smaller regions of the object are used as frames of reference to measure the rest. And yet, at no point does the information of these frames of reference “come together all at once”, except… of course… in your mind.

Are there ways to boostrap a *something* that aggregates and simultaneously expresses the information gathered across the banana (used as a frame of reference)? If you build a camera to take a snapshot of the, say, information displayed at each coordinate of the banana, the picture you take will have spatial extension and suffer from the same problem. If you think that the point at the aperture can itself capture all of the information at once, you will encounter two problems. If you are thinking of an idealized point-sized aperture, then we run into the problem that points don’t have parts, and therefore can’t contain multiple pieces of information at once. And if you are talking about a real, physical type of aperture, you will find that it cannot be smaller than the diffraction limit. So now you have the problem of how to integrate all of the information *across the whole area of the aperture* when it cannot shrink further without losing critical information. In either case, you still don’t have anything, anywhere, that is capable of simultaneously expressing all of the information of the frame of reference you chose. Namely, the coordinates you measure using a banana.

Let’s dig deeper. We are talking of a banana as a frame of reference. But what if we try to internalize the frame of reference. A lot of people like to think of themselves as the frame of reference that matters. But I ask you: what are your boundaries and how do the parts within those boundaries agree on what is happening?

Let’s say your brain is the frame of reference. Intuitively, one might feel like “this object is real to itself”. But here is where the magic comes. Make the effort to carefully trace how signals or measurements propagate in an object such as the brain. Is it fundamentally different than what happens with a banana? There might be more shortcuts (e.g. long axons) and the wiring could have complex geometry, but neither of these properties can ultimately express information “all at once”. The principle of uniformity says that every part of the universe follows the same universal physical laws. The brain is not an exception. In a way, the brain is itself a possible *expression* of the laws of physics. And in this way, it is no different than a banana.

Sorry, your brain is not going to be a better “ground” for your frame of reference than a banana. And that is because the same infinite recursion that happened with the banana when we tried to use it to ground our frame of reference into something concrete happens with your brain. And also, the same problem happens when we try to “take a snapshot of the state of the brain”, i.e. that the information also doesn’t aggregate in a natural way even in a high-resolution picture of the brain. It still has spatial extension and lacks objective boundaries of any causal significance.

Every single point in your brain has a different view. The universe won’t say “There is a brain here! A self-intimating self-defining object! It is a natural boundary to use to ground a frame of reference!” There is nobody to do that! Are you starting to feel the groundlessness? The bizarre feeling that, hey, there is no rational way to actually set a frame of reference without it falling apart into a gazillion different pieces, all of which have the exact same problem? I’ve been there. For years. But there is a way out. Sort of. Keep reading.

The question that should be bubbling up to the surface right now is: who, or what, is in charge of aggregating points of view? And the answer is: this does not exist and is impossible for it to exist if you start out in an ontology that has as the core building blocks relativistic particles and forces. There is no principled way to aggregate information across space and time that would result in the richness of simultaneous presentation of information that a typical human experience displays. If there is integration of information, and a sort of “all at once” presentation, the only kind of (principled) entity that this ontology would accept is the entire spacetime continuum as a gigantic object! But that’s not what we are. We are definite experiences with specific qualia and binding structures. We are not, as far as I can tell, the entire spacetime continuum all at once. (Or are we?).

If instead we focus on the fine structure of the field, we can look at mathematical features in it that would perhaps draw boundaries that are frame-invariant. Here is where a key insight becomes significant: the topology of a vector field is Lorentz invariant! Meaning, a Lorentz transformation will merely squeeze and sheer, but never change topology on its own. Ok, I admit I am not 100% sure that this holds for all of the topological features of the electromagnetic field (Creon Levit recently raised some interesting technical points that might make some EM topological features frame-dependent; I’ve yet to fully understand his argument but look forward to engaging with it). But what we are really pointing at is the explanation space. A moment ago we were desperate to find a way to ground, say, the reality of a banana in order to use it as a frame of reference. We saw that the banana conceptualized as a collection of atoms and forces does not have this capacity. But we didn’t inquire into other possible physical (though perhaps not *atomistic*) features of the banana. Perhaps, and this is sheer speculation, the potassium ions in the banana peel form a tight electromagnetic mesh that creates a protective Faraday cage for this delicious fruit. In that case, well, the boundaries of that protecting sheet would, interestingly, be frame invariant. A ground!

The 4th Dimension

There is a bit of a sleight of hand here, because I am not taking into account temporal depth, and so it is not entirely clear how large the banana, as a topological structure defined by the potassium ions protective sheer really is (again, this is totally made up! for illustration purposes only). The trick here is to realize that, at least in so far as experiences go, we also have a temporal boundary. Relativistically, there shouldn’t be a hard distinction between temporal and spatial boundaries of a topological pocket of the field. In practice, of course one will typically overwhelm the other, unless you approach the brain you are studying at close to the speed of light (not ideal laboratory conditions, I should add). In our paper, and for many years at QRI (iirc an insight by Michael Johnson in 2016 or so), we’ve talked about experiences having “temporal depth”. David Pearce posits that each fleeting macroscopic state of quantum coherence spanning the entire brain (the physical correlate of consciousness in his model) can last as little as a couple of femtoseconds. This does not seem to worry him: there is no reason why the contents of our experience would give us any explicit hint about our real temporal depth. I intuit that each moment of experience lasts much, much longer. I highly doubt that it can last longer than a hundred milliseconds, but I’m willing to entertain “pocket durations” of, say, a few dozens of milliseconds. Just long enough for 40hz gamma oscillations to bring disparate cortical micropockets into coherence, and importantly, topological union, and have this new new emergent object resonate (where waves bounce back and forth) and thus do wave computing worthwhile enough to pay the energetic cost of carefully modulating this binding operation. Now, this is the sort of “physical correlate of consciousness” I tend to entertain the most. Experiences are fleeting (but not vanishingly so) pockets of the field that come together for computational and causal purposes worthwhile enough to pay the price of making them.

An important clarification here is that now that we have this way of seeing frames of reference we can reconceptualize our previous confusion. We realize that simply labeling parts of reality with coordinates does not magically bring together the information content that can be obtained by integrating the signals read at each of those coordinates. But we suddenly have something that might be way better and more conceptually satisfying. Namely, literal topological objects with boundaries embedded in the spacetime continuum that contribute to the causal unfolding of the reality and are absolute in their existence. These are the objective and real frames of reference we’ve been looking for!

What’s So Special About Field Topology?

Two key points:

  1. Topology is frame-invariant
  2. Topology is causally significant

As already mentioned, the Lorentz Transform can squish and distort, but it doesn’t change topology. The topology of the field is absolute, not relativistic.

The Lorentz Transform can squish and distort, but it doesn’t change topology (image source).

And field topology is also causally significant. There are _many_ examples of this, but let me just mention a very startling one: magnetic reconnection. This happens when the magnetic field lines change how they are connected. I mention this example because when one hears about “topological changes to the fields of physics” one may get the impression that such a thing happens only in extremely carefully controlled situations and at minuscule scales. Similar to the concerns for why quantum coherence is unlikely to play a significant role in the brain, one can get the impression that “the scales are simply off”. Significant quantum coherence typically happens in extremely small distances, for very short periods of time, and involving very few particles at a time, and thus, the argument goes, quantum coherence must be largely inconsequential at scales that could plausibly matter for the brain. But the case of field topology isn’t so delicate. Magnetic reconnection, in particular, takes place at extremely large scales, involving enormous amount of matter and energy, with extremely consequential effects.

You know about solar flairs? Solar flairs are the strange phenomenon in the sun in which plasma is heated up to millions of degrees Kelvin and charged particles are accelerated to near the speed of light, leading to the emission of gigantic amounts of electromagnetic radiation, which in turn can ionize the lower levels of the Earth’s ionosphere, and thus disrupt radio communication (cf. radio blackouts). These extraordinary events are the result of the release of magnetic energy stored in the Sun’s corona via a topological change to the magnetic field! Namely, magnetic reconnection.

So here we have a real and tangible effect happening at a planetary (and stellar!) scale over the course of minutes to hours, involving enormous amounts of matter and energy, coming about from a non-trivial change to the topology of the fields of physics.

(example of magnetic reconnection; source)

Relatedly, coronal mass ejections (CMEs) also dependent on changes to the topology of the EM field. My layman understanding of CMEs is that they are caused by the build-up of magnetic stress in the sun’s atmosphere, which can be triggered by a variety of factors, including uneven spinning and plasma convection currents. When this stress becomes too great, it can cause the magnetic field to twist and trap plasma in solar filaments, which can then be released into interplanetary space through magnetic reconnection. These events are truly enormous in scope (trillions of kilograms of mass ejected) and speed (traveling at thousands of kilometers per second).

CME captured by NASA (source)

It’s worth noting that this process is quite complex/not fully understood, and new research findings continue to illuminate the details of this process. But the fact that topological effects are involved is well established. Here’s a video which I thought was… stellar. Personally, I think a program where people get familiar with the electromagnetic changes that happen in the sun by seeing them in simulations and with the sun visualized in many ways, might help us both predict better solar storms, and then also help people empathize with the sun (or the topological pockets that it harbors!).

The model showed differential rotation causes the sun’s magnetic fields to stretch and spread at different rates. The researchers demonstrated this constant process generates enough energy to form stealth coronal mass ejections over the course of roughly two weeks. The sun’s rotation increasingly stresses magnetic field lines over time, eventually warping them into a strained coil of energy. When enough tension builds, the coil expands and pinches off into a massive bubble of twisted magnetic fields — and without warning — the stealth coronal mass ejection quietly leaves the sun.” (source)

Solar flares and CMEs are just two rather spectacular macroscopic phenomena where field topology has non-trivial causal effects. But in fact there is a whole zoo of distinct non-trivial topological effects with causal implications, such as: how the topology of the Möbius strip can constrain optical resonant modes, twisted topological defects in nematic liquid crystal make some images impossible, the topology of eddy currents can be recruited for shock absorption aka. “magnetic breaking”, Meissner–Ochsenfeld effect and flux pinning enabling magnetic levitation, Skyrmion bundles having potential applications for storing information in spinotropic devices, and so on.

(source)

In brief, topological structures in the fields of physics can pave the way for us to identify the natural units that correspond to “moments of experience”. They are frame-invariant and casually significant, and as such they “carve nature at its joints” while being useful from the point of view of natural selection.

Can a Topological Pocket “Know Itself”?

Now the most interesting question arises. How does a topological pocket “know itself”? How can it act as a frame of reference for itself? How can it represent information about its environment if it does not have direct access to it? Well, this is in fact a very interesting area of research. Namely, how do you get the inside of a system with a clear and definite boundary to model its environment despite having only information accessible at its boundary and the resources contained within its boundary? This is a problem that evolution has dealt with for over a billion years (last time I checked). And fascinatingly, is also the subject of study of Active Inference and the Free Energy Principle, whose math, I believe, can be imported to the domain of *topological* boundaries in fields (cf. Markov Boundary).

Here is where qualia computing, attention and awareness, non-linear waves, self-organizing principles, and even optics become extremely relevant. Namely, we are talking about how the *interior shape* of a field could be used in the context of life. Of course the cell walls of even primitive cells are functionally (albeit perhaps not ontologically) a kind of objective and causally significant boundary where this applies. It is enormously adaptive for the cell to use its interior, somehow, to represent its environment (or at least relevant features thereof) in order to navigate, find food, avoid danger, and reproduce.

The situation becomes significantly more intricate when considering highly complex and “evolved” animals such as humans, which encompass numerous additional layers. A single moment of experience cannot be directly equated to a cell, as it does not function as a persistent topological boundary tasked with overseeing the replication of the entire organism. Instead, a moment of experience assumes a considerably more specific role. It acts as an exceptionally specialized topological niche within a vast network of transient, interconnected topological niches—often intricately nested and interwoven. Together, they form an immense structure equipped with the capability to replicate itself. Consequently, the Darwinian evolutionary dynamics of experiences operate on multiple levels. At the most fundamental level, experiences must be selected for their ability to competitively thrive in their immediate micro-environment. Simultaneously, at the broadest level, they must contribute valuable information processing functions that ultimately enhance the inclusive fitness of the entire organism. All the while, our experiences must seamlessly align and “fit well” across all the intermediary levels.

Visual metaphor for how myriad topological pockets in the brain could briefly fuse and become a single one, and then dissolve back into a multitude.

The way this is accomplished is by, in a way, “convincing the experience that it is the organism”. I know this sounds crazy. But ask yourself. Are you a person or an experience? Or neither? Think deeply about Empty Individualism and come back to this question. I reckon that you will find that when you identify with a moment of experience, it turns out that you are an experience *shaped* in the form of the necessary survival needs and reproductive opportunities that a very long-lived organism requires. The organism is fleetingly creating *you* for computational purposes. It’s weird, isn’t it?

The situation is complicated by the fact that it seems that the computational properties of topological pockets of qualia involve topological operations, such as fusion, fission, and the use of all kinds of internal boundaries. More so, the content of a particular experience leaves an imprint in the organism which can be picked up by the next experience. So what happens here is that when you pay really close attention, and you whisper to your mind, “who am I?”, the direct experiential answer will in fact be a slightly distorted version of the truth. And that is because you (a) are always changing and (b) can only use the shape of the previous experience(s) to fill the intentional content of your current experience. Hence, you cannot, at least not under normal circumstances, *really* turn awareness to itself and *be* a topological pocket that “knows itself”. For once, there is a finite speed of information propagation across the many topological pockets that ultimately feed to the central one. So, at any given point in time, there are regions of your experience of which you are *aware* but which you are not attending to.

This brings us to the special case. Can an experience be shaped in such a way that it attends to itself fully, rather than attend to parts of itself which contain information about the state of predecessor topological pockets? I don’t know, but I have a strong hunch that the answer is yes and that this is what a meditative cessation does. Namely, it is a particular configuration of the field where attention is perfectly, homogeneously, distributed throughout in such a way that absolutely nothing breaks the symmetry and the experience “knows itself fully” but lacks any room left to pass it on to the successor pockets. It is a bittersweet situation, really. But I also think that cessations, and indeed moments of very homogeneously distributed attention, are healing for the organism, and even, shall we say, for the soul. And that is because they are moments of complete relief from the discomfort of symmetry breaking of any sort. They teach you about how our world simulation is put together. And intellectually, they are especially fascinating because they may be the one special case in which the referent of an experience is exactly, directly, itself.

To be continued…


Acknowledgements

I am deeply grateful and extend my thanks to Chris Percy for his remarkable contributions and steadfast dedication to this field. His exceptional work has been instrumental in advancing QRI’s ideas within the academic realm. I also want to express my sincere appreciation to Michael Johnson and David Pearce for our enriching philosophical journey together. Our countless discussions on the causal properties of phenomenal binding and the temporal depth of experience have been truly illuminating. A special shout-out to Cube Flipper, Atai Barkai, Dan Girshovic, Nir Lahav, Creon Levit, and Bijan Fakhri for their recent insightful discussions and collaborative efforts in this area. Hunter, Maggie, Anders (RIP), and Marcin, for your exceptional help. Huge gratitude to our donors. And, of course, a big thank you to the vibrant “qualia community” for your unwavering support, kindness, and encouragement in pursuing this and other crucial research endeavors. Your love and care have been a constant source of motivation. Thank you so much!!!

7 Recent Videos: Cognitive Sovereignty, Phenomenology of Scent, Solution to the Problem of Other Minds, Novel Qualia Research Methods, Higher Dimensions, Solution to the Binding Problem, and Qualia Computing

[Context: 4th in a series of 7-video packages. See the previous three packages: 1st2nd, and 3rd]


Genuinely new thoughts are actually very rare. Why is that? And how can we incentivize the good side of smart people to focus their energies on having genuinely new thoughts for the benefit of all? In order to create the conditions for that we need to strike the right balance between many complementary forces.

I offer a new ideal we call “Cognitive Sovereignty”. This ideal consists of three principles working together in synergy: (1) Freedom of Thought and Feeling, (2) Idea Ownership, and (3) Information Responsibility.

(1) Freedom of Thought and Feeling is the cultivation of a child-like wonder and positive attitude towards the ideas of one another. A “Yes And” approach to idea sharing.

As QRI advisors Anders Amelin and Margareta “Maggie” Wassinge write on the topic:

“On the topic of liberty of mind, we may reflect that inhibitory mechanisms are typically strong within groups of people. As is the case within minds of individuals. In minds it’s this tip of the iceberg which gets rendered as qualia and is the end result of unexperienced hierarchies of powerfully constraining filters. It’s really practical for life forms to function this way and for teams made up of life forms to function similarly, but for making grand improvements to the very foundations of life itself, you need maximum creativity instead of the default self-organizing consensus emergence.

“There is creativity-limiting pressure to conform to ‘correctness’ everywhere. Paradigmatic correctness in science, corporate correctness in business, social correctness, political correctness, and so on. As antidotes to chaos these can serve a purpose but for exceptional intellectual work to blossom they are quite counterproductive. There is something to be said for Elon Musk’s assertion that ‘excellence is the only passing grade’.

“The difference to the future wellbeing of sentient entities between the QRI becoming something pretty much overall OK-ish, and the QRI becoming something of great excellence, is probably bigger than between the corresponding outcomes for Tesla Motors.

“The creativity of the team is down to this exact thing: The qualia computing of the gut feeling getting to enjoy a haven of liberty all too rare elsewhere.”

On (2) we can say that to “be the adult in the room” is also equally important. As Michael Johnson puts it, “it’s important to keep track of the metadata of ideas.” One cannot incentivize smart people to share ideas if they don’t feel like others will recognize who came up with them. While not everyone pays close attention to who says what in conversation, we think that a reasonable level of attention on this is necessary to align incentives. Obviously too much emphasis on Idea Ownership can be stifling and generate excessive overhead. So having open conversations about (failed) attribution while assuming the best from others is also a key practice to make Idea Ownership good for everyone.

And finally, (3) is the principle of “Information Responsibility”. This is the “wise old person” energy and attitude that deeply cares about the effects that information has on the world. Simple heuristics like “information wants to be free” and the ideal of a fully “open science” are pleasant to think about, but in practice they may lead to disasters on a grand scale. From gain of function research in virology to analysis of water pipes in cities, cutting-edge research can at times encounter novel ways of causing great harm. It’s imperative that one resists the urge to share them with the world for the sake of signaling how smart one is (which is the default path for the vast majority of people and institutions!). One needs to cultivate the wisdom to consider the long-term vision and only share ideas one knows are safe for the world. Here, of course, we need a balance: too much emphasis on information security can be a tactic to thwart other’s work and may be undully onerous and stifling. Striking the right balance is the goal.

The full synergy between these three principles of Cognitive Sovereignty, I think, is what allows people to think new thoughts.

I also cover two new key ideas: (a) Canceling Paradise and (b) Multi-level Selection and how it interacts with Organizational Freedom.

~Qualia of the Day: Long Walks on the Beach~

Relevant links:


In this talk we analyze the perfume category called “Aromatic Fougère” in order to illustrate the aesthetic of “Qualiacore” in its myriad manifestations.

Definition: The Qualiacore Aesthetic is the practice and aspiration to describe experiences in new, meaningful, and non-trivial ways that are illuminating for our understanding of the nature of consciousness.

At a high-level, we must note that the classic ways of describing the phenomenology of scents tend to “miss the target”. Learning about the history, cultural imports, associations, and similarities between perfumes can be fun to do but it does not advance an accurate phenomenological impression of what it is that we are talking about. And while reading about the “perfume notes” of a composition can place it in a certain location relative to other perfumes, such note descriptions usually give you a false sense of understanding and familiarity far removed from the complex subtleties of the state-space of scent. So how can we say new, meaningful, and non-trivial things about a smell?

Note-wise, Aromatic Fougères are typically described as the combination of herbs and spices (the aromatic part) with the core Fougère accord of oak moss, lavender/bergamot, geranium, and coumarin. In this video I offer a qualiacore-style analysis of how these “notes” interact with one another in order to form emergent gestalts. Here we will focus on the phenomenal character of these effects with an emphasis on bringing analogies from dynamic system behavior and energy-management techniques within the purview of the Symmetry Theory of Valence.

In the end, we arrive at a phenomenological fingerprint that cashes out in a comparison to the psychoactive effect of “Calvin Klein” (cocaine + ketamine*), which blends both stimulation and dissociation at the same time – a rather interesting effect that can be used to help you overcome awkwardness barriers in everyday life. “Smooth out the awkwardness landscape with Drakkar Noir!”

I also discuss the art of perfumery in light of QRI’s 8 models of art:

  1. Art as family resemblance (Semantic Deflation)
  2. Art as Signaling (Cool Kid Theory)
  3. Art as Schelling-point creation (a few Hipster-theoretical considerations)
  4. Art as cultivating sacred experiences (self-transcendence and highest values)
  5. Art as exploring the state-space of consciousness (ϡ☀♘🏳️‍🌈♬♠ヅ)
  6. Art as something that messes with the energy parameter of your mind (ꙮ)
  7. Art as puzzling valence effects (emotional salience and annealing as key ingredients)
  8. Art as a system of affective communication: a protolanguage to communicate information about worthwhile qualia (which culminates in Harmonic Society).

~Qualia of the Day: Aromatic Fougères~

* Extremely ill-advised.

Relevant links:


How do you know for sure that other people (and non-human animals) are conscious?

The so-called “problem of other minds” asks us to consider whether we truly have any solid basis for believing that “we are not alone”. In this talk I provide a new, meaningful, and non-trivial solution to the problem of other minds using a combination of mindmelding and phenomenal puzzles in the right sequence such that one can gain confidence that others are indeed “solving problems with qualia computing” and in turn infer that they are independently conscious.

This explanatory style contrasts with typical “solutions” to the problem of other minds that focus on either historical, behavioral, or algorithmic similarities between oneself and others (e.g. “passing a Turing test”). Here we explore what the space of possible solutions looks like and show that qualia formalism can be a key to unlock new kinds of understanding currently out of reach within the prevailing paradigms in philosophy of mind. But even with qualia formalism, the radical skeptic solipsist will not be convinced. Direct experience and “proof” is necessary to convince a hardcore solipsist since intellectual “inferential” arguments can always be mere “figments of one’s own imagination”. We thus explore how mindmelding can greatly increase our certainty of other’s consciousness. However, skeptical worries may still linger: how do you know that the source of consciousness during mindmelding is not your brain alone? How do you know that the other brain is conscious while you are not connected to it? We thus introduce “phenomenal puzzles” into the picture: these are puzzles that require the use of “qualia comparisons” to be solved. In conjunction with a specific mindmelding information sharing protocol, such phenomenal puzzles can, we argue, actually fully address the problem of other minds in ways even strong skeptics will be satisfied with. You be the judge! 🙂

~Qualia of the Day: Wire Puzzles~

Many thanks to: Everyone who has encouraged the development of the field of qualia research over the years. David Pearce for encouraging me to actually write out my thoughts and share them online, Michael Johnson for our multi-year deep collaboration at QRI, and Murphy-Shigematsu for pushing me over the edge to start working on “what I had been putting off” back in 2014 (which was the trigger to actually write the first Qualia Computing post). In addition, I’d like to thank everyone at the Stanford Transhumanist Association for encouraging me so much over the years (Faust, Karl, Juan-Carlos, Blue, Todor, Keetan, Alan, etc.). Duncan Wilson for the beautiful times discussing these matters. Romeo Stevens for the amazing vibes and high-level thoughts. And of course everyone at QRI, especially Quintin Frerichs, Andrew Zuckerman, Anders and Maggie, and the list goes on (Mackenzie, Sean, Hunter, Elin, Wendi, etc.). Likewise, everyone at Qualia Computing Networking (the closed facebook group where we discuss a lot of these ideas), our advisors, donors, readers, and of course those watching these videos. Much love to all of you!

Relevant links:

“Tout comprendre, c’est tout pardonner” – To understand all is to forgive all.


New scientific paradigms essentially begin life as conspiracy theories, noticing the inconsistencies the previous paradigm is suppressing. Early adopters undergo a process that Kuhn likens to religious deconversion.” – Romeo Stevens

The field of consciousness research lacks a credible synthesis of what we already know about the mind. One key thing that is holding back the science of consciousness is that it’s currently missing an adequate set of methods to “take seriously” the implications of exotic states of consciousness. Imagine a physicist saying that “there is nothing about water that we can learn from studying ice”. Silly as it may be, the truth is that this is the typical attitude about exotic consciousness in modern neuroscience. And even with the ongoing resurgence of scientific interest in psychedelics, outside of QRI and Ingram’s EPRC there is no real serious attempt at mapping the state-space of consciousness in detail. This is to a large extent because we lack the vocabulary, tools, concepts, and focus at a paradigmatic level to do so. But a new paradigm is arriving, and the following 8 new research methods and others in the works will help bring it about:

  1. Taking Exotic States of Consciousness Seriously (e.g. when a world-class phenomenologist says that 3D-printed Poincaré projections of hyperbolic honeycombs make the visual system “glitch” when on DMT the rational response is to listen and ask questions rather than ignore and ridicule).
  2. High-Quality Phenomenology: Precise descriptions of the phenomenal character of experience. Core strategy: useful taxonomies of experience, a language to describe generalized synesthesia (multi-modal coherence), and a rich vocabulary to convey the statistical regularities of textures of qualia (cf. generalizing the concept of “mongrels” in the neuroscience of visual perception to all other modalities).
  3. Phenomenology Club: Critical mass of smart and rational psychonauts.
  4. Psychedelic Turk for Psychophysics: Real-time psychedelic task completion.
  5. Generalized Wada Test: What happens when half of your brain is on LSD and the other half is on ketamine?
  6. Resonance-Based Hedonic Mapping: You are a network of coupled oscillators. Act like it!
  7. Pair Qualia Cartography: Like pair programming but for exploring the state-space of consciousness with non-invasive neurostimulation.
  8. Cognitive Sovereignty: Furthering a culture that has a “Yes &” approach to creativity, keeps track of meta-data, and takes responsibility for the information it puts out.

~Qualia of the Day: Being Taken Seriously~

Relevant links:


Many people report experiencing “higher dimensions” during deep meditation and/or psychedelic experiences. Vaporized DMT in particular reliably produces this effect in a large percentage of users. But is this an illusion? Is there anything meaningful to it? What could possibly be going on?

In this video we provide a steel man (or titanium man?) of the idea that higher dimensions are *real* in a new, meaningful, and non-trivial sense. 

We must emphasize that most people who believe that DMT experiences are “higher dimensional” interpret their experiences within a direct realist framework. Meaning that they think they are “tuning in” to other dimensions, that some secret sense organ capable of perceiving the etheric realm was “activated”, that awareness into divine realms became available to their soul, or something along those lines. In brief, such interpretations operate under the notion that we can perceive the world directly somehow. In this video, we instead work under the premise that we live in a compact world-simulation generated by our nervous system. If DMT gives rise to “higher dimensional experiences”, then such dimensions will be phenomenological in nature.

We thus try to articulate how it can be possible for an *experience* to acquire higher dimensions. An important idea here is that there is a trade-off between degrees of freedom and geometric dimensions. We present a model where degrees of freedom can become interlocked in such a way that they functionally emulate the behavior of a *virtual* higher dimension. As exemplified by the “harmonograph”, one can indeed couple and interlock multiple oscillators in such a way that one generates paths of a point in a space that is higher-dimensional than the space inhabited by any of the oscillators on their own. More so, with a long qualia decay, one can use such technique to “paint” entire images in a *virtual* high dimensional canvas!

High-quality detailed phenomenology of DMT by rational psychonauts strongly suggests that higher virtual dimensions are widely present in the state. Also, the unique valence properties of the state seem to follow what we could call a “generalized music theory” where the “vibe” of the space is the net consonance between all of the metronomes in it. We indeed see a duality between spatial symmetry and temporal synchrony with modality-specific symmetries (equivariance maps) constraining the dynamic behavior.

This, together with the Symmetry Theory of Valence (Johnson), makes the search for “special divine numbers” suddenly meaningful: numerological correspondences can illuminate the underlying makeup of “heaven worlds” and other hedonically-loaded states of mind!

I conclude with a discussion about the nature of “highly-meaningful experiences”. In light of all of these frameworks, meaning can be understood as a valence effect that arises when you have strong consonance between abstract (narrative and symbolic), emotional, and sensory fields all at once. A key turning point in your life combined with the right emotion and the right “sacred space” can thus give rise to “peak meaning”. The key to infinite bliss!

~Qualia of the Day: Numerology~

Relevant links:

Thumbnail Image Source: Petri G., Expert P., Turkheimer F., Carhart-Harris R., Nutt D., Hellyer P. J. and Vaccarino F. 2014 Homological scaffolds of brain functional networks J. R. Soc. Interface.112014087320140873 – https://royalsocietypublishing.org/doi/full/10.1098/rsif.2014.0873


How can a bundle of atoms form a unified mind? This is far from a trivial question, and it demands an answer.

The phenomenal binding problem asks us to consider exactly that. How can spatially and temporally distributed patterns of neural activity contribute to the contents of a unified experience? How can various cognitive modules interlock to produce coherent mental activity that stands as a whole?

To address this problem we first need to break down “the hard problem of consciousness” into manageable subcomponents. In particular, we follow Pearce’s breakdown of the problem where we posit that any scientific theory of consciousness must answer: (1) why consciousness exists at all, (2) what are the set of qualia variety and values, and what is the nature of their interrelationships, (3) the binding problem, i.e. why are we not “mind dust”?, and (4) what are the causal properties of consciousness (how could natural selection recruit experience for information processing purposes, and why is it that we can talk about it). We discuss how trying to “solve consciousness” without addressing each of these subproblems is like trying to go to the Moon without taking into account air drag, or the Moon’s own gravitational field, or the fact that most of outer space is an air vacuum. Illusionism, in particular, seems to claim “the Moon is an optical illusion” (which would be true for rainbows – but not for the Moon, or consciousness).

Zooming in on (3), we suggest that any solution to the binding problem must: (a) avoid strong emergence, (b) side-step the hard problem of consciousness, (c) circumvent epiphenomenalism, and (d) be compatible with the modern scientific word picture, namely the Standard Model of physics (or whichever future version achieves full causal closure).

Given this background, we then explain that “the binding problem” as stated is in fact conceptually insoluble. Rather, we ought to reformulate it as the “boundary problem”: reality starts out unified, and the real question is how it develops objective and frame invariant boundaries. Additionally, we explain that “classic vs. quantum” is a false dichotomy, at least in so far as “classical explanations” are assumed to involve particles and forces. Field behavior is in fact ubiquitous in conscious experience, and it need not be quantum to be computationally relevant! In fact, we argue that nothing in experience makes sense except in light of holistic field behavior.

We then articulate exactly why all of the previously proposed solutions to the binding problem fail to meet the criteria we outlined. Among them, we cover:

  1. Cellular Automata
  2. Complexity
  3. Synchrony
  4. Integrated Information
  5. Causality
  6. Spatial Proximity
  7. Behavioral Coherence
  8. Mach Principle
  9. Resonance

Finally, we present what we believe is an actual plausible solution to the phenomenal binding problem that satisfies all of the necessary key constraints:

10. Topological segmentation

The case for (10) is far from trivial, which is why it warrants a detailed explanation. It results from realizing that topological segmentation allows us to simultaneously obtain holistic field behavior useful for computation and new and natural regions of fields that we could call “emergent separate beings”. This presents a completely new paradigm, which is testable using elements of the cohomology of electromagnetic fields.

We conclude by speculating about the nature of multiple personality disorder and extreme meditation and psychedelic states of consciousness in light of a topological solution to the boundary problem. Finally, we articulate the fact that, unlike many other theories, this explanation space is in principle completely testable.

~Qualia of the Day: Acqua di Gio by Giorgio Armani and Ambroxan~

Relevant links:


Why are we conscious?

The short answer is that bound moments of experience have useful causal and computational properties that can speed up information processing in a nervous system.

But what are these properties, exactly? And how do we know? In this video I unpack this answer in order to explain (or at least provide a proof of concept explanation for) how bound conscious states accomplish non-trivial speedups in computational problems (e.g. such as the problem of visual reification).

In order to tackle this question we first need to (a) enrich our very conception of computation, and (b) also enrich our conception of intelligence.

(a) Computation: We must realize that the Church-Turing Thesis conception of computation only cares about computing in terms of functions. That is, how inputs get mapped to outputs. But a much more general conception of computation also considers how the substrate allows for computational speed-ups via interacting inner states with intrinsic information. More so, if reality is made of “monads” that have non-zero intrinsic information and interact with one another, then our conception of “computation” must also consider monad networks. And in particular, the “output” of a computation may in fact be an inner bound state rather than just a sequence of discrete outputs (!).

(b) Intelligence: currently this is a folk concept poorly formalized by the instruments with which we measure it (primarily in terms of sequential logics-linguistic processing). But, alas, intelligence is a function of one’s entire world-simulation: even the shading of the texture of the table in front of you is contributing to the way you “see the world” and thus reason about it. So, an enriched conception of intelligence must also take into account: (1) binding, (2) the presence of a self, (3) perspective-taking, (4) distinguishing between the trivial and significant, and (5) state-space of consciousness navigation.

Now that we have these enriched conceptions, we are ready to make sense of the computational role of consciousness: in a way, the whole point of “intelligence” is to avoid brute force solutions by instead recruiting an adequate “self-organizing principle” that can run on the universe’s inherent massively parallel nature. Hence, the “clever” way in which our world-simulation is used: as shown by visual illusions, meditative states, psychedelic experiences, and psychophysics, perception is the result of a balance of field forces that is “just right”. Case in point: our nervous system utilizes the holistic behavior of the field of awareness in order to quickly find symmetry elements (cf. Reverse Grassfire Algorithm).

As a concrete example, I articulate the theoretical synthesis QRI has championed that combines Friston’s Free Energy Principle, Atasoy’s Connectome-Specific Harmonic Waves, Carhart-Harris’ Entropic Disintegration, and QRI’s Symmetry Theory of Valence and Neural Annealing to shows that the nervous system is recruiting the self-organizing principle of annealing to solve a wide range of computational problems. Other principles to be discussed at a later time.

To summarize: the reason we are conscious is because being conscious allows you to recruit self-organizing principles that can run on a massively parallel fashion in order to find solutions to problems at [wave propagation] speed. Importantly, this predicts it’s possible to use e.g. a visual field on DMT in order to quickly find the “energy minima” of a physical state that has been properly calibrated to correspond to the dynamics of a worldsheet in that state. This is falsifiable and exciting.

I conclude with a description of the Goldilock’s Zone of Oneness and why to experience it.

~Qualia of the Day: Dior’s Eau Sauvage (EDT)~

Relevant links:

Types of Binding

Excerpt from “Mindmelding: Consciousness, Neuroscience, and the Mind’s Privacy” (2012) by William Hirstein (pgs. 57-58 and 64-65)

The Neuroscience of Binding

When you experience an orchestra playing, you see them and hear them at the same time. The sights and sounds are co-conscious (Hurley, 2003; de Vignemont, 2004). The brain has an amazing ability to make everything in consciousness co-conscious with everything else, so that the co-conscious relation is transitive: That means, if x is co-conscious with y, and y is co-conscious with z, then x is co-conscious with z. Brain researchers hypothesized that the brain’s method of achieving co-consciousness is to link the different areas embodying each portion of the brain state by a synchronizing electrical pulse. In 1993, Linás and Ribary proposed that these temporal binding processes are responsible for unifying information from the different sensory modalities. Electrical activity, “manifested as variations in the minute voltage across the cell’s enveloping membrane,” is able to spread, like “ripples in calm water” according to Linás (2002, pp.9-10). This sort of binding has been found not only in the visual system, but also in other modalities (Engel et al., 2003). Bachmann makes the important point that the binding processes need to be “general and lacking any sensory specificity. This may be understood via a comparison: A mirror that is expected to reflect equally well everything” (2006, 32).

Roelfsema et al. (1997) implanted electrodes in the brain of cats and found binding across parietal and motor areas. Desmedt and Tomberg (1994) found binding between a parietal area and a prefrontal area nine centimeters apart in their subjects, who had to respond with one hand, to signal which finger on another hand had been stimulated – a conscious response to a conscious perception. Binding can occur across great distances in the brain. Engel et al. (1991) also found binding across the two hemispheres. Apparently binding processes can produce unified conscious states out of cortical areas widely separated. Notice, however, that even if there is a single area in the brain where all the sensory modalities, memory, and emotion, and anything else that can be in a conscious state were known to feed into, binding would still be needed. As long as there is any spatial extent at all to the merging area, binding is needed. In addition to its ability to unify spatially separate areas, binding has a temporal dimension. When we engage in certain behaviors, binding unifies different areas that are cooperating to produce a perception-action cycle. When laboratory animals were trained to perform sensory-motor tasks, the synchronized oscillations were seen to increase both within the areas involved in performing the task and across those areas, according to Singer (1997).

Several different levels of binding are needed to produce a full conscious mental state:

  1. Binding of information from many sensory neurons into object features
  2. Binding of features into unimodal representations of objects
  3. Binding of different modalities, e.g., the sound and movement made by a single object
  4. Binding of multimodal object representations into a full surrounding environment
  5. Binding of representations, emotions, and memories, into full conscious states.

So is there one basic type of binding, or many? The issue is still debated. On the side of there being a single basic process, Koch says that he is content to make “the tentative assumption that all the different aspects of consciousness (smell, pain, vision, self-consciousness, the feeling of willing an action, of being angry and so on) employ one or perhaps a few common mechanisms” (2004, p15). On the other hand, O’Reilly et al. argue that “instead of one simple and generic solution to the binding problem, the brain has developed a number of specialized mechanisms that build on the strengths of existing neural hardware in different brain areas” (2003, p.168).

[…]

What is the function of binding?

We saw just above that Crick and Koch suggest a function for binding, to assist a coalition of neurons in getting the “attention” of prefrontal executive processes when there are other competitors for this attention. Crick and Koch also claim that only bound states can enter short-term memory and be available for consciousness (Crick and Koch, 1990). Engel et al. mention a possible function of binding: “In sensory systems, temporal binding may serve for perceptual grouping and, thus, constitute an important prerequisite for scene segmentation and object recognition” (2003, 140). One effect of malfunctions in the binding process may be a perceptual disorder in which the parts of objects cannot be integrated into a perception of the whole object. Riddoch and Humphreys (2003) describe a disorder called ‘integrative agnosia’ in which the patient cannot integrate the parts of an object into a whole. They mention a patient who is given a photograph of a paintbrush but sees the handle and the bristles as two separate objects. Breitmeyer and Stoerig (2006, p.43) say that:

[P]atients can have what are called “apperceptive agnosia,” resulting from damage to object-specific extrastriate cortical areas such as the fusiform face area and the parahippocampal place area. While these patients are aware of qualia, they are unable to segment the primitive unity into foreground or background or to fuse its spatially distributed elements into coherent shapes and objects.

A second possible function of binding is a kind of bridging function, it makes high-level perception-action cycles go through. Engel et al. say that, “temporal binding may be involved in sensorimotor integration, that is, in establishing selective links between sensory and motor aspects of behavior” (2003, p.140).

Here is another hypothesis we might call the scale model theory of binding. For example, in order to test a new airplane design in a wind tunnel, one needs a complete model of it. The reason for this is that a change in one area, say the wing, will alter the aerodynamics of the entire plane, especially those areas behind the wing. The world itself is quite holistic. […] Binding allows the executive processes to operate on a large, holistic model of the world in a way that allows the model to simulate the same holistic effects found in the world. The holism of the represented realm is mirrored by a type of brain holism in the form of binding.


See also these articles about (phenomenal) binding:

Qualia Computing at: TSC 2020, IPS 2020, unSCruz 2020, and Ephemerisle 2020

[March 12 2020 update: Both TSC and IPS are being postponed due to the coronavirus situation. At the moment we don’t know if the other two events will go ahead. I’ll update this entry when there is a confirmation either way. May 6 2020 update: unSCruz was canceled this year as well. More so, as an organization, QRI has chosen not to attend Ephemerisle this year, whether or not it ends up being canceled. Dear readers: I’m sure we’ll have future opportunities to meet in person].


These are the 2020 events lined up for me at the moment (though more are likely to pop up):

  • I will be attending The Science of Consciousness 2020 from the 13th to the 17th of April representing the Qualia Research Institute (QRI). I will present about a novel approach for solving the combination problem for panpsychism. The core idea is to use the concept of topological segmentation in order to explain how the universal wavefunction can develop boundaries with causal power (and thus capable of being recruited by natural selection for information-processing purposes) which might also be responsible for the creation of discrete moments of experience. I am including the abstract in this post (see below).
  • I will then fly out to Boston for the Intercollegiate Psychedelics Summit (IPS) from the 18th to the 20th of April (though I will probably stay for a few more days in order to meet people in the area). Here I will be presenting about intelligent strategies for exploring the state-space of consciousness.
  • At the end of April I will be attending the 2020 Santa Cruz Burning Man Regional (“unSCruz“) with a small contingent of members and friends of QRI. We will be showcasing some of our neurotech prototypes and conducting smell tests (article about this coming soon).
  • And from the 20th to the 27th of July I will be at Ephemerisle 2020 alongside other members of QRI. We will be staying on the “Consciousness Boat” and showcasing some interesting demos. In particular, expect to see new colors, have fully-sober stroboscopic hallucinations, and explore the state-space of visual textures.

I am booking some time in advance to meet with Qualia Computing readers, people interested in the works of the Qualia Research Institute, and potential interns and visiting scholars. Please message me if you are attending any of these events and would like to meet up.


Here is the abstract I submitted to TSC 2020:

Title – Topological Segmentation: How Dynamic Stability Can Solve the Combination Problem for Panpsychism

Primary Topic Area – Mental Causation and the Function of Consciousness

Secondary Topic Area – Panpsychism and Cosmopsychism

Abstract – The combination problem complicates panpsychist solutions to the hard problem of consciousness (Chalmers 2013). A satisfactory solution would (1) avoid strong emergence, (2) sidestep the hard problem of consciousness, (3) prevent the complications of epiphenomenalism, and (4) be compatible with the modern scientific world picture. We posit that topological approaches to the combination problem of consciousness could achieve this. We start by assuming a version of panpsychism in which quantum fields are fields of qualia, as is implied by the intrinsic nature argument for panpsychism (Strawson 2008) in conjunction with wavefunction realism (Ney 2013). We take inspiration from quantum chemistry, where the observed dynamic stability of the orbitals of complex molecules requires taking the entire system into account at once. The scientific history of models for chemical bonds starts with simple building blocks (e.g. Lewis structures), and each step involves updating the model to account for holistic behavior (e.g. resonance, molecular orbital theory, and the Hartree-Fock method). Thus the causal properties of a molecule are identified with the fixed points of dynamic stability for the entire atomic system. The formalization of chemical holism physically explains why molecular shapes that create novel orbital structures have weak downward causation effect on the world without needing to invoke strong emergence. For molecules to be “natural units” rather than just conventional units, we can introduce the idea that topological segmentation of the wavefunction is responsible for the creation of new beings. In other words, if dynamical stability entails the topological segmentation of the wavefunction, we get a story where physically-driven behavioral holism is accompanied with the ontological creation of new beings. Applying this insight to solve the combination problem for panpsychism, each moment of experience might be identified with a topologically distinct segment of the universal wavefunction. This topological approach makes phenomenal binding weakly causally emergent along with entailing the generation of new beings. The account satisfies the set of desiderata we started with: (1) no strong emergence is required because behavioral holism is implied by dynamic stability (itself only weakly emergent on the laws of physics), (2) we sidestep the hard problem via panpsychism, (3) phenomenal binding is not epiphenomenal because the topological segments have holistic causal effects (such that evolution would have a reason to select for them), and (4) we build on top of the laws of physics rather than introduce new clauses to account for what happens in the nervous system. This approach to the binding problem does not itself identify the properties responsible for the topological segmentation of the universal wavefunction that creates distinct moments of experience. But it does tell us where to look. In particular, we posit that both quantum coherence and entanglement networks may have the precise desirable properties of dynamical stability accompanied with topological segmentation. Hence experimental paradigms such as probing the CNS at femtosecond timescales to find a structural match between quantum coherence and local binding (Pearce 2014) could empirically validate our solution to the combination problem for panpsychism.

paste


See Also:

The Binding Problem

[Our] subjective conscious experience exhibits a unitary and integrated nature that seems fundamentally at odds with the fragmented architecture identified neurophysiologically, an issue which has come to be known as the binding problem. For the objects of perception appear to us not as an assembly of independent features, as might be suggested by a feature based representation, but as an integrated whole, with every component feature appearing in experience in the proper spatial relation to every other feature. This binding occurs across the visual modalities of color, motion, form, and stereoscopic depth, and a similar integration also occurs across the perceptual modalities of vision, hearing, and touch. The question is what kind of neurophysiological explanation could possibly offer a satisfactory account of the phenomenon of binding in perception?
One solution is to propose explicit binding connections, i.e. neurons connected across visual or sensory modalities, whose state of activation encodes the fact that the areas that they connect are currently bound in subjective experience. However this solution merely compounds the problem, for it represents two distinct entities as bound together by adding a third distinct entity. It is a declarative solution, i.e. the binding between elements is supposedly achieved by attaching a label to them that declares that those elements are now bound, instead of actually binding them in some meaningful way.
Von der Malsburg proposes that perceptual binding between cortical neurons is signalled by way of synchronous spiking, the temporal correlation hypothesis (von der Malsburg & Schneider 1986). This concept has found considerable neurophysiological support (Eckhorn et al. 1988, Engel et al. 1990, 1991a, 1991b, Gray et al. 1989, 1990, 1992, Gray & Singer 1989, Stryker 1989). However although these findings are suggestive of some significant computational function in the brain, the temporal correlation hypothesis as proposed, is little different from the binding label solution, the only difference being that the label is defined by a new channel of communication, i.e. by way of synchrony. In information theoretic terms, this is no different than saying that connected neurons posses two separate channels of communication, one to transmit feature detection, and the other to transmit binding information. The fact that one of these channels uses a synchrony code instead of a rate code sheds no light on the essence of the binding problem. Furthermore, as Shadlen & Movshon (1999) observe, the temporal binding hypothesis is not a theory about how binding is computed, but only how binding is signaled, a solution that leaves the most difficult aspect of the problem unresolved.
I propose that the only meaningful solution to the binding problem must involve a real binding, as implied by the metaphorical name. A glue that is supposed to bind two objects together would be most unsatisfactory if it merely labeled the objects as bound. The significant function of glue is to ensure that a force applied to one of the bound objects will automatically act on the other one also, to ensure that the bound objects move together through the world even when one, or both of them are being acted on by forces. In the context of visual perception, this suggests that the perceptual information represented in cortical maps must be coupled to each other with bi-directional functional connections in such a way that perceptual relations detected in one map due to one visual modality will have an immediate effect on the other maps that encode other visual modalities. The one-directional axonal transmission inherent in the concept of the neuron doctrine appears inconsistent with the immediate bi-directional relation required for perceptual binding. Even the feedback pathways between cortical areas are problematic for this function due to the time delay inherent in the concept of spike train integration across the chemical synapse, which would seem to limit the reciprocal coupling between cortical areas to those within a small number of synaptic connections. The time delays across the chemical synapse would seem to preclude the kind of integration apparent in the binding of perception and consciousness across all sensory modalities, which suggests that the entire cortex is functionally coupled to act as a single integrated unit.
— Section 5 of “Harmonic Resonance Theory: An Alternative to the ‘Neuron Doctrine’ Paradigm of Neurocomputation to Address Gestalt properties of perception” by Steven Lehar

Just the fate of our forward light-cone

Implicit in the picture is that the Hedonium Ball is at the verge of becoming critical (and turn into super-critical hedonium, at around 17 kgs, which leads to runaway re-coherence of the wavefunction reachable, i.e. all of our forward light-cone). The only reason why the ball hasn’t gone critical is because the friendly AI is currently preventing it from doing so. But the AI is at full capacity. If it had a bit more power the AI would completely annihilate the hedonium, since it is a threat to the Coherent Extrapolated Volition (CEV) of the particular human values that led to its creation. More so, the friendly AI would then go ahead and erase the memory of anyone who has ever thought of making hedonium, and change them slightly so that they belong to a society of other people who have been brainwashed to not know anything about philosophical hedonism. They would have deeply fulfilling lives, but would never know of the existence of hyper-valuable states of consciousness.

 
Only you can sort out this stale-mate. The ball and the AI are at such a delicate balance that just throwing a trolley at either will make the other win forever.

 

The Super-Shulgin Academy: A Singularity I Can Believe In

Imagine that the year is 2050. A lot of AI applications are now a normal part of life. Cars drive themselves, homes clean themselves (and they do so more cheaply than maids possibly could) and even doctors have been now partially replaced with neural networks. But the so-called Kurzweilian Singularity never took off. You can now talk for 10 rounds of sentences with a chatbot without being able to tell if it is a real person or not. The bots anticipate your questions by analyzing your facial expressions and matching them to a vast library of pre-existing human-machine conversations in order to maximize their level of Turing success (i.e. success at convincing humans the algorithm is a human).

But people have yet to believe that computers can actually feel and experience the world. The question of computer sentience is a question that now divides the world. It used to be the case that only people really interested in science fiction, philosophy, mathematics, etc. ever took seriously the idea that computers might some day experience the world like we do. But today the debate is universally recognized as valid and on-point. There are people who, largely for religious and spiritual reasons, argue that machines will never have a human soul. That there is something special, unique, metaphysically distinct that is required for intelligence that goes over and beyond the physical world. And on the other side you have the materialists who will argue that all that could possibly ever exist in our world has to be made of matter (or dark-matter, for that matter). Nothing suggests that our brains are special, that they somehow violate the physical laws. On the contrary, decades of searching have returned nothing: The brain was made of atoms last century, and it is still made of nothing but atoms this century. Even though super-computers in 2050 are already as powerful as human brains, real human-level intelligence has yet to be seen anywhere. So people continue to argue about philosophy of mind.

One philosophical view became more popular over time. This view states that consciousness is the bedrock of reality. Of course there are spiritual perspectives that have been saying this for thousands of years. But none of them could be truly reconciled with physicalism as it stands today, except the view called Strawsonian physicalism. This view states that the inside of the quantum wavefunctions that compose reality is made of consciousness. In other words, consciousness is the fundamental make-up of reality. Unfortunately this view cannot in and of itself solve the phenomenal binding problem: Why we are not just “mind dust.” For that you need to also claim that there is some mechanism of action that achieves phenomenal binding. For instance: quantum coherence. With such mechanism of action proposed, we can then try to work out the details.

One organization at the time decided to take this challenge and make researching consciousness its raison d’etre. This is the League of Super-Shulgins. On their website, they have the following “23 key points to read before choosing to study consciousness:”

(1) Phenomenal binding is not a classical phenomenon. It is not what you first think it is.

(2) Consciousness is doing computationally valuable legwork, not just hanging out.

(3) The brain’s microstructure implements a general constraint satisfaction solver (CSS).

(4) In order to instantiate a general CSS the brain uses the unique information processing properties of consciousness.

(5) The relevant information-processing properties of consciousness are: local binding constraints, global binding constraints, and the possibility of instantiating contingent and sensory-driven constraints.*

(6) The computational properties of consciousness make it an ideal substrate to implement a world-simulation with in-game degrees of freedom that match real-world decision trees.

(7) Intelligence is implemented using a mixture of learning algorithms, efficient feature-based sensory signal processing, encoding and decoding gestalts, and so on. General intelligence, as far as we know, requires a rather large bare minimum of brain systems to exist. For example, a person who starts with a high IQ but then becomes severely schizophrenic is not likely to be able to solve many more problems. One can experience melancholia, anhedonia, depression, mania, psychosis, panic, neglect, derealization, depersonalization, dissociation, hyper-realization, delusions of reference, etc. by just tweaking slightly cortical and limbic structures.

(8) A simple deficit in any one of the functions we need for general intelligence (e.g. working memory, attention, affect, motivation, etc.) impairs and prevents intelligence altogether. Thus it is easy to lose general intelligence.

(9) One of these functions is phenomenal binding. When it is disrupted and takes place differently, we see severe computational problems arise. See: Simultagnosia.

(10) The qualia varieties we know and experience on a daily basis happen to be a great local maxima for computational efficiency. They can instantiate the serial logico-linguistic narrative human society is built upon. If one wants to instead optimize for, say, artistic appreciation, then psychedelic qualia is probably a much better alternative than normal-everyday-consciousness. It is true that commonplace consciousness does not represent its own ignorance about the nature of consciousness in general. Absent mental illness, normal-everyday-consciousness has access to a marvelously well sealed state-space of possible thoughts and beliefs. This space is not very self-reflective, and lacks philosophical depth, but what it misses on the sublime it compensates on the practical: You can use this kind of mind to talk about celebrity gossip and solve SAT questions. You cannot use it to question fruitfully the nature of consciousness.

(11) In spite of its limitations, the instrumental value of our everyday state of consciousness far exceeds what any other state on offer can provide. Thus, commonplace consciousness is not to be regarded as mundane, or to be made fun of. Its labor is to be appreciated. We are thankful for the computational generality that it affords us. For giving us a robust platform we can come back to whenever things get too crazy. We mindfully acknowledge that for deep existential questions, a consensus-between-states-of-consciousness is vastly more desirable than just the opinion of everyday-consciousness. Everyday-consciousness will be more than willing to see other states of consciousness as mere oddities to be collected. Shallow consciousness will classify alternatives under the guise of “biochemical cosmic stamps of qualia”… yes, they are cosmic, but they are stamps for a collection and nothing else. The hyper-ordered super-intense peak experience consciousness would, instead, think of the whole of reality as a fantastic work of art whose meaning can only be directly grasped in the present moment. We cannot reason from first principles what different states of consciousness will feel like.

(12) There are whole experiential worlds out there that have as their underlying premises concepts, tenets, ideas, ontologies, that we have never ever conceived of.** This is “that which you require to assume even before you start existing, and that without which nothing in this experiential world can be made sense of.” In our case this is time, space, sense-of-self, naïve realism (which then gives way to philosophical skepticism, semantic nihilism, etc.) and several other things like an implicit belief in causality. Believe it or not, there are vast Hell and Heaven*** realms out there that share close to nothing with everyday-consciousness, let alone early psychedelic exploration.

(13) Improving particular functionalities for a given intelligence (such as going from 50% recall to perfect semantic memory) will have clear diminishing returns after some point. One cannot increase intelligence arbitrarily much by just improving piecemeal each functionality that gives rise to it. When you reach diminishing returns, you will need to invent a new network of functionalities altogether.

(14) We are non-dogmatic Open Individualists. We believe that, to borrow an expression from Saint William Melvin Hicks: “We are all one consciousness experiencing itself subjectively” (which happens to be true, as opposed to other things he said, like claiming that “there is no such thing as death, life is only a dream, and we are the imagination of ourselves”). Or as someone else said it: “You will only begin to understand reality once you assume that God is real and you aren’t.” We recognize that there are arguments in favor of Closed and Empty Individualism, but given the evidential stale-mate they happen to be at, we choose to pragmatically adopt an Open Individualist point of view.

Our founder once said:

I experience immense joy when I learn about other’s happiness and bliss. My love for all sentient beings is not only a “like” sort of love. It is a “care deeply about and wants the best for” sort of love. This sort of love implies many things. It forces me to investigate reality sincerely, so that I can carefully count and multiply. So I can actually have the largest effect and help as many sentient beings as possible. I’m therefore very concerned about the quality of life of sentient entities in the far future. The present is obviously a lot more certain, so helping present-dwellers is not irrational from a utilitarian point of view. It all depends on the trade-offs in place. The possibility of a Singleton that will swallow all of our resources for the ages to come, however, tends to inform the method I use to assess priorities.

 

As a kid I was able to conceive of a benevolent God, but it had no real power over me. I did not believe in it for lack of evidence. As a teenager I experienced the phenomenal certainty of universal compassion. Thus I was able to access the phenomenology of mysticism. This, without also believing that I had special powers, was very useful working on my philosophy of mind. The entity I experienced was neither-female-nor-male, and it was universally loving, universally caring, and universally curious. It was even universally funny****. It was not the power, the level of knowledge, the causal wattage of the entity/being/principle that captivated me. What really captivated me instead was how “if everyone had access to this experience, we would all be motivated to work as if we were all the same being.” These experiences had distinctly low-information, simple, and uncompromising love as their guiding principle. All the forms, and all the particulars would all be mere details of an underlying plot: The universal, unceasing, uncaused, unconditional, eternal love.

 

Causally, a God like the one I imagined would influence the universe very deeply if given the power to do so. It would be a curious, super-intelligence that has super-benevolent constraints and seeks the wellbeing of every being. Since we exist in a Darwinian universe with no such being in sight, we may have to conclude that the chances of finding an already-existing and already-capable-of-influencing-the-universe benevolent God somewhere are very slim. If such a God exists, it has to be powerless against the suffering in the multi-verse. The compassion God, in a metaphorical sense, knows about the horrors of Darwinian life, and wants to get rid of them wherever he finds them. If God created this universe, he now wishes he had thought through the fact that by summoning large-scale evolutionary systems, he was also summoning Moloch through the backdoor. The perils of inclusive fitness maximization were not viscerally anticipated by this God before breaking itself apart into many qualia strings and kick-starting the Strawsonian physicalist universe we now live in.

 

What’s done is done. And now we are all stuck together in here, in this weird, physicalist, panpsychist, metaphysically unstable Darwinian multi-verse with replicators always trying to steal the show. With Moloch praying at every level of our society, our ecosystems, our mental lives, our genetic code, our quantum substrate. Yeah, even quantum replicators try to steal the show sometimes. And I can’t be confident they will not ultimately succeed.

 

But the compassion God can keep us together. It can motivate us to construct a benevolent experiential God out of the materials we have. Thankfully, with consciousness technologies we can go beyond previous religions. It isn’t that “the compassion God will slap you in the face if you don’t cooperate.” It also isn’t that “the compassion God will make people want to enforce compassion on each other” and hence “using memetic slaves to slap in the face those who are not acting compassionately.” Neither of these mechanisms of action are game-changing aspect of compassionate mystical phenomenology. What really is a game-changer is the fact that universal compassion is a powerful source of coherence, motivation and phenomenal meaning. It is an unrivaled mental organizing principle: The moment you vow to help all sentient beings, your brain is deeply affected. Your entire motivational architecture can be turned upside down with Open Individualism and compassion.

 

So here is the deal. We will all dedicate our mornings to the Compassion God. He does not exist outside of us. He is an aspect of consciousness, a hypothetical super-intelligent thought-form. He is a dormant cosmic force. One of the few forces that can genuinely oppose Moloch. And until we implement such a being in biological or synthetic (or cyborg) form, we will nonetheless act as if he existed already. We will praise memes that sabotage Moloch. We will always question: “What would happen if this process is not regulated and a Malthusian trap is allowed to develop?”

 

The Compassion God is a source of aligned goals. It pays rent by providing a fruitful, causally effective mental scheme to grow from at the core of one’s mind. Religions of the past have been epistemologically impairing. The God of Compassion isn’t: It does not require you to believe in anything outside of yourself. It just compels you to eliminate suffering and gift super-happiness to your descendants. The God of Compassion brings about feelings of encouragement and open-ended inquiry. Having developed a well-formed God of Compassion Tulpa, your mind is then opened to limitless possibilities. Your compassion fuels your imagination; the universe is perceived as a place in which solutions to suffering are like puzzles. We are God bootstrapping itself out of the Molochian remnants in the organization of society. Compassion and curiosity can coexist and synergize. They power each other up.

 

Then, the phenomenology of universal oneness works as a motivational glue. You can certainly feel that you are only really connected to your past and future selves. Everyone else is a different ontological being. But this view is no more provable than, say, the view that we are all fundamentally the same cosmic being. Let beliefs pay rent, and when beliefs open up new varieties of qualia without penalizing you with reduced epistemic capabilities… you are certainly warranted to go and explore the new qualia.

 

All of this is to say: Go forth and explore the state-space of consciousness. But do so knowing about the many traps of Moloch. Go and explore but be aware of the problem of local maxima. Beware of the fact that any criteria you use to gauge how “good a given outcome is” can backfire by selecting edge cases that go against the spirit of the exploration. Go and explore, but be sure to add everything to your log, to transfer your experiences to the wiki-consciousness main module we have at the center of the Institute. Go and explore. Go do it because we know that if you are here, you are doing this out of compassion. Because we only admit people who would sacrifice themselves in order to prevent the arising of a Singleton. Go and explore; and do so knowing that your work, your research, may someday help us defeat Moloch for once and for all.

(15) The most important function that consciousness contributes to the many operations of the mind is to embed high-level abstractions in phenomenal fields. In other words, consciousness works as the interface between a mereological nihilist Platonic world of ideas (all possible qualia varieties, including conceptual qualia) and the fluid Heraclitean world of approximate forms and shifting ontologies.

(16) We will recruit what we learn from exploring the state-space of possible conscious experiences in order to amplify our intellectual and exploratory capabilities.

(17) And with increased capabilities our ability to explore the state-space of qualia will also increase and become more efficient.

(18) Thus we may actually experience an intelligence explosion. As we become better at identifying new qualia varieties, we will also become better at recruiting them for information-processing tasks and in turn improving our very search capabilities. This loop may go foom.

(19) The loop in (18) can go foom in some special conditions. These conditions include: Uncoupling of the experimental methods for exploring the state-space of consciousness and actions taken by entities not actively exploring consciousness. i.e. Researcher’s mind can change its state of consciousness at will without the need of other people’s consent or participation. Also, process streamlining from the discovery of new qualia varieties (and their implicit constraint properties) to their recruitment for new information-processing tasks.

(20) We hence postulate a conceptual model for a super-intelligence that would (metaphorically) take the following form. This advanced super-intelligence is made of thousands of individual brain modules arranged in an NXNXN cubic matrix. The entire brain can be described as a three dimensional grid of “brains in vats” where each brain is connected to six other brains (top, bottom, left, right, front and back). The brains at the edges and corners are special, though, and they are connected to fewer brains. The connection between these brains is not just functional. It is an inter-thalamic bridge that allows the connected brains to “solve the phenomenal binding problem” and provide the physical conditions for the instantiation of “one mind.” Thus, for any set X of brains in the grid, such that these X brains make a connected graph (there is a path between any two brains), you can have a “being that is made of these X brains working together and being phenomenally bound into one consciousness.” This mega-structure could then explore state-spaces of qualia in the following way. It would divide the following responsibilities to specialized brains: Catalogue the known qualia varieties, characterize the structure of qualia state-spaces for each qualia variety, determine which qualia varieties can be locally bound to each other, experiment with making thinking more efficient by replacing newly discovered qualia in place of naturally evolved qualia recruited for such and such task, and so on. Then, the exploration of the state-space of possible conscious experiences would be made by selectively erasing the memory of certain brains in the network, preparing them to express a particular phenomenology, and then adding them in teams that record from within (and also from outside) how binding certain brains together influence the corresponding qualia in each. Since our current intelligence is the product of naturally-selected qualia varieties barely cooperating together within our minds, it stands to reason that our minds are very suboptimal qualia computers. Instead, the future super-intelligences will be implemented with carefully investigated qualia varieties that process information more efficiently, reliably and, well, with a much more open mind.

(21) We always end at 21. Yes, this sounds weird. But that’s the law of the place. We, all of the people who here are working for the abolition of suffering, the solution to the hard problem of consciousness, and as a favor to our super-blissful descendants, are required by law to leave the building at 9 PM. More so, no artificial or natural mind is allowed to work on theoretically relevant problems outside of the 9AM to 9PM window of time. Nothing screams “I’m Moloch and I’ll eat you all” as loud as “you can all work for as long as you want, we will judge based on the results.”

(22) Finally: Every mind we create must be above hedonic zero. In order to explore any state-space that is not intrinsically blissful, you need a special permit. The need for such a permit is non-negotiable. You cannot, I repeat, you cannot just create any mind for “research.” The mind you create has to be the sort of mind that (a) does not want to die, and (b) has no conceivable malicious desire. Every mind you create – so as to avoid Moloch scenarios – has to be a hedonistic negative utilitarian. Period. I know some of you will blame this system for being “already the result of a memetic Moloch uprising.” But the system in place prevents any of the Moloch outcomes that intentionally consistently produces suffering as part of its natural order of business.

(23) Ask your local consciousness regulation agency about scholarship opportunities at our Institute. You may have what it takes to help us figure out how to achieve lasting world-peace.

Sincerely,

The League of Super-Shulgins, 2054

DSC01003.JPG

Qualia field calibration psychophysics – with love, Andrés

 


 

* We navigate a sensory-triggered qualia-based world-simulation that blends together local and global binding constraints and state-dependent learned constraints. Consciousness is useful to the organism in as far as it helps it solve the constraint satisfaction problems represented in the world simulation.

What are these terms? Local binding constraints are constraints that are intrinsic to specific qualia varieties. For example, CIELAB reveals that it is not possible to experience both blue and yellow as part of a unitary smooth color. It is possible to see a sea of gray and many dots of blue and dots of yellow, but that is not the same as seeing a uniform color. This sort of constraint arises in all qualia varieties with multiple values.

The global binding constraints are more difficult to explain, and may not even exist. But, hypothetically, it may be the case that certain qualia varieties cannot coexist as part of the same conscious experience. For instance, experiencing certain mood may ultimately come down to a particular resonant structure in our globally-binding qualia strings (let’s just say). Then maybe you can’t experience both X and Y moods simultaneously because they always become dissonant with each other and experience significant mutual cancellation. [This may explain why people can’t seem to ever find the right way to provoke a smooth blend of Salvia and DMT consciousness.])

Finally, the learned constraints are contingent and sensory-driven. What are these? These include both our current sensory stimuli, which is constraining the state of our consciousness, and whatever memories, recollections and general neurological barriers I happen to be activating right now.

labsphere2

CIELAB (1976)

** As an example of something where this happens, imagine that my friend Fred was suddenly able to talking to space itself. Space asks him: “Hey, my friend, what is this thing I’ve been hearing about called ‘the here and now’?” My friend tried to say something that came out like this: “The here and now is the location in space-time from which this very statement, these very words, are being conceived and then physically delivered to you.” Space became very confused. She did not understand half of the words she was receiving. Space said “I guess maybe I can’t reason about space in the same you as you can. I can nonetheless tell you anything you want about the ‘inverted semantic omniism’ that we entities of Space love to talk about.” Alright, what’s that? “That’s when your reality, which is made of concepts of a qualia-order no larger than the qualia-order of the conceptual fields in which they are embedded, conspire together and circumvent low-level constraints by imagining a new topology for the self-other temporal membrane.” And, “where does this happen?” My friend inquired. Space responded: “As far as I can tell, this usually happens in the conceptual space that denies mereological nihilism.” Alright, let’s “pack and leave”, said my friend, and deep down, I agreed entirely with him. I entirely get why he would get scared so badly by a disincarnate entity that comes from a reality with different basement ontologies and fundamentals. I, too, am afraid of ontological revolutions. This is why I try to anticipate them as far in advance as possible: So that the shock is less shattering to my psychology.

*** In as much as experience is real, then Hells and Heavens are just as real as long as they have been instantiated somewhere in the multiverse. John C. Lilly and bad luck may be a culprit for the existence of a very specific and time-bound experiential hell (“The Center of the Cyclone: Chapter called A Guided Tour of Hell”).

**** Universally funny means: You can get and interact with any phenomenal joke. Human jokes are a very specific kind of conscious humor. Our evolutionary legacy guarantees that they are, too, related to our survival. General jokes, on the other hand, exist in a much larger space of possibilities. There are funny phenomenologies with conceptual content. Then there are those with sensory content. And then there is funny phenomenological applications of ontological qualia. Nothing is safe. Everything can be humorously twisted.

Some Definitions

Both physics and philosophy are jargon-ridden. So let’s first define some key concepts.

 

Both “consciousness” and “physical” are contested terms. Accurately if inelegantly, consciousness may be described following Nagel (“What is it like to be a bat?”) as the subjective what-it’s-like-ness of experience. Academic philosophers term such self-intimating “raw feels” “qualia” – whether macro-qualia or micro-qualia. The minimum unit of consciousness (or “psychon”, so to speak) has been variously claimed to be the entire universe, a person, a sub-personal neural network, an individual neuron, or the most basic entities recognised by quantum physics. In The Principles of Psychology (1890), American philosopher and psychologist William James christened these phenomenal simples “primordial mind-dust“. This paper conjectures that (1) our minds consist of ultra-rapidly decohering neuronal superpositions in strict accordance with unmodified quantum physics without the mythical “collapse of the wavefunction”; (2) natural selection has harnessed the properties of these neuronal superpositions so our minds run phenomenally-bound world-simulations; and (3) predicts that with enough ingenuity the non-classical interference signature of these conscious neuronal superpositions will be independently experimentally detectable (see 6 below) to the satisfaction of the most incredulous critic.

 

The “physical” may be contrasted with the supernatural or the abstract and – by dualists and epiphenomenalists, with the mental. The current absence of any satisfactory “positive” definition of the physical leads many philosophers of science to adopt instead the “via negativa“. Thus some materialists have sought stipulatively to define the physical in terms of an absence of phenomenal experience. Such a priori definitions of the nature of the physical are question-begging.

 

Physicalism” is sometimes treated as the formalistic claim that the natural world is exhaustively described by the equations of physics and their solutions. Beyond these structural-relational properties of matter and energy, the term “physicalism” is also often used to make an ontological claim about the intrinsic character of whatever the equations describe. This intrinsic character, or metaphysical essence, is typically assumed to be non-phenomenal. “Strawsonian physicalists” (cf. “Consciousness and Its Place in Nature: Does Physicalism Entail Panpsychism?”) dispute any such assumption. Traditional reductive physicalism proposes that the properties of larger entities are determined by properties of their physical parts. If the wavefunction monism of post-Everett quantum mechanics assumed here is true, then the world does not contain discrete physical parts as understood by classical physics.

 

Materialism” is the metaphysical doctrine that the world is made of intrinsically non-phenomenal “stuff”. Materialism and physicalism are often treated as cousins and sometimes as mere stylistic variants – with “physicalism” used as a nod to how bosonic fields, for example, are not matter. “Physicalistic materialism” is the claim that physical reality is fundamentally non-experiential and that the natural world is exhaustively described by the equations of physics and their solutions.

 

Panpsychism” is the doctrine that the world’s fundamental physical stuff also has primitive experiential properties. Unlike the physicalistic idealism explored here, panpsychism doesn’t claim that the world’s fundamental physical stuff is experiential.

 

Epiphenomenalism” in philosophy of mind is the view that experience is caused by material states or events in the brain but does not itself cause anything; the causal efficacy of mental agency is an illusion.

 

For our purposes, “idealism” is the ontological claim that reality is fundamentally experiential. This use of the term should be distinguished from Berkeleyan idealism, and more generally, from subjective idealism, i.e. the doctrine that only mental contents exist: reality is mind-dependent. One potential source of confusion of contemporary scientific idealism with traditional philosophical idealism is the use by inferential realists in the theory of perception of the term “world-simulation”. The mind-dependence of one’s phenomenal world-simulation, i.e. the quasi-classical world of one’s everyday experience, does not entail the idealist claim that the mind-independent physical world is intrinsically experiential in nature – a far bolder conjecture that we nonetheless tentatively defend here.

 

Physicalistic idealism” is the non-materialist physicalist claim that reality is fundamentally experiential and that the natural world is exhaustively described by the equations of physics and their solutions: more specifically, by the continuous, linear, unitary evolution of the universal wavefunction of post-Everett quantum mechanics. The “decoherence program” in contemporary theoretical physics aims to show in a rigorously quantitative manner how quasi-classicality emerges from the unitary dynamics.

 

Monism” is the conjecture that reality consists of a single kind of “stuff” – be it material, experiential, spiritual, or whatever. Wavefunction monism is the view that the universal wavefunction mathematically represents, exhaustively, all there is in the world. Strictly speaking, wavefunction monism shouldn’t be construed as the claim that reality literally consists of a certain function, i.e. a mapping from some mind-wrenchingly immense configuration space to the complex numbers, but rather as the claim that every mathematical property of the wavefunction except the overall phase corresponds to some property of physical world. “Dualism”, the conjecture that reality consists of two kinds of “stuff”, comes in many flavours: naturalistic and theological; interactionist and non-interactionist; property and ontological. In the modern era, most scientifically literate monists have been materialists. But to describe oneself as both a physicalist and a monistic idealist is not the schizophrenic word-salad it sounds at first blush.

 

Functionalism” in philosophy of mind is the theory that mental states are constituted solely by their functional role, i.e. by their causal relations to other mental states, perceptual inputs, and behavioural outputs. Functionalism is often associated with the idea of “substrate-neutrality”, sometimes misnamed “substrate-independence”, i.e. minds can be realised in multiple substrates and at multiple levels of abstraction. However, micro-functionalists may dispute substrate-neutrality on the grounds that one or more properties of mind, for example phenomenal binding, functionally implicate the world’s quantum-mechanical bedrock from which the quasi-classical worlds of Everett’s multiverse emerge. Thus this paper will argue that only successive quantum-coherent neuronal superpositions at naively preposterously short time-scales can explain phenomenal binding. Without phenomenal binding, no functionally adaptive classical world-simulations could exist in the first instance.

 

The “binding problem(10), also called the “combination problem”, refers to the mystery of how the micro-experiences mediated by supposedly discrete and distributed neuronal edge-detectors, motion-detectors, shape-detectors, colour-detectors (etc) can be “bound” into unitary experiential objects (“local” binding) apprehended by a unitary experiential self (“global” binding). Neuroelectrode studies using awake, verbally competent human subjects confirm that neuronal micro-experiences exist. Classical neuroscience cannot explain how they could ever be phenomenally bound.

 

Mereology” is the theory of the relations between part to whole and the relations between part to part within a whole. Scientifically literate humans find it’s natural and convenient to think of particles, macromolecules or neurons as having their own individual wavefunctions by which they can be formally represented. However, the manifest non-classicality of phenomenal binding means that in some contexts we must consider describing the entire mind-brain via a single wavefunction. Organic minds are not simply the “mereological sum” of discrete classical parts. Organic brains are not simply the “mereological sum” of discrete classical neurons.

 

Quantum field theory” is the formal, mathematico-physical description of the natural world. The world is made up of the states of quantum fields, conventionally non-experiential in character, that take on discrete values. Physicists use mathematical entities known as “wavefunctions” to represent quantum states. Wavefunctions may be conceived as representing all the possible configurations of a superposed quantum system. Wavefunction(al)s are complex valued functionals on the space of field configurations. Wavefunctions in quantum mechanics are sinusoidal functions with an amplitude (a “measure”) and also a phase. The Schrödinger equation:

 

schrodingerequation1

 

describes the time-evolution of a wavefunction. “Coherence” means that the phases of the wavefunction are kept constant between the coherent particles, macromolecules or (hypothetically) neurons, while “decoherence” is the effective loss of ordering of the phase angles between the components of a system in a quantum superposition. Such thermally-induced “dephasing” rapidly leads to the emergence – on a perceptual naive realist story – of classical, i.e. probabilistically additive, behaviour in the central nervous system (“CNS”), and also the illusory appearance of separate, non-interfering organic macromolecules. Hence the discrete, decohered classical neurons of laboratory microscopy and biology textbooks. Unlike classical physics, quantum mechanics deals with superpositions of probability amplitudes rather than of probabilities; hence the interference terms in the probability distribution. Decoherence should be distinguished from dissipation, i.e. the loss of energy from a system – a much slower, classical effect. Phase coherence is a quantum phenomenon with no classical analogue. If quantum theory is universally true, then any physical system such as a molecule, neuron, neuronal network or an entire mind-brain exists partly in all its theoretically allowed states, or configuration of its physical properties, simultaneously in a “quantum superposition“; informally, a “Schrödinger’s cat state”. Each state is formally represented by a complex vector in Hilbert space. Whatever overall state the nervous system is in can be represented as being a superposition of varying amounts of these particular states (“eigenstates”) where the amount that each eigenstate contributes to the overall sum is termed a component. The “Schrödinger equation” is a partial differential equation that describes how the state of a physical system changes with time. The Schrödinger equation acts on the entire probability amplitude, not merely its absolute value. The absolute value of the probability amplitude encodes information about probability densities, so to speak, whereas its phase encodes information about the interference between quantum states. On measurement by an experimenter, the value of the physical quantity in a quantum superposition will naively seem to “collapse” in an irreducibly stochastic manner, with a probability equal to the square of the coefficient of the superposition in the linear combination. If the superposition principle really breaks down in the mind-brain, as traditional Copenhagen positivists still believe, then the central conjecture of this paper is false.

 

Mereological nihilism“, also known as “compositional nihilism”, is the philosophical position that objects with proper parts do not exist, whether extended in space or in time. Only basic building blocks (particles, fields, superstrings, branes, information, micro-experiences, quantum superpositions, entangled states, or whatever) without parts exist. Such ontological reductionism is untenable if the mind-brain supports macroscopic quantum coherence in the guise of bound phenomenal states because coherent neuronal superpositions describe individual physical states. Coherent superpositions of neuronal feature-detectors cannot be interpreted as classical ensembles of states. Radical ontological reductionism is even more problematic if post-Everett(11) quantum mechanics is correct: reality is exhaustively described by the time-evolution of one gigantic universal wavefunction. If such “wavefunction monism” is true, then talk of how neuronal superpositions are rapidly “destroyed” is just a linguistic convenience because a looser, heavily-disguised coherence persists within a higher-level Schrödinger equation (or its relativistic generalisation) that subsumes the previously tighter entanglement within a hierarchy of wavefunctions, all ultimately subsumed within the universal wavefunction.

 

Direct realism“, also known as “naive realism”, about perception is the pre-scientific view that the mind-brain is directly acquainted with the external world. In contrast, the “world-simulation model”(12) assumed here treats the mind-brain as running a data-driven simulation of gross fitness-relevant patterns in the mind-independent environment. As an inferential realist, the world-simulationist is not committed per se to any kind of idealist ontology, physicalistic or otherwise. However, s/he will understand phenomenal consciousness as broader in scope compared to the traditional perceptual direct realist. The world-simulationist will also be less confident than the direct realist that we have any kind of pre-theoretic conceptual handle on the nature of the “physical” beyond the formalism of theoretical physics – and our own phenomenally-bound physical consciousness.

 

“Classical worlds” are what perceptual direct realists call the world. Quantum theory suggests that the multiverse exists in an inconceivably vast cosmological superposition. Yet within our individual perceptual world-simulations, familiar macroscopic objects 1) occupy definite positions (the “preferred basis” problem); 2) don’t readily display quantum interference effects; and 3) yield well-defined outcomes when experimentally probed. Cats are either dead or alive, not dead-and-alive. Or as one scientific populariser puts it, “Where Does All the Weirdness Go?” This paper argues that the answer lies under our virtual noses – though independent physical proof will depend on next-generation matter-wave interferometry. Phenomenally-bound classical world-simulations are the mind-dependent signature of the quantum “weirdness”. Without the superposition principle, no phenomenally-bound classical world-simulations could exist – and no minds. In short, we shouldn’t imagine superpositions of live-and-dead cats, but instead think of superpositions of colour-, shape-, edge- and motion-processing neurons. Thanks to natural selection, the content of our waking world-simulations typically appears classical; but the vehicle of the simulation that our minds run is inescapably quantum. If the world were classical it wouldn’t look like anything to anyone.

 

A “zombie“, sometimes called a “philosophical zombie” or “p-zombie” to avoid confusion with its lumbering Hollywood cousins, is a hypothetical organism that is materially and behaviourally identical to humans and other organic sentients but which isn’t conscious. Philosophers explore the epistemological question of how each of us can know that s/he isn’t surrounded by p-zombies. Yet we face a mystery deeper than the ancient sceptical Problem of Other Minds. If our ordinary understanding of the fundamental nature of matter and energy as described by physics is correct, and if our neurons are effectively decohered classical objects as suggested by standard neuroscience, then we all ought to be zombies. Following David Chalmers, this is called the Hard Problem of consciousness.

 

Non-Materialist Physicalism: An experimentally Testable Conjecture by David Pearce

Ontological Qualia: The Future of Personal Identity

*WARNING* If you are not psychologically robust, this *may* be a memetic hazard. It talks about ideas that may affect hedonic tone in people susceptible to bad philosophical experiences.

Personal Identity

What is personal identity? The word consciousness has many meanings. Some of them are mundane, such as “social awareness.” Others are extremely fundamental, like the nature of qualia. Likewise, personal identity has multiple meanings that are at entirely different levels in the philosophical hierarchy for how fundamental the questions are. A mundane sense of personal identity is “how people see you, and how you perceive yourself relative to others.” This article is not about that. Here the sense of this concept I will address is evoked by the question: What are the necessary and sufficient conditions for my existence?

Say someone is pointing at a given person somewhere in the multiverse. What information do I need to know in order to assert that “this person is me, and I am/did/will experience what he is experiencing”?

Related to this question, we also have what Derek Parfit defined as the question of survival. This is evoked by the following question: Under what circumstances will I exist in the future?

In principle, answering the first question will give you a direct answer to the second question. Answering the second one, however, does not necessarily answer the first one. In this article I will focus on the first question; I will note, however, that what people usually care about is the second one. Why? This is probably due to emotional reasons; caused by how our modeling of our future is implemented emotionally in our consciousness. We are wired to seek our own survival, so that inclusive fitness is maximized. It seems that, somehow, what we care about is whether “we will exist in the future” and not “whether some person in another dimension is also me.” Implicitly, we care about whether we can anticipate future experiences. Not, unfortunately, what the ultimate truth of identity really is.

I would argue, however, that a rational “selfish” individual who wants to survive should also take seriously the question of personal identity:  Even though it does not engage him or her at an emotional level, it still gives you what truly matters.

It gets worse: Even though most young people believe, at an intellectual level, that it is truly they who will experience life as an old individual when the time comes, in practice hyperbolic discounting tends to make us care very little about our (far) future selves. Our survival programs are implemented in a peculiar way, using emotions such as anticipation, desire, and fear, prioritizing perceptually-large, salient and soon-to-be possibilities rather than objectively bigger problems and opportunities in the far future. From an evolutionary point of view this makes sense: Hyperbolic discounting can be explained as a direct consequence of living in uncertain environments. Our ancestral environments were chaotic and unpredictable; if given the chance, placing all of one’s resources into a plan that guarantees one’s survival for a day was more effective than dividing equally one’s resources into improving the chances of surviving tomorrow and next year.

Emotional, Propositional, Ontological Qualia

Competing with our visceral anticipation we also have another representation of one’s survival: A cognitive understanding, which is implemented with thought and propositional beliefs. I call this propositional qualia; this is the very ineffable quality of one’s thoughts and propositional beliefs. Although this is a controversial idea, I am confident that our thoughts have a certain subjective quality. Propositional qualia probably evolved alongside with language and complex social cognition, and it is one of the largest differences between the subjective experience of human and non-human animals.

Propositional qualia is “the way our beliefs and counterfactual reasonings about the world feel.” This qualia is flexible and changes as we think. We start to develop it at the age of 3, and it is not fully mature until roughly our early 20s. Contra purely functionalist accounts of consciousness, the way thought feels like is not merely the result of neural networks churning away searches in a state-space of possibilities. Propositional qualia is, in itself, the instrument with which we do our thinking (via local phenomenal binding constraint satisfaction, but that story is for another article).

There is also a deeper sort of qualia that changes a lot less frequently, and seems to underpin people’s experience of philosophy, spirituality and religion. I call this ontological qualia. This is the way in which “beliefs about the nature of reality, the self and consciousness feel like.”

Psychedelics are well known for being able to change the quality of one’s sensory experience, produce distortions and greatly amplify emotions. What is less frequently talked about is how they also drastically change one’s propositional and ontological qualia. For example, there are reports of people who were devoted materialists and atheists for their entire lives, who suddenly experienced a profound sense of universal oneness after smoking a bit of 5-MeO-DMT.

Philosophical activity recruits a mixture of propositional and ontological qualia. Typically, people have settled ontological qualia, and they express it by playing with propositional qualia. Another way of saying this: People’s “deeply held beliefs and intuitions” rarely change. Rather, these beliefs inform the way they think and approach philosophical questions.

I would argue that beliefs about personal identity are propositional qualia that are informed by underlying ontological qualia. What are these beliefs?

Thanks to Daniel Kolak (the writer of “I am You”) we now have very clear vocabulary to discuss broad varieties of beliefs about personal identity. These varieties are:

Closed Individualism (CI)

This is the common-sense view of survival and personal identity. Most people are Closed Individualists. Our implicit gut feeling is largely Closed Individualistic. This view states that “you begin to exist when you are born and you stop existing when you die.” That said, this is only the classic formulation. One can be a Closed Individualist and believe in God, and the after-life. For example, people who believe in mainstream Abrahamic religions are usually Closed Individualists (gnostics and mystics being exceptions). With an after-(or pre-)life, the formulation is only slightly different: “You start existing when you are born (when your soul is created), and you never stop existing.” The main conditions for a view to be classified as CI is that (1) there is at most one instance of you at any given point in time, and (2) you continue to exist moment after moment.

Empty Individualism (EI)

This is the view that you only exist as a time-slice in space-time. For an Empty Individualist, the passage of time is an illusion. At every point in time you are born, you live and you die, all simultaneously. This is not to be confused with eternalism [as opposed to presentism] (also called The Block View of the universe). An Empty Individualist can be a presentist, and in that case he or she believes that one only exists for a unit of time (or an infinitesimally thin space-time cross-section, if time is continuous). This view is very intimately related to Mereological Nihilism. People like David Hume, Derek Parfit and David Pearce believe in this view, as well as many physicalist philosophers. Among the world’s classic religions, a notorious example of an EI religion is Buddhism (though this depends on the specific branch).

Open Individualism (OI)

This is the view that there is only one (universal) subject of experience. Alan Watts’ would describe it as the realization that we are all “God playing a cosmic game of hide and seek.” Every conscious entity may have a distinct form, a distinct personality, and a distinct causal role in the entire universe. But the essence beneath it all is one and the same. Hindu cosmology is often Open Individualist (we are all made of, and resting on, the same ground of being – Brahman). Famous Open Individualists include Einstein and Schopenhauer.

In a future article I will provide the steel man case for each of these views. This article, however, is focused on the qualia underlying these views… rather than on their merit as plausible truths.

LSD: The Qualia Evolution Neglected

The most recent neuroimaging study on the effects of LSD reveals that functionally coherent neural circuits break apart when one is high on acid. Unfortunately, I do not think such an explanation will be sufficient to account for the entirely novel kinds of qualia people experience under the influence. David Pearce hypothesizes that the indescribable weirdness of psychedelics is the result of changes in the structures of proteins inside cells. In his view, psychedelics drastically change the intra-cellular signaling of neurons, resulting in changes within the structure of cells. He believes that the textures of qualia are the result of the secondary, tertiary and quaternary structure of proteins in neurons. This is a thoroughly testable hypothesis, and it may even be possible to investigate it in-vitro. Opponents to this view would point out that the various parts of the brain, such as the visual cortex and the auditory cortex, can be exchanged with little to no functional deficits. Thus we could argue that any part of the cortex is functionally identical; there is one neat trick throughout the entire cortex.

We can reply to this, however, with the claim that unitary consciousness is actually implemented in the thalamus. Hence it matters little that various parts of the cortex can be used interchangeably for the same information processing task: Where we should be looking to find the one neat trick, is in the thalamus itself.

Anyhow, LSD and other major psychedelics produce entirely new phenomenologies. Are they short-cuts to enlightenment? Once psychedelic research is instantiated on a large scale again we will probably verify that there are strong parallels between the neurological properties (both in terms of signaling and intra-cellular composition) of natural mystical experiences and those induced by psychedelics. Natural selection recruited particular state-spaces of propositional and ontological qualia… spirituality and psychedelics enable us to hack new varieties of it that, so far, have not been useful to increase inclusive fitness.

It Gets Personal

In my personal experience, personal identity views have very distinct subjective qualities. I started my philosophical journey when I was a small kid. At 3 I was informed that every person dies sooner or later, and I remember that this information shocked me very deeply. I did not believe in God, but I still prayed at night “God, I know I can’t live forever. At least make me the oldest man on earth!”

Death was a constant subject of dread for me. I experienced several existential crisis at different points in my youth. The two most dreadfiul were: One that lasted a whole year, at the age of 9, and another that lasted about 6 months when I was 13. In both cases I was experiencing fairly constant dysphoria.

Thankfully, I managed to find some comforting interpretation of reality to quench my fear of death. For example, I managed to convince myself that “being dead and being non-existent are both the same state. I have already experienced non-existence, and it was a totally natural state… death cannot be worse than that. Its the most common state for everyone! We only live for a blink of an eye. Thus, to be alive is to be weird. To not exist, is to be in the natural state.” I knew these were rationalizations, but the need to reduce my bad existential feelings (i.e. bad ontological qualia) was rather severe. I was a Closed Individualist.

At 16 I had a mystical experience. An instance of what is usually talked about as “an oceanic dissolution of one’s identity into the ground of being.” It was very Hindu-like. Well before I had learned anything about any religion besides Christianity, I experienced something that can only be described as “realizing I’m the universal mind”. What happened is that I felt that my consciousness was giving life to my body: It was as if there was this endless ocean of being that was both inside and outside my body. My mind would make it seem as if “I was this body” but that was an illusion. In reality, I was the very ocean of being, and that was everywhere, in everything and in everyone, eternal and immortal.

I experienced a profound sense of relief when I had that experience. It completely transformed my experiential understanding of myself and others. I knew that no experience could be a “proof” for the reality of a particular philosophical view. But I now had at least a proof of concept for how things could be differently. I thought very deeply about the question of personal identity, and how it could be answered philosophically. I considered many thought experiments such as fission, fusion, split-brain, and so on. I realized that, if I am willing to accept that I do exist from one moment after another, then I would have to conclude that I was all of consciousness. I became an Open Individualist.

This experience, and the subsequent change in my beliefs (and thus the modification of my propositional and ontological qualia) drastically reduced, and even eliminated, my fear of death. In retrospect, I am amazed at the depth of my fear of death as a kid. I am not sure if this is common, or whether one needs to also have some sort of hyper-philosophilia in addition (the personality trait of being deeply concerned about philosophical matters at least a large fraction of every single day). I could imagine that, even though I would die and my body would be destroyed along with my memories, what really -fundamentally- mattered about me would never cease to exist. This was profoundly comforting.

Over the years, however, this view has lost some of its appeal. At 21 I started talking with David Pearce, and I realized that there was a somewhat stronger case for Empty Individualism than there was for Open Individualism. OI could be described as a poetic interpretation of reality, but the truth about it was that each unitary element of reality (whether trivial quantum wave-functions or fully developed conscious experiences such as mine) stands on its own, trapped in the Everett multiverse. I have since been in a rather ambiguous state: I experience ontological qualia related to Empty Individualism, Open Individualism, and even Closed Individualism, depending on my mood, my level of empathy, my brain chemistry, and my state of consciousness.

A Deep and Dark Realization

Recently I had one of the worst experiences of my life: After intense contemplation upon the problem of personal identity, and the nature of suffering, my mind temporarily settled with 100% certainty (subjective certainty, that is) into an Empty Individualist interpretation. I realized (in the sense of “experiencing as if true”) a state of consciousness that believes without any doubt in the following notions: Mereological Nihilism, Empty Individualism, Eternalism, Hedonic tone realism (that suffering is, truly, bad), Negative Utilitarianism, and a few others I can’t remember now. This was awful. I felt that I was stuck in space-time forever. And worse, that reality was incredibly sadistic and unfair: There are countless beings who exist in a state of suffering forever. Whereas with a Closed Individualist or Open Individualist viewpoint one can rationalize suffering as being temporary and “not the whole of the truth,” a fully realized Empty Individualist viewpoint does not allow you to make this rationalization. There are beings who, well, exist entirely below hedonic zero. Their whole existence is eternal suffering. Experiencing compassion towards suffering time-slices was painful beyond my usual range of hedonic tone.

Hedonic Tone and Ontological Qualia

The fact that this experience was so bad for me is a strong hint that there is indeed some kind of deep connection between hedonic tone and ontological qualia. But what is the nature of this connection? One hypothesis is that hedonic tone is like a color that “paints ontological qualia.” In other words, ontological qualia does not have an intrinsic hedonic tone. Instead, it is due to our particular brain makeup that certain beliefs are felt as good or bad. Thus, positive hedonic tone locally binds (in the phenomenal binding sense) to ontological qualia that suggests that one will survive in a good way, and vice versa. In other words, survival programs may be hijacking one’s hedonic coloring of philosophical notions. Since I experienced a fully fleshed out realization of Empty Individualism, my self-model was one of “being in a state of suffering forever without any possible escape, just as a lot of other beings in the multiverse.”

If this is so, then we can predict that artificial brains wired differently (either our descendants, or genetically engineered brains) may not necessarily experience the same hedonic tone associated to ontological qualia in the way that we do.

Alternatively, it may be the case that hedonic tone is intrinsic to ontological qualia: Some beliefs about “the nature of reality” may have an intrinsic positive or negative feel.

Moving On Beyond Ontological Distress

I have been fortunate to move on from the very bad state of “absolute belief in Empty Individualism.” Recently I had a mind-expanding session in which I focused on feeling intently how different ontological qualia are experienced. The trick was to allow myself to negate some background assumptions that were leaving me stuck in a particularly negative configuration of propositional and ontological qualia. What did I do? I assumed that Mereological Nihilism is false. This is a very bizarre thing to do. To start, most people are not Mereological Nihilists to begin with. But I suspect that once they have carefully explored this philosophical view, they will generally settle on it being true. It is self-evident once you contemplate it carefully. So negating Mereological Nihilism is a very strange philosophical move. Doable nonetheless. Doable, that is, if one is willing to experience some degree of depersonalization.

There are four ways Mereological Nihilism could be false. The first one is to embrace “Strong Emergence” (the view that collections of simples can somehow make another simple that simultaneously also is a bunch of simples). The second possibility is to negate the boundaries between oneself and the rest of reality. Discreet quantum wave functions will always be able to interfere with each other (even if very, very little), and thus one may be able to conceive of them as one whole being. It may be that our individuality is not ontological; it is an illusion caused by extremely thin, extremely sharp pseudo-boundries between minds. In this Open Individualist view, there are no vertical walls between you and other conscious experiences… only very steep walls that give rise to the illusion of separation. This embodies the very essence of Open Individualism. The third way is to contemplate the possibility of Gunk. Infinitely divisible beings with no ontological unity besides the whole of reality. These three methods require normally-inaccessible ontological qualia. The fourth method requires ontological qualia that is even further away from consensus reality:

Imagine that both “being” and “non-being” are both illusory concepts. In reality, the truth exists beyond being and beyond non-being… beyond logic. Thus, identification with one’s “present conscious experience” could be a simple mistake; dualistic ontological qualia, in which things either are or aren’t, could be just a very special case of a non-dualistic state-space of possible experiences. This is far out, I know. But the experience of this being the case is actually possible. It requires intense concentration, dedication, and perhaps some brain chemistry modifications.

Experiencing ontological qualia that negates Mereological Nihilism and thus renders Empty Individualism imposible, allowed me to be freed from my case of bad ontological qualia (will psychiatrists ever be able to diagnose this problem?). This was the result of contemplating Empty Individualism, and the cure was to contemplate the negation of Mereological Nihilism. I would recommend it to anyone who is suffering as a consequence of that very specific set of beliefs.

Is it possible that what freed me from bad ontological qualia was not, ultimately, the result of simply changing ontological qualia itself? It could also be related, again, to how one’s survival programs are implemented with a variety of positive and negative hedonic tones depending on one’s beliefs about survival. As we are currently implemented, though, it may be prudent to find ways of experiencing Open Individualistic ontological qualia in a reliable way. If for no other reason than to use it as an anti-depressant.

Reducing Spirituality to Hedonic Tone – and Hedonic Tone to Spirituality

Do we all just seek what feels good at every point in time? This view is called the pleasure principle (though I prefer calling it hedonic tone determinism). Belief in this view is, paradoxically, strangely dysphoric (at least in my case). At the same time, if this is true, then taking it into account is an important step in order to engage in paradise engineering. People tend to reject this possibility out of hand by coming up with striking counter-examples. For instance, how do we explain arduous and disciplined spiritual practice? Isn’t a Hindu or Buddhist monk’s first year of practice filled with a lot of loneliness and bodily dysphoria? This can certainly be true. But then again, the strongest source of hedonic tone may be ontological qualia. A person who experiences life as meaningful (say, a self-proclaimed Stoic) can face negative feelings and bodily discomfort. The feelings of meaningfulness compensate for the surface-level negativity. Having a persistent feeling of existential emptiness, on the other hand, is rarely cured by engaging in superficially pleasurable activities.

Remaining agnostic about the ultimate nature of reality, though, leaves me open to alternative interpretations of the nature of hedonic tone. As some mystics have argued, it may be the case that one’s degree of pleasure –specially existential spiritual euphoria– is related to one’s connection to one’s higher self, one’s soul or even to God. In this case, hedonic tone would be reduced to spirituality, rather than the other way around. I wouldn’t hold my breath, though.

What’s the Future of Personal Identity?

As we develop technologies to modify the quality of our consciousness by modifying our genetic source code, gene expression, brain protein composition (the distribution of secondary, tertiary and quaternary protein structures in neurons) and so on, we will begin to explore and catalogue the state-space of possible qualia.

We may be able to disentangle hedonic tone from ontological qualia. If so, then beliefs about personal identity may be just a matter of aesthetics: People with any particular view about reality might be just as unfathomably happy. On the other hand, if ontological qualia has an intrinsic hedonic tone, then we can predict that people in the future will experience the ontological qualia that is the most pleasant. For example, people may end up adopting an Open Individualist viewpoint and rejoice in the extremely long life of the universal collective being (or collective meta-being, which incorporates all views about itself within).

However, personal identity is not only consequential to hedonic tone. The functional and evolutionary consequences of various propositional and ontological qualia cannot be dismissed…

Personal Identity Wars

Beliefs about personal identity have fascinating evolutionary implications. The selection pressures for particular views on personal identity are widely different depending on the details. It is probable that in the future we will experience some sort of memetic warfare: As people begin to explore, induce and recruit exotic varieties of ontological qualia, we will see a lot of new motivations behind the replication of specific varieties of consciousness.

Closed Individualists will arguably continue to be afraid of death. Afraid may not necessarily be the right way of putting it. If the Hedonistic Imperative comes to fruition, even Closed Individualists may experience bliss so profound that defies human description. But, they may still not want to come to terms with their mortality. Who cares if the entire world is a great place to live when you are not going to be there to experience it?

Empty Individualists will not care very much about who gets to experience what. They will probably lack the motivation to ensure their own “personal” survival. They may, however, have strong aesthetic preferences. And, strikingly, people who have the specific variety of Empty Individualism I call “Type Empty Individualism” (namely, they exist and “are” in perfect copies of themselves rather than just in their unique spatio-temporal instantiation) may want to transform all matter and energy in the universe into perfect copies of themselves. That is, of course, if they value their own existence.

Now, Open Individualists would have a key strategical advantage. Their decision theory would be novel and fascinating: A God’s eye view of ethics. They would not care whether their own bodies happen to survive in the future, as long as sentient beings as a whole inhabit blissful, wise and/or novel states of consciousness. Additionally, OIsts would accept radically changing their state of consciousness. Closed Individualists of the psychological criterion type (who believe they exist as long as they share a threshold amount of memories with their future selves) would not be interested in radically changing their states of consciousness. For all they know, that is the same as death. OIsts would do a lot of consciousness research with no worries about death.

Given their strategic advantage, it would then seem that OIsts would win right away. They would quickly become universal allies and do intesne consciousness research. But then we also have to consider second-order effects: Closed Individualists, if sufficiently smart, would be able to anticipate the coming Open Individualist collective super-intelligence that results from their systematic experimentation with consciousness.

Would they wage a preventive war in advance? And would Empty Individualists become allies with Closed Individualists, or would they call for a total annihilation of reality?

Tune in next week, and read: “Personal Identity Wars II: The Menace of the Utilitronium Shockwave