Mental Health as an EA Cause: Key Questions

Michale Johnosn and I will be hanging out at the EA Global (SF) 2017 conference this weekend representing the Qualia Research Institute. If you see us and want to chat, please feel free to approach us. This is what we look like:

13920483_1094117364013753_6812328805047750006_o

At EAGlobal 2016 at Berkeley

I will be handing out the following flyer:


Mental Health as an EA Cause Area: Key Questions

  1. What makes a state of consciousness feel good or bad?
  2. What percentage of worldwide suffering is directly caused by mental illness and/or the hedonic treadmill rather than by external circumstances?
  3. Is there a way to “sabotage the hedonic treadmill”?
  4. Can benevolent and intelligent sentient beings be fully animated by gradients of bliss (offloading nociception to insentient mechanism)?
  5. Can we uproot the fundamental causes of suffering by tweaking our brain structure without compromising our critical thinking?
  6. Can consciousness technologies play a part in making the world a high-trust super-organism?

symmetries

Wallpaper symmetry chart with 5 different notations (slightly different diagram in handout)

If these questions intrigue you, you are likely to find the following readings valuable:

  1. Principia Qualia
  2. Qualia Computing So Far
  3. Quantifying Bliss: Talk Summary
  4. The Tyranny of the Intentional Object
  5. Algorithmic Reduction of Psychedelic States
  6. How to secretly communicate with people on LSD
  7. ELI5 “The Hyperbolic Geometry of DMT Experiences”
  8. Peaceful Qualia: The Manhattan Project of Consciousness
  9. Symmetry Theory of Valence “Explain Like I’m 5” edition
  10. Generalized Wada Test and the Total Order of Consciousness
  11. Wireheading Done Right: Stay Positive Without Going Insane
  12. Why we seek out pleasure: the Symmetry Theory of Homeostatic Regulation
  13. The Hyperbolic Geometry of DMT Experiences: Symmetries, Sheets, and Saddled Scenes

Who we are:
Qualia Research Institute (Michael Johnson & Andrés Gómez Emilsson)
Qualia Computing (this website; Andrés Gómez Emilsson)
Open Theory (Michael Johnson)

Printable version:

mental_health_as_ea_cause

Why I think the Foundational Research Institute should rethink its approach

by Mike Johnson

The following is my considered evaluation of the Foundational Research Institute, circa July 2017. I discuss its goal, where I foresee things going wrong with how it defines suffering, and what it could do to avoid these problems.

TL;DR version: functionalism (“consciousness is the sum-total of the functional properties of our brains”) sounds a lot better than it actually turns out to be in practice. In particular, functionalism makes it impossible to define ethics & suffering in a way that can mediate disagreements.

I. What is the Foundational Research Institute?

The Foundational Research Institute (FRI) is a Berlin-based group that “conducts research on how to best reduce the suffering of sentient beings in the near and far future.” Executive Director Max Daniel introduced them at EA Global Boston as “the only EA organization which at an organizational level has the mission of focusing on reducing s-risk.” S-risks are, according to Daniel, “risks where an adverse outcome would bring about suffering on an astronomical scale, vastly exceeding all suffering that has existed on Earth so far.”

Essentially, FRI wants to become the research arm of suffering-focused ethics, and help prevent artificial general intelligence (AGI) failure-modes which might produce suffering on a cosmic scale.

What I like about FRI:

While I have serious qualms about FRI’s research framework, I think the people behind FRI deserve a lot of credit- they seem to be serious people, working hard to build something good. In particular, I want to give them a shoutout for three things:

  • First, FRI takes suffering seriously, and I think that’s important. When times are good, we tend to forget how tongue-chewingly horrific suffering can be. S-risks seem particularly horrifying.
  • Second, FRI isn’t afraid of being weird. FRI has been working on s-risk research for a few years now, and if people are starting to come around to the idea that s-risks are worth thinking about, much of the credit goes to FRI.
  • Third, I have great personal respect for Brian Tomasik, one of FRI’s co-founders. I’ve found him highly thoughtful, generous in debates, and unfailingly principled. In particular, he’s always willing to bite the bullet and work ideas out to their logical end, even if it involves repugnant conclusions.

What is FRI’s research framework?

FRI believes in analytic functionalism, or what David Chalmers calls “Type-A materialism”. Essentially, what this means is there’s no ’theoretical essence’ to consciousness; rather, consciousness is the sum-total of the functional properties of our brains. Since ‘functional properties’ are rather vague, this means consciousness itself is rather vague, in the same way words like “life,” “justice,” and “virtue” are messy and vague.

Brian suggests that this vagueness means there’s an inherently subjective, perhaps arbitrary element to how we define consciousness:

Analytic functionalism looks for functional processes in the brain that roughly capture what we mean by words like “awareness”, “happy”, etc., in a similar way as a biologist may look for precise properties of replicators that roughly capture what we mean by “life”. Just as there can be room for fuzziness about where exactly to draw the boundaries around “life”, different analytic functionalists may have different opinions about where to define the boundaries of “consciousness” and other mental states. This is why consciousness is “up to us to define”. There’s no hard problem of consciousness for the same reason there’s no hard problem of life: consciousness is just a high-level word that we use to refer to lots of detailed processes, and it doesn’t mean anything in addition to those processes.

Finally, Brian argues that the phenomenology of consciousness is identical with the phenomenology of computation:

I know that I’m conscious. I also know, from neuroscience combined with Occam’s razor, that my consciousness consists only of material operations in my brain — probably mostly patterns of neuronal firing that help process inputs, compute intermediate ideas, and produce behavioral outputs. Thus, I can see that consciousness is just the first-person view of certain kinds of computations — as Eliezer Yudkowsky puts it, “How An Algorithm Feels From Inside“. Consciousness is not something separate from or epiphenomenal to these computations. It is these computations, just from their own perspective of trying to think about themselves.

 

In other words, consciousness is what minds compute. Consciousness is the collection of input operations, intermediate processing, and output behaviors that an entity performs.

And if consciousness is all these things, so too is suffering. Which means suffering is computational, yet also inherently fuzzy, and at least a bit arbitrary; a leaky high-level reification impossible to speak about accurately, since there’s no formal, objective “ground truth”.

II. Why do I worry about FRI’s research framework?

In short, I think FRI has a worthy goal and good people, but its metaphysics actively prevent making progress toward that goal. The following describes why I think that, drawing heavily on Brian’s writings (of FRI’s researchers, Brian seems the most focused on metaphysics):

Note: FRI is not the only EA organization which holds functionalist views on consciousness; much of the following critique would also apply to e.g. MIRI, FHI, and OpenPhil. I focus on FRI because (1) Brian’s writings on consciousness & functionalism have been hugely influential in the community, and are clear enough *to* criticize; (2) the fact that FRI is particularly clear about what it cares about- suffering- allows a particularly clear critique about what problems it will run into with functionalism; (3) I believe FRI is at the forefront of an important cause area which has not crystallized yet, and I think it’s critically important to get these objections bouncing around this subcommunity.

Objection 1: Motte-and-bailey

Brian: “Consciousness is not a thing which exists ‘out there’ or even a separate property of matter; it’s a definitional category into which we classify minds. ‘Is this digital mind really conscious?’ is analogous to ‘Is a rock that people use to eat on really a table?’ [However,] That consciousness is a cluster in thingspace rather than a concrete property of the world does not make reducing suffering less important.”

The FRI model seems to imply that suffering is ineffable enough such that we can’t have an objective definition, yet sufficiently effable that we can coherently talk and care about it. This attempt to have it both ways seems contradictory, or at least in deep tension.

Indeed, I’d argue that the degree to which you can care about something is proportional to the degree to which you can define it objectively. E.g., If I say that “gnireffus” is literally the most terrible thing in the cosmos, that we should spread gnireffus-focused ethics, and that minimizing g-risks (far-future scenarios which involve large amounts of gnireffus) is a moral imperative, but also that what is and what and isn’t gnireffus is rather subjective with no privileged definition, and it’s impossible to objectively tell if a physical system exhibits gnireffus, you might raise any number of objections. This is not an exact metaphor for FRI’s position, but I worry that FRI’s work leans on the intuition that suffering is real and we can speak coherently about it, to a degree greater than its metaphysics formally allow.

Max Daniel (personal communication) suggests that we’re comfortable with a degree of ineffability in other contexts; “Brian claims that the concept of suffering shares the allegedly problematic properties with the concept of a table. But it seems a stretch to say that the alleged tension is problematic when talking about tables. So why would it be problematic when talking about suffering?” However, if we take the anti-realist view that suffering is ‘merely’ a node in the network of language, we have to live with the consequences of this: that ‘suffering’ will lose meaning as we take it away from the network in which it’s embedded (Wittgenstein). But FRI wants to do exactly this, to speak about suffering in the context of AGIs, simulated brains, even video game characters.

We can be anti-realists about suffering (suffering-is-a-node-in-the-network-of-language), or we can argue that we can talk coherently about suffering in novel contexts (AGIs, mind crime, aliens, and so on), but it seems inherently troublesome to claim we can do both at the same time.

Objection 2: Intuition duels

Two people can agree on FRI’s position that there is no objective fact of the matter about what suffering is (no privileged definition), but this also means they have no way of coming to any consensus on the object-level question of whether something can suffer. This isn’t just an academic point: Brian has written extensively about how he believes non-human animals can and do suffer extensively, whereas Yudkowsky (who holds computationalist views, like Brian) has written about how he’s confident that animals are not conscious and cannot suffer, due to their lack of higher-order reasoning.

And if functionalism is having trouble adjudicating the easy cases of suffering–whether monkeys can suffer, or whether dogs can— it doesn’t have a sliver of a chance at dealing with the upcoming hard cases of suffering: whether a given AGI is suffering, or engaging in mind crime; whether a whole-brain emulation (WBE) or synthetic organism or emergent intelligence that doesn’t have the capacity to tell us how it feels (or that we don’t have the capacity to understand) is suffering; if any aliens that we meet in the future can suffer; whether changing the internal architecture of our qualia reports means we’re also changing our qualia; and so on.

In short, FRI’s theory of consciousness isn’t actually a theory of consciousness at all, since it doesn’t do the thing we need a theory of consciousness to do: adjudicate disagreements in a principled way. Instead, it gives up any claim on the sorts of objective facts which could in principle adjudicate disagreements.

This is a source of friction in EA today, but it’s mitigated by the sense that

(1) The EA pie is growing, so it’s better to ignore disagreements than pick fights;

(2) Disagreements over the definition of suffering don’t really matter yet, since we haven’t gotten into the business of making morally-relevant synthetic beings (that we know of) that might be unable to vocalize their suffering.

If the perception of one or both of these conditions change, the lack of some disagreement-adjudicating theory of suffering will matter quite a lot.

Objection 3: Convergence requires common truth

Mike: “[W]hat makes one definition of consciousness better than another? How should we evaluate them?”

Brian: “Consilience among our feelings of empathy, principles of non-discrimination, understandings of cognitive science, etc. It’s similar to the question of what makes one definition of justice or virtue better than another.”

Brian is hoping that affective neuroscience will slowly converge to accurate views on suffering as more and better data about sentience and pain accumulates. But convergence to truth implies something (objective) driving the convergence- in this way, Brian’s framework still seems to require an objective truth of the matter, even though he disclaims most of the benefits of assuming this.

Objection 4: Assuming that consciousness is a reification produces more confusion, not less

Brian: “Consciousness is not a reified thing; it’s not a physical property of the universe that just exists intrinsically. Rather, instances of consciousness are algorithms that are implemented in specific steps. … Consciousness involves specific things that brains do.”

Brian argues that we treat conscious/phenomenology as more ‘real’ than it is. Traditionally, whenever we’ve discovered something is a leaky reification and shouldn’t be treated as ‘too real’, we’ve been able to break it down into more coherent constituent pieces we can treat as real. Life, for instance, wasn’t due to élan vital but a bundle of self-organizing properties & dynamics which generally co-occur. But carrying out this “de-reification” process on consciousness– enumerating its coherent constituent pieces– has proven difficult, especially if we want to preserve some way to speak cogently about suffering.

Speaking for myself, the more I stared into the depths of functionalism, the less certain everything about moral value became– and arguably, I see the same trajectory in Brian’s work and Luke Muehlhauser’s report. Their model uncertainty has seemingly become larger as they’ve looked into techniques for how to “de-reify” consciousness while preserving some flavor of moral value, not smaller. Brian and Luke seem to interpret this as evidence that moral value is intractably complicated, but this is also consistent with consciousness not being a reification, and instead being a real thing. Trying to “de-reify” something that’s not a reification will produce deep confusion, just as surely trying to treat a reification as ‘more real’ than it actually is will.

Edsger W. Dijkstra famously noted that “The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise.” And so if our ways of talking about moral value fail to ‘carve reality at the joints’- then by all means let’s build better ones, rather than giving up on precision.

Objection 5: The Hard Problem of Consciousness is a red herring

Brian spends a lot of time discussing Chalmers’ “Hard Problem of Consciousness”, i.e. the question of why we’re subjectively conscious, and seems to base at least part of his conclusion on not finding this question compelling— he suggests “There’s no hard problem of consciousness for the same reason there’s no hard problem of life: consciousness is just a high-level word that we use to refer to lots of detailed processes, and it doesn’t mean anything in addition to those processes.” I.e., no ‘why’ is necessary; when we take consciousness and subtract out the details of the brain, we’re left with an empty set.

But I think the “Hard Problem” isn’t helpful as a contrastive centerpiece, since it’s unclear what the problem is, and whether it’s analytic or empirical, a statement about cognition or about physics. At the Qualia Research Institute (QRI), we don’t talk much about the Hard Problem; instead, we talk about Qualia Formalism, or the idea that any phenomenological state can be crisply and precisely represented by some mathematical object. I suspect this would be a better foil for Brian’s work than the Hard Problem.

Objection 6: Mapping to reality

Brian argues that consciousness should be defined at the functional/computational level: given a Turing machine, or neural network, the right ‘code’ will produce consciousness. But the problem is that this doesn’t lead to a theory which can ‘compile’ to physics. Consider the following:

Imagine you have a bag of popcorn. Now shake it. There will exist a certain ad-hoc interpretation of bag-of-popcorn-as-computational-system where you just simulated someone getting tortured, and other interpretations that don’t imply that. Did you torture anyone? If you’re a computationalist, no clear answer exists- you both did, and did not, torture someone. This sounds like a ridiculous edge-case that would never come up in real life, but in reality it comes up all the time, since there is no principled way to *objectively derive* what computation(s) any physical system is performing.

I don’t think this is an outlandish view of functionalism; Brian suggests much the same in How to Interpret a Physical System as a Mind“Physicalist views that directly map from physics to moral value are relatively simple to understand. Functionalism is more complex, because it maps from physics to computations to moral value. Moreover, while physics is real and objective, computations are fictional and ‘observer-relative’ (to use John Searle’s terminology). There’s no objective meaning to ‘the computation that this physical system is implementing’ (unless you’re referring to the specific equations of physics that the system is playing out).”

Gordon McCabe (McCabe 2004) provides a more formal argument to this effect— that precisely mapping between physical processes and (Turing-level) computational processes is inherently impossible— in the context of simulations. First, McCabe notes that:

[T]here is a one-[to-]many correspondence between the logical states [of a computer] and the exact electronic states of computer memory. Although there are bijective mappings between numbers and the logical states of computer memory, there are no bijective mappings between numbers and the exact electronic states of memory.

This lack of an exact bijective mapping means that subjective interpretation necessarily creeps in, and so a computational simulation of a physical system can’t be ‘about’ that system in any rigorous way:

In a computer simulation, the values of the physical quantities possessed by the simulated system are represented by the combined states of multiple bits in computer memory. However, the combined states of multiple bits in computer memory only represent numbers because they are deemed to do so under a numeric interpretation. There are many different interpretations of the combined states of multiple bits in computer memory. If the numbers represented by a digital computer are interpretation-dependent, they cannot be objective physical properties. Hence, there can be no objective relationship between the changing pattern of multiple bit-states in computer memory, and the changing pattern of quantity-values of a simulated physical system.

McCabe concludes that, metaphysically speaking,

A digital computer simulation of a physical system cannot exist as, (does not possess the properties and relationships of), anything else other than a physical process occurring upon the components of a computer. In the contemporary case of an electronic digital computer, a simulation cannot exist as anything else other than an electronic physical process occurring upon the components and circuitry of a computer.

Where does this leave ethics? In Flavors of Computation Are Flavors of Consciousness, Brian notes that “In some sense all I’ve proposed here is to think of different flavors of computation as being various flavors of consciousness. But this still leaves the question: Which flavors of computation matter most? Clearly whatever computations happen when a person is in pain are vastly more important than what’s happening in a brain on a lazy afternoon. How can we capture that difference?”

But if Brian grants the former point- that “There’s no objective meaning to ‘the computation that this physical system is implementing’”– then this latter task of figuring out “which flavors of computation matter most” is provably impossible. There will always be multiple computational (and thus ethical) interpretations of a physical system, with no way to figure out what’s “really” happening. No way to figure out if something is suffering or not. No consilience; not now, not ever.

Note: despite apparently granting the point above, Brian also remarks that:

I should add a note on terminology: All computations occur within physics, so any computation is a physical process. Conversely, any physical process proceeds from input conditions to output conditions in a regular manner and so is a computation. Hence, the set of computations equals the set of physical processes, and where I say “computations” in this piece, one could just as well substitute “physical processes” instead.

This seems to be (1) incorrect, for the reasons I give above, or (2) taking substantial poetic license with these terms, or (3) referring to hypercomputation (which might be able to salvage the metaphor, but would invalidate many of FRI’s conclusions dealing with the computability of suffering on conventional hardware).

This objection may seem esoteric or pedantic, but I think it’s important, and that it ripples through FRI’s theoretical framework with disastrous effects.

 

Objection 7: FRI doesn’t fully bite the bullet on computationalism

Brian suggests that “flavors of computation are flavors of consciousness” and that some computations ‘code’ for suffering. But if we do in fact bite the bullet on this metaphor and place suffering within the realm of computational theory, we need to think in “near mode” and accept all the paradoxes that brings. Scott Aaronson, a noted expert on quantum computing, raises the following objections to functionalism:

I’m guessing that many people in this room side with Dennett, and (not coincidentally, I’d say) also with Everett. I certainly have sympathies in that direction too. In fact, I spent seven or eight years of my life as a Dennett/Everett hardcore believer. But, while I don’t want to talk anyone out of the Dennett/Everett view, I’d like to take you on a tour of what I see as some of the extremely interesting questions that that view leaves unanswered. I’m not talking about “deep questions of meaning,” but about something much more straightforward: what exactly does a computational process have to do to qualify as “conscious”?

 

 

There’s this old chestnut, what if each person on earth simulated one neuron of your brain, by passing pieces of paper around. It took them several years just to simulate a single second of your thought processes. Would that bring your subjectivity into being? Would you accept it as a replacement for your current body? If so, then what if your brain were simulated, not neuron-by-neuron, but by a gigantic lookup table? That is, what if there were a huge database, much larger than the observable universe (but let’s not worry about that), that hardwired what your brain’s response was to every sequence of stimuli that your sense-organs could possibly receive. Would that bring about your consciousness? Let’s keep pushing: if it would, would it make a difference if anyone actually consulted the lookup table? Why can’t it bring about your consciousness just by sitting there doing nothing?

To these standard thought experiments, we can add more. Let’s suppose that, purely for error-correction purposes, the computer that’s simulating your brain runs the code three times, and takes the majority vote of the outcomes. Would that bring three “copies” of your consciousness into being? Does it make a difference if the three copies are widely separated in space or time—say, on different planets, or in different centuries? Is it possible that the massive redundancy taking place in your brain right now is bringing multiple copies of you into being?

 

 

Maybe my favorite thought experiment along these lines was invented by my former student Andy Drucker.  In the past five years, there’s been a revolution in theoretical cryptography, around something called Fully Homomorphic Encryption (FHE), which was first discovered by Craig Gentry.  What FHE lets you do is to perform arbitrary computations on encrypted data, without ever decrypting the data at any point.  So, to someone with the decryption key, you could be proving theorems, simulating planetary motions, etc.  But to someone without the key, it looks for all the world like you’re just shuffling random strings and producing other random strings as output.

 

You can probably see where this is going.  What if we homomorphically encrypted a simulation of your brain?  And what if we hid the only copy of the decryption key, let’s say in another galaxy?  Would this computation—which looks to anyone in our galaxy like a reshuffling of gobbledygook—be silently producing your consciousness?

 

When we consider the possibility of a conscious quantum computer, in some sense we inherit all the previous puzzles about conscious classical computers, but then also add a few new ones.  So, let’s say I run a quantum subroutine that simulates your brain, by applying some unitary transformation U.  But then, of course, I want to “uncompute” to get rid of garbage (and thereby enable interference between different branches), so I apply U-1.  Question: when I apply U-1, does your simulated brain experience the same thoughts and feelings a second time?  Is the second experience “the same as” the first, or does it differ somehow, by virtue of being reversed in time? Or, since U-1U is just a convoluted implementation of the identity function, are there no experiences at all here?

 

Here’s a better one: many of you have heard of the Vaidman bomb.  This is a famous thought experiment in quantum mechanics where there’s a package, and we’d like to “query” it to find out whether it contains a bomb—but if we query it and there is a bomb, it will explode, killing everyone in the room.  What’s the solution?  Well, suppose we could go into a superposition of querying the bomb and not querying it, with only ε amplitude on querying the bomb, and √(1-ε2) amplitude on not querying it.  And suppose we repeat this over and over—each time, moving ε amplitude onto the “query the bomb” state if there’s no bomb there, but moving ε2 probability onto the “query the bomb” state if there is a bomb (since the explosion decoheres the superposition).  Then after 1/ε repetitions, we’ll have order 1 probability of being in the “query the bomb” state if there’s no bomb.  By contrast, if there is a bomb, then the total probability we’ve ever entered that state is (1/ε)×ε2 = ε.  So, either way, we learn whether there’s a bomb, and the probability that we set the bomb off can be made arbitrarily small.  (Incidentally, this is extremely closely related to how Grover’s algorithm works.)

 

OK, now how about the Vaidman brain?  We’ve got a quantum subroutine simulating your brain, and we want to ask it a yes-or-no question.  We do so by querying that subroutine with ε amplitude 1/ε times, in such a way that if your answer is “yes,” then we’ve only ever activated the subroutine with total probability ε.  Yet you still manage to communicate your “yes” answer to the outside world.  So, should we say that you were conscious only in the ε fraction of the wavefunction where the simulation happened, or that the entire system was conscious?  (The answer could matter a lot for anthropic purposes.)

To sum up: Brian’s notion that consciousness is the same as computation raises more issues than it solves; in particular, the possibility that if suffering is computable, it may also be uncomputable/reversible, would suggest s-risks aren’t as serious as FRI treats them.

Objection 8: Dangerous combination

Three themes which seem to permeate FRI’s research are:

(1) Suffering is the thing that is bad.

(2) It’s critically important to eliminate badness from the universe.

(3) Suffering is impossible to define objectively, and so we each must define what suffering means for ourselves.

Taken individually, each of these seems reasonable. Pick two, and you’re still okay. Pick all three, though, and you get A Fully General Justification For Anything, based on what is ultimately a subjective/aesthetic call.

Much can be said in FRI’s defense here, and it’s unfair to single them out as risky: in my experience they’ve always brought a very thoughtful, measured, cooperative approach to the table. I would just note that ideas are powerful, and I think theme (3) is especially pernicious if incorrect.

III. QRI’s alternative

Analytic functionalism is essentially a negative hypothesis about consciousness: it’s the argument that there’s no order to be found, no rigor to be had. It obscures this with talk of “function”, which is a red herring it not only doesn’t define, but admits is undefinable. It doesn’t make any positive assertion. Functionalism is skepticism- nothing more, nothing less.

But is it right?

Ultimately, I think these a priori arguments are much like people in the middle ages arguing whether one could ever formalize a Proper System of Alchemy. Such arguments may in many cases hold water, but it’s often difficult to tell good arguments apart from arguments where we’re just cleverly fooling ourselves. In retrospect, the best way to *prove* systematized alchemy was possible was to just go out and *do* it, and invent Chemistry. That’s how I see what we’re doing at QRI with Qualia Formalism: we’re assuming it’s possible to build stuff, and we’re working on building the object-level stuff.

What we’ve built with QRI’s framework

Note: this is a brief, surface-level tour of our research; it will probably be confusing for readers who haven’t dug into our stuff before. Consider this a down-payment on a more substantial introduction.

My most notable work is Principia Qualia, in which I lay out my meta-framework for consciousness (a flavor of dual-aspect monism, with a focus on Qualia Formalism) and put forth the Symmetry Theory of Valence (STV). Essentially, the STV is an argument that much of the apparent complexity of emotional valence is evolutionarily contingent, and if we consider a mathematical object isomorphic to a phenomenological experience, the mathematical property which corresponds to how pleasant it is to be that experience is the object’s symmetry. This implies a bunch of testable predictions and reinterpretations of things like what ‘pleasure centers’ do (Section XI; Section XII). Building on this, I offer the Symmetry Theory of Homeostatic Regulation, which suggests understanding the structure of qualia will translate into knowledge about the structure of human intelligence, and I briefly touch on the idea of Neuroacoustics.

Likewise, my colleague Andrés Gómez Emilsson has written about the likely mathematics of phenomenology, including The Hyperbolic Geometry of DMT Experiences, Tyranny of the Intentional Object, and Algorithmic Reduction of Psychedelic States. If I had to suggest one thing to read in all of these links, though, it would be the transcript of his recent talk on Quantifying Bliss, which lays out the world’s first method to objectively measure valence from first principles (via fMRI) using Selen Atasoy’s Connectome Harmonics framework, the Symmetry Theory of Valence, and Andrés’s CDNS model of experience.

These are risky predictions and we don’t yet know if they’re right, but we’re confident that if there is some elegant structure intrinsic to consciousness, as there is in many other parts of the natural world, these are the right kind of risks to take.

I mention all this because I think analytic functionalism- which is to say radical skepticism/eliminativism, the metaphysics of last resort- only looks as good as it does because nobody’s been building out any alternatives.

IV. Closing thoughts

FRI is pursuing a certain research agenda, and QRI is pursuing another, and there’s lots of value in independent explorations of the nature of suffering. I’m glad FRI exists, everybody I’ve interacted with at FRI has been great, I’m happy they’re focusing on s-risks, and I look forward to seeing what they produce in the future.

On the other hand, I worry that nobody’s pushing back on FRI’s metaphysics, which seem to unavoidably lead to the intractable problems I describe above. FRI seems to believe these problems are part of the territory, unavoidable messes that we just have to make philosophical peace with. But I think that functionalism is a bad map, that the metaphysical messes it leads to are much worse than most people realize (fatal to FRI’s mission), and there are other options that avoid these problems (which, to be fair, is not to say they have no problems).

Ultimately, FRI doesn’t owe me a defense of their position. But if they’re open to suggestions on what it would take to convince a skeptic like me that their brand of functionalism is viable, or at least rescuable, I’d offer the following:

Re: Objection 1 (motte-and-bailey), I suggest FRI should be as clear and complete as possible in their basic definition of suffering. In which particular ways is it ineffable/fuzzy, and in which particular ways is it precise? What can we definitely say about suffering, and what can we definitely never determine? Preregistering ontological commitments and methodological possibilities would help guard against FRI’s definition of suffering changing based on context.

Re: Objection 2 (intuition duels), FRI may want to internally “war game” various future scenarios involving AGI, WBE, etc, with one side arguing that a given synthetic (or even extraterrestrial) organism is suffering, and the other side arguing that it isn’t. I’d expect this would help diagnose what sorts of disagreements future theories of suffering will need to adjudicate, and perhaps illuminate implicit ethical intuitions. Sharing the results of these simulated disagreements would also be helpful in making FRI’s reasoning less opaque to outsiders, although making everything transparent could lead to certain strategic disadvantages.

Re: Objection 3 (convergence requires common truth), I’d like FRI to explore exactly what might drive consilience/convergence in theories of suffering, and what precisely makes one theory of suffering better than another, and ideally to evaluate a range of example theories of suffering under these criteria.

Re: Objection 4 (assuming that consciousness is a reification produces more confusion, not less), I would love to see a historical treatment of reification: lists of reifications which were later dissolved (e.g., élan vital), vs scattered phenomena that were later unified (e.g., electromagnetism). What patterns do the former have, vs the latter, and why might consciousness fit one of these buckets better than the other?

Re: Objection 5 (the Hard Problem of Consciousness is a red herring), I’d like to see a more detailed treatment of what kinds of problem people have interpreted the Hard Problem as, and also more analysis on the prospects of Qualia Formalism (which I think is the maximally-empirical, maximally-charitable interpretation of the Hard Problem). It would be helpful for us, in particular, if FRI preregistered their expectations about QRI’s predictions, and their view of the relative evidence strength of each of our predictions.

Re: Objection 6 (mapping to reality), this is perhaps the heart of most of our disagreement. From Brian’s quotes, he seems split on this issue; I’d like clarification about whether he believes we can ever precisely/objectively map specific computations to specific physical systems, and vice-versa. And if so— how? If not, this seems to propagate through FRI’s ethical framework in a disastrous way, since anyone can argue that any physical system does, or does not, ‘code’ for massive suffering, and there’s no principled way to derive any ‘ground truth’ or even pick between interpretations in a principled way (e.g. my popcorn example). If this isn’t the case— why not?

Brian has suggested that “certain high-level interpretations of physical systems are more ‘natural’ and useful than others” (personal communication); I agree, and would encourage FRI to explore systematizing this.

It would be non-trivial to port FRI’s theories and computational intuitions to the framework of “hypercomputation”– i.e., the understanding that there’s a formal hierarchy of computational systems, and that Turing machines are only one level of many– but it may have benefits too. Namely, it might be the only way they could avoid Objection 6 (which I think is a fatal objection) while still allowing them to speak about computation & consciousness in the same breath. I think FRI should look at this and see if it makes sense to them.

Re: Objection 7 (FRI doesn’t fully bite the bullet on computationalism), I’d like to see responses to Aaronson’s aforementioned thought experiments.

Re: Objection 8 (dangerous combination), I’d like to see a clarification about why my interpretation is unreasonable (as it very well may be!).

 


In conclusion- I think FRI has a critically important goal- reduction of suffering & s-risk. However, I also think FRI has painted itself into a corner by explicitly disallowing a clear, disagreement-mediating definition for what these things are. I look forward to further work in this field.

 

Mike Johnson

Qualia Research Institute


Acknowledgements: thanks to Andrés Gómez Emilsson, Brian Tomasik, and Max Daniel for reviewing earlier drafts of this.

Sources:

My sources for FRI’s views on consciousness:
Flavors of Computation are Flavors of Consciousness:
https://foundational-research.org/flavors-of-computation-are-flavors-of-consciousness/
Is There a Hard Problem of Consciousness?
http://reducing-suffering.org/hard-problem-consciousness/
Consciousness Is a Process, Not a Moment
http://reducing-suffering.org/consciousness-is-a-process-not-a-moment/
How to Interpret a Physical System as a Mind
http://reducing-suffering.org/interpret-physical-system-mind/
Dissolving Confusion about Consciousness
http://reducing-suffering.org/dissolving-confusion-about-consciousness/
Debate between Brian & Mike on consciousness:
https://www.facebook.com/groups/effective.altruists/permalink/1333798200009867/?comment_id=1333823816673972&comment_tracking=%7B%22tn%22%3A%22R9%22%7D
Max Daniel’s EA Global Boston 2017 talk on s-risks:
https://www.youtube.com/watch?v=jiZxEJcFExc
Multipolar debate between Eliezer Yudkowsky and various rationalists about animal suffering:
https://rationalconspiracy.com/2015/12/16/a-debate-on-animal-consciousness/
The Internet Encyclopedia of Philosophy on functionalism:
http://www.iep.utm.edu/functism/
Gordon McCabe on why computation doesn’t map to physics:
http://philsci-archive.pitt.edu/1891/1/UniverseCreationComputer.pdf
Toby Ord on hypercomputation, and how it differs from Turing’s work:
https://arxiv.org/abs/math/0209332
Luke Muehlhauser’s OpenPhil-funded report on consciousness and moral patienthood:
http://www.openphilanthropy.org/2017-report-consciousness-and-moral-patienthood
Scott Aaronson’s thought experiments on computationalism:
http://www.scottaaronson.com/blog/?p=1951
Selen Atasoy on Connectome Harmonics, a new way to understand brain activity:
https://www.nature.com/articles/ncomms10340
My work on formalizing phenomenology:
My meta-framework for consciousness, including the Symmetry Theory of Valence:
http://opentheory.net/PrincipiaQualia.pdf
My hypothesis of homeostatic regulation, which touches on why we seek out pleasure:
http://opentheory.net/2017/05/why-we-seek-out-pleasure-the-symmetry-theory-of-homeostatic-regulation/
My exploration & parametrization of the ‘neuroacoustics’ metaphor suggested by Atasoy’s work:
http://opentheory.net/2017/06/taking-brain-waves-seriously-neuroacoustics/
My colleague Andrés’s work on formalizing phenomenology:
A model of DMT-trip-as-hyperbolic-experience:
https://qualiacomputing.com/2017/05/28/eli5-the-hyperbolic-geometry-of-dmt-experiences/
June 2017 talk at Consciousness Hacking, describing a theory and experiment to predict people’s valence from fMRI data:
https://qualiacomputing.com/2017/06/18/quantifying-bliss-talk-summary/
A parametrization of various psychedelic states as operators in qualia space:
https://qualiacomputing.com/2016/06/20/algorithmic-reduction-of-psychedelic-states/
A brief post on valence and the fundamental attribution error:
https://qualiacomputing.com/2016/11/19/the-tyranny-of-the-intentional-object/
A summary of some of Selen Atasoy’s current work on Connectome Harmonics:
https://qualiacomputing.com/2017/06/18/connectome-specific-harmonic-waves-on-lsd/

LSD and Quantum Measurements: Can you see Schrödinger’s cat both dead and alive on acid?

[Content Warnings: Psychedelic Depersonalization, Fear of the Multiverse, Personal Identity Doubts, Discussion about Quantum Consciousness, DMT entities, Science]

The brain is wider than the sky,
For, put them side by side,
The one the other will include
With ease, and you beside.

– Emily Dickinson

Is it for real?

A sizable percentage of people who try a high dose of DMT end up convinced that the spaces they visit during the trip exist in some objective sense; they either suspect, intuit or conclude that their psychonautic experience reflects something more than simply the contents of their minds. Most scientists would argue that those experiences are just the result of exotic brain states; the worlds one travels to are bizarre (often useless) simulations made by our brain in a chaotic state. This latter explanation space forgoes alternate realities for the sake of simplicity, whereas the former envisions psychedelics as a multiverse portal technology of some sort.

Some exotic states, such as DMT breakthrough experiences, do typically create feelings of glimpsing foundational information about the depth and structure of the universe. Entity contact is frequent, and these seemingly autonomous DMT entities are often reported to have the ability to communicate with you. Achieving a verifiable contact with entities from another dimension would revolutionize our conception of the universe. Nothing would be quite as revolutionary, really. But how to do so? One could test the external reality of these entities by asking them to provide information that cannot be obtained unless they themselves held an objective existence. In this spirit, some have proposed to ask these entities complex mathematical questions that would be impossible for a human to solve within the time provided by the trip. This particular test is really cool, but it has the flaw that DMT experiences may themselves trigger computationally-useful synesthesia of the sort that Daniel Tammet experiences. Thus even if DMT entities appeared to solve extraordinary mathematical problems, it would still stand to reason that it is oneself who did it and that one is merely projecting the results into the entities. The mathematical ability would be the result of being lucky in the kind of synesthesia DMT triggered in you.

A common overarching description of the effects of psychedelics is that they “raise the frequency of one’s consciousness.” Now, this is a description we should take seriously whether or not we believe that psychedelics are inter-dimensional portals. After all, promising models of psychedelic action involve fast-paced control interruption, where each psychedelic would have its characteristic control interrupt frequency. And within a quantum paradigm, Stuart Hameroff has argued that psychedelic compounds work by bringing up the quantum resonance frequency of the water inside our neurons’ microtubules (perhaps going from megahertz to gigahertz), which he claims increases the non-locality of our consciousness.

In the context of psychedelics as inter-dimensional portals, this increase in the main frequency of one’s consciousness may be the key that allows us to interact with other realities. Users describe a sort of tuning of one’s consciousness, as if the interface between one’s self and the universe underwent some sudden re-adjustment in an upward direction. In the same vein, psychedelicists (e.g. Rick Strassman) frequently describe the brain as a two-way radio, and then go on to claim that psychedelics expand the range of channels we can be attuned to.

One could postulate that the interface between oneself and the universe that psychonauts describe has a real existence of its own. It would provide the bridge between us as (quantum) monads and the universe around us; and the particular structure of this interface would determine the selection pressures responsible for the part of the multiverse that we interact with. By modifying the spectral properties of this interface (e.g. by drastically raising the main frequency of its vibration) with, e.g. DMT, one effectively “relocates” (cf. alien travel) to other areas of reality. Assuming this interface exists and that it works by tuning into particular realities, what sorts of questions can we ask about its properties? What experiments could we conduct to verify its existence? And what applications might it have?

The Psychedelic State of Input Superposition

Once in a while I learn about a psychedelic effect that captures my attention precisely because it points to simple experiments that could distinguish between the two rough explanation spaces discussed above (i.e. “it’s all in your head” vs. “real inter-dimensional travel”). This article will discuss a very odd phenomenon whose interpretations do indeed have different empirical predictions. We are talking about the experience of sensing what appears to be a superposition of inputs from multiple adjacent realities. We will call this effect the Psychedelic State of Input Superposition (PSIS for short).

There is no known way to induce PSIS on purpose. Unlike the reliable DMT hyper-dimensional journeys to distant dimensions, PSIS is a rare closer-to-home effect and it manifests only on high doses of LSD (and maybe other psychedelics). Rather than feeling like one is tuning into another dimension in the higher frequency spectrum, it feels as if one just accidentally altered (perhaps even broke) the interface between the self and the universe in a way that multiplies the number of realities you are interacting with. After the event, the interface seems to tune into multiple similar universes at once; one sees multiple possibilities unfold simultaneously. After a while, one somehow “collapses” into only one of these realities, and while coming down, one is thankful to have settled somewhere specific rather than remaining in that weird in-between. Let’s take a look at a couple of trip reports that feature this effect:

[Trip report of taking a high dose of LSD on an airplane]: So I had what you call “sonder”, a moment of clarity where I realized that I wasn’t the center of the universe, that everyone is just as important as me, everyone has loved ones, stories of lost love etc, they’re the main character in their own movies.

 

That’s when shit went quantum. All these stories begun sinking in to me. It was as if I was beginning to experience their stories simultaneously. And not just their stories, I began seeing the story of everyone I had ever met in my entire life flash before my eyes. And in this quantum experience, there was a voice that said something about Karma. The voice told me that the plane will crash and that I will be reborn again until the quota of my Karma is at -+0. So, for every ill deed I have done, I would have an ill deed committed to me. For every cheap T-shirt I purchased in my previous life, I would live the life of the poor Asian sweatshop worker sewing that T-shirt. For every hooker I fucked, I would live the life of a fucked hooker.

 

And it was as if thousands of versions of me was experiencing this moment. It is hard to explain, but in every situation where something could happen, both things happened and I experienced both timelines simultaneously. As I opened my eyes, I noticed how smoke was coming out of the top cabins in the plane. Luggage was falling out. I experienced the airplane crashing a thousand times, and I died and accepted death a thousand times, apologizing to the Karma God for my sins. There was a flash of the brightest white light imagineable and the thousand realities in which I died began fading off. Remaining was only one reality in which the crash didn’t happen. Where I was still sitting in the plane. I could still see the smoke coming out of the plane and as a air stewardess came walking by I asked her if everything was alright. She said “Yes, is everything alright with YOU?”.

 

— Reddit user I_DID_LSD_ON_A_PLANE, in r/BitcoinMarkets (why there? who knows).

Further down on the same thread, written by someone else:

[A couple hours after taking two strong hits of LSD]: Fast-forward to when I’m peaking hours later and I find myself removed from the timeline I’m in and am watching alternate timelines branch off every time someone does something specific. I see all of these parallel universes being created in real time, people’s actions or interactions marking a split where both realities exist. Dozens of timelines, at least, all happening at once. It was fucking wild to witness.

 

Then I realize that I don’t remember which timeline I originally came out of and I start to worry a bit. I start focusing, trying to remember where I stepped out of my particular universe, but I couldn’t figure it out. So, with the knowledge that I was probably wrong, I just picked one to go back into and stuck with it. It’s not like I would know what changed anyway, and I wasn’t going to just hang out here in the whatever-this-place-is outside of all of them.

 

Today I still sometimes feel like I left a life behind and jumped into a new timeline. I like it, I feel like I left a lot of baggage behind and there are a lot of regrets and insecurities I had before that trip that I don’t have anymore. It was in a different life, a different reality, so in this case the answer I found was that it’s okay to start over when you’re not happy with where you are in life.

 

— GatorAutomator

Let us summarize: Person X takes a lot of LSD. At some point during the trip (usually after feeling that “this trip is way too intense for me now”) X starts experiencing sensory input from what appear to be different branches of the multiverse. For example, imagine that person X can see a friend Y sitting on a couch in the corner. Suppose that Y is indecisive, and that as a result he makes different choices in different branches of the multiverse. If Y is deciding whether to stand up or not, X will suddenly see a shadowy figure of Y standing up while another shadowy figure of Y remains sitting. Let’s call them Y-sitting and Y-standing. If Y-standing then turns indecisive about whether to drink some water or go to the bathroom, X may see one shadowy figure of Y-standing getting water and a shadowy figure of Y-standing walking towards the bathroom, all the while Y-sitting is still on the couch. And so it goes. The number of times per second that Y splits and the duration of the perceived superposition of these splits may be a function of X’s state of consciousness, the substance and dose consumed, and the degree of indecision present in Y’s mind.

The two quotes provided are examples of this effect, and one can find a number of additional reports online with stark similarities. There are two issues at hand here. First, what is going on? And second, can we test it? We will discuss three hypotheses to explain what goes on during PSIS, propose an experiment to test the third one (the Quantum Hypothesis), and provide the results of such an experiment.

Hard-nosed scientists may want to skip to the “Experiment” section, since the following contains a fair amount of speculation (you have been warned).

Three Hypothesis for PSIS: Cognitive, Spiritual, Quantum

In order to arrive at an accurate model of the world, one needs to take into account both the prior probability of the hypothesis and the likelihoods that they predict that one would obtain the available evidence. Even if one prior of yours is extremely strong (e.g. a strong belief in materialism), it is still rational to update one’s probability estimates of alternative hypotheses when new relevant evidence is provided. The difficulty often comes from finding experiments where the various hypotheses generate very different likelihoods for one’s observations.  As we will see, the quantum hypothesis has this characteristic: it is the only one that would actually predict a positive result for the experiment.

The Cognitive Hypothesis

The first (and perhaps least surreal) hypothesis is that PSIS is “only in one’s mind”. When person X sees person Y both standing up and staying put, what may be happening is that X is receiving photons only from Y-standing and that Y-sitting is just a hallucination that X’s inner simulation of her environment failed to erase.

Psychedelics intensify one’s experience, and this is thought to be the result of control interruption. This means that inhibition of mental content by cortical feedback is attenuated. In the psychedelic state, sensory impressions, automatic reactions, feelings, thoughts and all other mental contents are more intense and longer-lived. This includes the predictions that you make about how your environment will evolve. Not only is one’s sensory input perceived as more intense, one’s imagined hypotheticals are also perceived more intensely.

Under normal circumstances, cortical inhibition makes our failed predictions quickly disappear. Psychedelic states of consciousness may be poor at inhibiting these predictions. In this account, X may be experiencing her brain’s past predictions of what Y could have done overlaid on top of the current input that she is receiving from her physical environment. In a sense, she may be experiencing all of the possible “next steps” that she simply intuited. While these simulations typically remain below the threshold of awareness (or just above it), on a psychedelic state they may reinforce themselves in unpredictable ways. X’s mind never traveled anywhere and there is nothing really weird going on. X is just experiencing the aftermath of a specific failure of information processing concerning the inhibition of past predictions.

Alternatively, very intense emotions such as those experienced on intense ego-killing psychedelic experiences may distort one’s perception so much that one begins to suspect that one is perhaps dead or in another dimension. We can posit that the belief that one is not properly connected to one’s brain (or that one is dying) can trigger even stronger emotions and unleash a cascade of further distortions. This positive feedback loop may create episodes of intense confusion and overlapping pieces of information, which later might be interpreted as “seeing splitting universes”.

The Spiritual Hypothesis

Many spiritual traditions postulate the existence of alternate dimensions, additional layers of reality, and hidden spirit pathways that connect all of reality. These traditions often provide rough maps of these realities and may claim that some people are able to travel to such far-out regions with mental training and consciousness technologies. For illustration, let’s consider Buddhist cosmology, which describes 31 planes of existence. Interestingly, one of the core ideas of this cosmology is that the major characteristic that distinguishes the planes of existence is the states of consciousness typical of their inhabitants. These states of consciousness are correlated with moral conditions such as the ethical quality of their past deeds (karma), their relationship with desire (e.g. whether it is compulsive, sustainable or indifferent) and their existential beliefs. In turn, a feature of this cosmology is that it allows inter-dimensional travel by changing one’s state of consciousness. The part of the universe one interacts with is a function of one’s karma, affinities and beliefs. So by changing these variables with meditation (or psychedelic medicine) one can also change which world we exist in.

An example of a very interesting location worth trying to travel to is the mythical city of Shambhala, the location of the Kalachakra Tantra. This city has allegedly turned into a pure land thanks to the fact that its king converted to Buddhism after meeting the Buddha. Pure lands are abodes populated by enlightened and quasi-enlightened beings whose purpose is to provide an optimal teaching environment for Buddhism. One can go to Shambhala by either reincarnating there (with good karma and the help of some pointers and directions at the time of death) or by traveling there directly during meditation. In order to do the latter, one needs to kindle one’s subtle energies so that they converge on one’s heart, while one is embracing the Bodhisattva ethic (focusing on reducing others’ suffering as a moral imperative). Shambhala may not be in a physical location accessible to humans. Rather, Buddhist accounts would seem to depict it as a collective reality built by people which manifests on another plane of existence (specifically somewhere between the 23rd and 27th layer). In order to create a place like that one needs to bring together many individuals in a state of consciousness that exhibits bliss, enlightenment and benevolence. A pure land has no reality of its own; its existence is the result of the states of consciousness of its inhabitants. Thus, the very reason why Shambhala can even exist as a place somewhere outside of us is because it is already a potential place that exists within us.

Similar accounts of a wider cosmological reality can be found elsewhere (such as Hinduism, Zoroastrianism, Theosophy, etc.). These accounts may be consistent with the sort of experiences having to do with astral travel and entity contact that people have while on DMT and other psychedelics in high doses. However, it seems a lot harder to explain PSIS with an ontology of this sort. While reality is indeed portrayed as immensely vaster than what science has shown so far, we do not really encounter claims of parallel realities that are identical to ours except that your friend decided to go to the bathroom rather than drink some water just now. In other words, while many spiritual ontologies are capable of accommodating DMT hyper-dimensional travel, I am not aware of any spiritual worldview that also claims that whenever two things can happen, they both do in alternate realities (or, more specifically, that this leads to reality splitting).

The only spiritual-sounding interpretation of PSIS I can think of is the idea that these experiences are the result of high-level entities such as guardians, angels or trickster djinns who used your LSD state to teach you a lesson in an unconventional way. The first quote (the one written by Reddit user I_DID_LSD_ON_A_PLANE) seems to point in this direction, where the so-called Karma God is apparently inducing a PSIS experience and using it to illustrate the idea that we are all one (i.e. Open Individualism). Furthermore, the experience viscerally portrays the way that this knowledge should impact our feelings of self-importance (by creating a profound feeling of sonder). This way, the tripper may develop a lasting need to work towards peace, wisdom and enlightenment for the benefit of all sentient beings.

Life as a learning experience is a common trope among spiritual worldviews. It is likely that the spiritual interpretations that emerge in a state of psychedelic depersonalization and derealization will depend on one’s pre-existing ideas of what is possible. The atonement of one’s sins, becoming aware of one’s karma, feeling our past lives, realizing emptiness, hearing a dire mystical warning, etc. are all ideas that already exist in human culture. In an attempt to make sense- any sense- of the kind of qualia experienced in high doses of psychedelics, our minds may be forced to instantiate grandiose delusions drawn from one’s reservoir of far-out ideas.

On a super intense psychedelic experience in which one’s self-models fail dramatically and one experiences fear of ego dissolution, interpreting what is happening as the result of the Karma God judging you and then giving you another chance at life can viscerally seem to make a lot of sense at the time.

The Quantum Hypothesis

For the sake of transparency I must say that we currently do not have a derivation of PSIS from first principles. In other words, we have not yet found a way to use the postulates of quantum mechanics to account for PSIS (that is, assuming that the cognitive and spiritual hypothesis are not the case). That said, there are indeed some things to be said here: While a theory is missing, we can at least talk about what a quantum mechanical account of PSIS would have to look like. I.e. we can at least make sense of some of the features that the theory would need to have to predict that people on LSD would be able to see the superposition of macroscopic branches of the multiverse.

Why would being on acid allow you to receive input from macroscopic environments that have already decohered? How could taking LSD possibly prevent the so-called collapse of the wavefunction? You might think: “well, why even think about it? It’s simply impossible because the collapse of the wavefunction is an axiom of quantum mechanics and we know it is true because some of the predictions made by quantum mechanics (such as QED) are in agreement with experimental data up to the 12th decimal point.” Before jumping to this conclusion, though, let us remember that there are several formulations of quantum mechanics. Both the Born rule (which determines the probability of seeing different outcomes from a given quantum measurement) and the collapse of the wavefunction (i.e. that any quantum state other than the one that was measured disappears) are indeed axiomatic for some formulations. But other formulations actually derive these features and don’t consider them fundamental. Here is Sean Carroll explaining the usual postulates that are used to teach quantum mechanics to undergraduate audiences:

The status of the Born Rule depends greatly on one’s preferred formulation of quantum mechanics. When we teach quantum mechanics to undergraduate physics majors, we generally give them a list of postulates that goes something like this:

  1. Quantum states are represented by wave functions, which are vectors in a mathematical space called Hilbert space.
  2. Wave functions evolve in time according to the Schrödinger equation.
  3. The act of measuring a quantum system returns a number, known as the eigenvalue of the quantity being measured.
  4. The probability of getting any particular eigenvalue is equal to the square of the amplitude for that eigenvalue.
  5. After the measurement is performed, the wave function “collapses” to a new state in which the wave function is localized precisely on the observed eigenvalue (as opposed to being in a superposition of many different possibilities).

In contrast, here is what you need to specify for the Everett (Multiple Worlds) formulation of quantum mechanics:

  1. Quantum states are represented by wave functions, which are vectors in a mathematical space called Hilbert space.
  2. Wave functions evolve in time according to the Schrödinger equation.

And that’s it. As you can see this formulation does not employ any collapse of the wavefunction, and neither does it consider the Born rule as a fundamental law. Instead, the wavefunction is thought to merely seem to collapse upon measurement (which is achieved by nearly diagonalizing its components along the basis of the measurement; strictly speaking, neighboring branches never truly stop interacting, but the relevance of their interaction approaches zero very quickly). Here the Born rule is derived from first principles rather than conceived as an axiom. How exactly one can derive the Born rule is a matter of controversy, however. Currently, two very promising theoretical approaches to do so are Quantum Darwinism and the so-called Epistemic Separability Principle (ESP for short, a technical physics term not to be confused with Extra Sensory Perception). Although these approaches to deriving the Born rule are considered serious contenders for a final explanation (and they are not mutually exclusive), they have been criticized for being somewhat circular. The physics community is far from having a consensus on whether these approaches truly succeed.

Is there any alternative to either axiomatizing or deriving the apparent collapse and the Born rule? Yes, there is an alternative: we can think of them as regularities contingent upon certain conditions that are always (or almost always) met in our sphere of experience, but that are not a universal fact about quantum mechanics. Macroscopic decoherence and Born rule probability assignments work very well in our everyday lives, but they may not hold universally. In particular -and this is a natural idea to have under any view that links consciousness and quantum mechanics- one could postulate that one’s state of consciousness influences the mind-body interaction in such a way that information from one’s quantum environment seeps into one’s mind in a different way.

Don’t get me wrong; I am aware that the Born rule has been experimentally verified with extreme precision. I only ask that you bear in mind that many scientific breakthroughs share a simple form: they question the constancy of certain physical properties. For example, Einstein’s theory of special relativity worked out the implications of the fact that the speed of light is observer-independent. In turn this makes the passage of time of external systems observer-dependent. Scientists had a hard time believing Einstein when he arrived at the conclusion that accelerating our frame of reference to extremely high velocities could dilate time. What was thought to be a constant (the passage of time throughout the universe) turned out to be an artifact of the fact that we rarely travel fast enough to notice any deviation from Newton’s laws of motion. In other words, our previous understanding was flawed because it assumed that certain observations did not break down in extreme conditions. Likewise, maybe we have been accidentally ignoring a whole set of physically relevant extreme conditions: altered states of consciousness. The apparent wavefunction collapse and the Born rule may be perfectly constant in our everyday frame of reference, and yet variable across the state-space of possible conscious experiences. If this were the case, we’d finally understand why it seems so hard to derive the Born rule from first principles: it’s impossible.

Succinctly, the Quantum Hypothesis is that psychedelic experiences modify the way one’s mind interacts with its quantum environment in such a way that the world does not appear to decohere any longer from one’s point of view. Our ignorance about the non-universality of the apparent collapse of the wavefunction is just a side effect of the fact that physicists do not usually perform experiments during intense life-changing entheogenic mind journeys. But for science, today we will.

Deriving PSIS with Quantum Mechanics

Here we present a rough (incomplete) sketch of what a possible derivation of PSIS from quantum mechanics might look like. To do so we need three background assumptions: First, conscious experiences must be macroscopic quantum coherent objects (i.e. ontologically unitary subsets of the universal wavefunction, akin to super-fluid helium or Bose–Einstein condensates, except at room temperature). Second, people’s decision-making process must somehow amplify low-level quantum randomness into macroscopic history bifurcations. And third, the properties of our quantum environment* are in part the result of the quantum state of our mind, which psychedelics can help modify. This third assumption brings into play the idea that if our mind is more coherent (e.g. is in a super-symmetrical state) it will select for wavefunctions in its environment that themselves are more coherent. In turn, the apparent lifespan of superpositions may be elongated long enough so that the quantum environment of one’s mind receives records from both Y-sitting and Y-standing as they are overlapping. Now, how credible are these three assumptions?

That events of experience are macroscopic quantum coherent objects is an explanation space usually perceived as pseudo-scientific, though a sizable number of extremely bright scientists and philosophers do entertain the idea very seriously. Contrary to popular belief, there are legitimate reasons to connect quantum computing and consciousness. The reasons for making this connection include the possibility of explaining the causal efficacy of consciousness, finding an answer to the palette problem with quantum fields and solving the phenomenal binding problem with quantum coherence and panpsychism.

The second assumption claims that people around you work as quantum Random Number Generators. That human decision-making amplifies low-level quantum randomness is thought to be likely by at least some scientists, though the time-scale on which this happens is still up for debate. The brain’s decision-making is chaotic, and over the span of seconds it may amplify quantum fluctuations into macroscopic differences. Thus, people around you making decisions may result in splitting universes (e.g. “[I] am watching alternate timelines branch off every time someone does something specific.” – GatorAutomator’s quote above). Presumably, this assumption would also imply that during PSIS not only people but also physics experiments would lead to apparent macroscopic superposition.

With regards to the third assumption: widespread microscopic decoherence is not, apparently, a necessary consequence of the postulates of quantum mechanics. Rather, it is a very specific outcome of (a) our universe’s Hamiltonian and (b) the starting conditions of our universe, i.e. Pre-Inflation/Eternal Inflation/Big Bang. (A Ney & D Albert, 2013). In principle, psychedelics may influence the part of the Hamiltonian that matters for the evolution of our mind’s wavefunction and its local interactions. In turn, this may modify the decoherence patterns of our consciousness with its local environment and- perhaps- ultimately the surrounding macroscopic world. Of course we do not know if this is possible, and I would have to agree that it is extremely far-fetched.

The overall picture that would emerge from these three assumptions would take the following form: both the mental content and raw phenomenal character of our states of consciousness are the result of the quantum micro-structure of our brains. By modifying this micro-structure, one is not only altering the selection pressures that give rise to fully formed experiences (i.e. quantum darwinism applied to the compositionality of quantum fields) but also altering the selection pressures that determine which parts of the universal wave-function we are entangled with (i.e. quantum darwinism applied to the interactions between coherent objects). Thus psychedelics may not only influence how our experience is shaped within, but also how it interacts with the quantum environment that surrounds it. Some mild psychedelic states (e.g. MDMA) may influence mostly the inner degrees of freedom of one’s mind, while other more intense states (e.g. DMT) may be the result of severe changes to the entanglement selection pressures and thus result in the apparent disconnection between one’s mind and one’s local environment. Here PSIS would be the result of decreasing the rate at which our mind decoheres (possibly by increasing the degree to which our mind is in a state of quantum confinement). In turn, by boosting one’s own inner degree of quantum superposition one may also broaden the degree of superposition acceptable at the interface with one’s quantum environment. One could now readily take in packets of information that have a wider degree of superposition. In the right circumstances, this may result in one’s mind experiencing information seemingly coming from alternate branches of the multiverse. In other words, the trick to PSIS both in the Quantum and the Spiritual Hypothesis is the same (though for different reasons): travel to other dimensions by being the change that you wish to see in the world. You need to increase your own degree of quantum coherence so that you become able of interacting with a more coherent quantum environment.

If this were the case it would call for a conceptual revolution. We would stop thinking of “our universe” as the “place we inhabit” and instead think of it as “the quantum environment our consciousness can interface with”. Perhaps life as we know it exists in a quantum niche that can give rise to embodied biological beings, but the universal wavefunction also contains alien state-spaces in which the patterns of entanglement work in different ways and lead to different evolutionary histories. Our minds evolved to interact with the particular environment that leads to the sustenance of our everyday macroscopic world. Our consciousness is shaped to fit in here, and it has a symbiotic relationship with the body that hosts it.

Now, how do we go about testing the quantum hypothesis? Following previous work on psychophysics for psychedelic research, the main idea will be to show that people on psychedelics can achieve something that sober individuals can’t. In this case, the task is designed to be impossible if one is only receiving input from one world (as predicted by the cognitive hypothesis). Only if PSIS is the result of simultaneously experiencing input from the several nearby branches that correspond to different outcomes of quantum events can the task be successfully performed.

The Experiment

Setup

The task in question involves three white little squares on a black background. At each time step (~16 milliseconds) the squares move one pixel down, and some number of pixels horizontally. While the downward movement is constant, the change in the horizontal direction is chosen randomly. The horizontal movement of one of the squares is being randomized on the fly with a Quantum Random Number Generator (qRNG**). We call this the quantum square. The horizontal movement of the other two squares follows a path that was determined at the beginning of each trial by a Classical Random Number Generator (cRNG***). We will refer to these two squares as the classical squares. The task for the participant is to identify which of the squares is the “odd one out” (i.e. the quantum square). Here is an infographic that explains the experimental setup:

infografic_of_experiment.png

In order to make the horizontal movement seem very chaotic and, at times even dramatic, it is randomized by choosing a horizontal change of either -4, -1, 1 or 4 pixels. By using a jump of 4 pixels (rather than e.g. 2) the squares sometimes seem to advance very quickly in one direction. The rationale for doing this was to make the predicted effect (assuming the Quantum Hypothesis) more noticeable – we want low probability paths that are extremely different than the typical path and in turn make it easy to distinguish between single paths and the superposition of many of the possible paths at once.

Critically, the starting position of the quantum square (whether left, center or right) for each of the trials during an experiment is obtained with a cRNG at the very beginning of the experiment. Why not use a qRNG? If we randomized the position of the quantum square using a qRNG we might be sabotaging ourselves: participants might see a superposition of classical and quantum squares on each of the three positions and thus not see any square behave differently than the other two. Thus, for the experiment to work (under the assumption that PSIS is explained by the Quantum Hypothesis) the only aspect that should be randomized using a qRNG is the horizontal displacement of the quantum square.

Since the numbers coming from the qRNG need to be requested over the internet, it is also crucial that we try to obtain fresh quantum random numbers as frequently as possible without messing up the flow of the experiment. Thus, a request for new quantum random numbers is made as often as possible (usually every 1 to 2 seconds). Since internet connections, server response time and network reliability varies from moment to moment, it is inevitable that once in a while we will have to stop the downward movement of all three squares as we wait for the next batch of random numbers. In principle this should have no negative effect at all in the ability to choose the odd-one-out. This problem merely interrupts the flow of the experiment, but it should not invalidate the results. We kept track of the number of trials that were interrupted for this reason (which you will find recorded in the “Network” column of the table of results down below).

Participants were instructed to:

  1. Clone the Github code for the experiment, and to open it up in a Chrome browser.
  2. Make sure that they have a reliable high-speed internet connection.
  3. Record the pertinent facts (time of experiment, substance, dose and time of intake).
  4. Use a sensorially-minimized room for the experiment (such as a closed bathroom), turn off the lights, ask anyone who is in the house to be quiet and mind their own business, and wear earplugs.
  5. Meditate for a couple of minutes before conducting the experiment and to try to induce PSIS voluntarily.
  6. Choose the odd-one-out (i.e. the quantum square) on each trial, for a total of at least 30 trials.

Under this setup, what should the participants expect to see if the Quantum Hypothesis is correct?

Predicted Psychedelic Perception

The pictures above illustrate how the experiment looks like to three different observers. On the left we see what a sober participant would see at a given time during a trial. The squares are moving downwards but since we are taking a snapshot in time they seem to be static. The image on the center shows what we would expect out of a generic psychedelic experience. In brief, the typical control interrupt action of psychedelics (i.e. tracers) effectively allows you to see more clearly the path that the squares have traced over time, but it would not allow you to notice any difference between the classic and quantum squares. The image on the right shows what we would expect to see if the Quantum Hypothesis is correct and PSIS is actually about perceiving nearby branches of the Everett multiverse. Notice how the center square is visibly different than the other two: it consists of the superposition of many alternative paths the square took in slightly different branches.

Implications of a Positive Result: Quantum Mind, Everett Rescue Missions and Psychedelic Cryptography

It is worth noting that if one can indeed reliably distinguish between the quantum and the classical squares, then this would have far-reaching implications. It would indeed confirm that our minds are macroscopic quantum coherent objects and that psychedelics influence their pattern of interactions with their surrounding quantum environment. It would also provide strong evidence in favor of the Everett interpretation of quantum mechanics (in which all possibilities are realized). More so, we would not only have a new perspective on the fundamental nature of the universe and the mind, but the discovery would just as well suggest some concrete applications. Looking far ahead, a positive outcome is that this knowledge would encourage research on the possible ways to achieve inter-dimensional travel, and in turn instantiate pan-Everettian rescue missions to reduce suffering elsewhere in the multiverse. The despair of confirming that the quantum multiverse is real might be evened out by the hope of finally being able to help sentient beings trapped in Darwinian environments in other branches of the universal wavefunction. Looking much closer to home, a positive result would lead to a breakthrough in psychedelic cryptography (PsyCrypto for short), where spies high on LSD would obtain the ability to read information that is secretly encoded in public light displays. More so, this particular kind of PsyCrypto would be impervious to discovery after the fact. Even if given an arbitrary amount of time and resources to analyze a video recording of the event, it would not be possible to determine which of the squares was being guided by quantum randomness. Unlike other PsyCrypto techniques, this one cannot be decoded by applying psychedelic replication software to video recordings of the transmission.

Results

Three persons participated in the experiments: S (self), A, and B. [A and B are anonymous volunteers; for more information read the legal disclaimer at the end of this article]. Participant S (me) tried the experiment both sober and after drinking 2 beers. Participant A tried the experiment sober, on LSD, 2C-B and a combination of the two. And participant B tried the experiment both sober and on DMT. The total number of trials recorded for each of the conditions is: 90 for the sober state, 275 for 2C-B, 60 for DMT, 120 for LSD and 130 for the LSD/2C-B combo. The overall summary of the results is: chance level performance outcomes for all conditions. You can find the breakdown of results for all experiments in the table shown below, and you can download the raw csv file from the Github repository.

results_to_show
Columns from left to right: Date, State (of consciousness), Dose(s), T (time), #Trials (number of trials), Correct (number of trials in which the participant made the correct choice), Percent correct (100*Correct/Trials), Participants (S=Self, A/B=anonymous volunteers), Requests / Second (server requests per second), Network (this tracks the number of times that a trial was temporarily paused while the browser was waiting for the next batch of quantum random numbers), Notes (by default the squares left a dim trail behind them and this was removed in two trials; by default the squares were 10×10 pixels in size, but a smaller size was used in some trials).

I thought about visualizing the results in a cool graph at first, but after I received them I realized that it would be pointless. Not a single experiment reached a statistically significant deviation from chance level; who is interested in seeing a bunch of bars representing chance-level outcomes? Null results are always boring to visualize.****

In addition to the overall performance in the task, I also wanted to hear the following qualitative assessment from the participants: did they notice any difference between the three squares? Was there any feeling that one of them was behaving differently than the other two? This is what they responded when I asked them: “I could never see any difference between the squares, so it felt like I was making random choices” (from A) and “DMT made the screen look like a hyper-dimensional tunnel and I felt like strange entities were watching over me as I was doing the experiment, and even though the color of the squares would fluctuate randomly, I never noticed a single square behaving differently than the other two. All three seemed unique. I did feel that the squares were being controlled by some entity, as if with an agency of their own, but I figured that was made up by my mind.” When I asked them if they noticed anything similar to the image labeled Psychedelic view as predicted by the Quantum Hypothesis (as shown above) they both said “no”.

Discussion

It is noteworthy that neither participant reported an experience of PSIS during the experiments. Even without an explicit and noticeable input superposition, PSIS may turn out to be a continuum rather than a discrete either-or phenomenon. If so, we might still expect to see some deviations from chance. This may be analogous to how in blindsight people report not being able to see anything and yet perform better than chance in visual recognition tasks. That said, the effect size of blindsight and other psychological effects in which information is processed unbeknownst to the participant tend to be very small. Thus, in order to confirm that quantum PSIS is happening below the threshold of awareness we may require a much larger number of samples (though still a lot smaller than what we would need if we were aiming to use the experiment to conduct Psi research with or without psychedelics, again, due to the extremely small effect sizes).

Why did the experiment fail? The first possibility is that it could be that the Quantum Hypothesis is simply wrong (and possibly because it requires false assumptions to work). Second, perhaps we were simply unlucky that PSIS was not triggered during the experiments; perhaps the set, setting, and dosages used simply failed to produce the desired effect (even if the state does indeed exist out there). And third, the experiment itself may be wrong: the second-long delays between the server requests and the qRNG may be too large to produce the effect. In the current implementation (and taking into account network delays), the average delay between the moment the quantum measurement was conducted and the moment it appeared on the computer screen as horizontal movement was .9 seconds (usually in the range of .4 to 1.4 seconds, given an average of 1/2 second lag due to the number buffering and 400 milliseconds in network time). This problem would be easily sidestepped if we used an on-site qRNG obtained from hardware directly connected to the computer (as is common in psi research). To minimize the delay even further, the outcomes of the quantum measurements could be delivered directly to your brain via neuroimplants.

Conclusion

If psychedelic experiences do make you interact with other realities, I would like to know about it with a high degree of certainty. The present study was admittedly a very long shot. But to my judgement, it was totally worth it. As Bayesians, we reasoned that since the Quantum Hypothesis can lead to a positive result for the experiment but the Cognitive Hypothesis can’t, then a positive result should make us update our probabilities of the Quantum Hypothesis a great deal. A negative result should make us update our probabilities in the opposite direction. That said, the probability should still not go to zero since the negative result could still be accounted for by the fact that participants failed to experience PSIS, and/or that the delay between the quantum measurement and the moment it influences the movement of the square in the screen is too large. Future studies should try to minimize these two possible sources of failure. First, by researching methods to reliably induce PSIS. And second, by minimizing the delay between branching and sensory input.

In the meantime, we can at least tentatively conclude that something along the lines of the Cognitive Hypothesis is the most likely case. In this light, PSIS turns out to be the result of a failure to inhibit predictions. Despite losing their status as suspected inter-dimensional portal technology, psychedelics still remain a crucial tool for qualia research. They can help us map out the state-space of possible experiences, allow us to identify the computational properties of consciousness, and maybe even allow us to reverse engineer the fundamental nature of valence.


[Legal Disclaimer]: Both participants A and B contacted me some time ago, soon after the Qualia Computing article How to Secretly Communicate with People on LSD made it to the front page of Hacker News and was linked by SlateStarCodex. They are both experienced users of psychedelics who take them about once a month. They expressed their interest in performing the psychophysics experiments I designed, and to do so while under the influence of psychedelic drugs. I do not know these individuals personally (nor do I know their real names, locations or even their genders). I have never encouraged these individuals to take psychedelic substances and I never gave them any compensation for their participation in the experiment. They told me that they take psychedelics regularly no matter what, and that my experiments would not be the primary reason for taking them. I never asked them to take any particular substance, either. They just said “I will take substance X on day Y, can I have some experiment for that?” I have no way of knowing (1) if the substances they claim they take are actually what they think they are, (2) whether the dosages are accurately measured, and (3) whether the data they provided is accurate and isn’t manipulated. That said, they did explain that they have tested their materials with chemical reagents, and are experienced enough to tell the difference between similar substances. Since there is no way to verify these claims without compromising their anonymity, please take the data with a grain of salt.

* In this case, the immediate environment would actually refer to the quantum degrees of freedom surrounding our consciousness within our brain, not the macroscopic exterior vicinity such as the chair we are sitting on or the friends we are hanging out with. In this picture, our interaction with that vicinity is actually mediated by many layers of indirection.

** The experiment used the Australian National University Quantum Random Numbers Server. By calling their API every 1 to 2 seconds we obtain truly random numbers that feed the x-displacement of the quantum square. This is an inexpensive and readily-available way to magnify decoherence events into macroscopic splitting histories in the comfort of your own home.

*** In this case, Javascript’s Math.random() function. Unfortunately the RGN algorithm varies from browser to browser. It may be worthwhile to go for a browser-independent implementation in the future to guarantee a uniform high quality source of classical randomness.

**** As calculated with a single tailed binomial test with null probability equal to 1/3. The threshold of statistical significance at the p < 0.05 level is found at 15/30 and for p < 0.001 we need at least 19/30 correct responses. The best score that any participant managed to obtain was 14/30.

Information-Sensitive Gradients of Bliss

“Normal” or so-called “euthymic” people are inclined to judge that hyperthymics/”optimists” view the world through rose-tinted spectacles. Their central information-processing system is systematically biased. Conversely, hyperthymics see the rest of us as unreasonably pessimistic. Chronic depressives, on the other hand, may view euthymic and hyperthymic people alike as deluded. Indeed victims of melancholic depression may feel the world itself is hateful and meaningless. For evolutionary reasons (cf. rank theory), a genetic predisposition to hyperthymia and euphoric unipolar mania are rarer than dysthymia or unipolar depression. Most of us fall somewhere in between these temperamental extremes, though the distribution is skewed to the southern end of the axis. Genetics plays a key role in determining our hedonic set-point, as does the ceaseless interplay between our genes and environmental stressors. Inadequate diet, imprudent drug use, and severe, chronic, uncontrolled stress can all reset an emotional thermostat at a lower level than its previous norm – though that norm may be surprisingly robust. Unlike recreational euphoriants, delayed-onset antidepressants may restore a lowered set-point to its former norm, or even elevate it. Antidepressants may act to reverse stress-induced hypertrophy of the basolateral amygdala and contrasting stress-induced dendritic atrophy in the hippocampus. Yet no mood-brightener currently licensed for depression reliably induces permanent bliss, whether information-signalling or constant, serene or manic. A genetically-determined ceiling stops our quality of life as a whole getting better.

 

Is the future of mood and motivation in the universe destined to be an endless replay of life’s evolutionary past? Are the same affective filters that were genetically adaptive for our hominid ancestors likely to be retained by our transhuman successors? Will superintelligent life-forms really opt to preserve the architecture of the primordial hedonic treadmill indefinitely? In each case, probably not, though it’s controversial whether designer drugs, neuroelectrodes or gene therapies will make the biggest impact on recalibrating the pleasure-pain axis. In the long-run, perhaps germline genetic engineering will deliver the greatest global enhancement of emotional well-being. For a reproductive revolution of designer babies is imminent. Thanks to genomic medicine, tomorrow’s parents will be able to choose the genetic make-up and personality of their offspring. Critically, parents-to-be will be able to select the emotional dial-settings of their progeny rather than play genetic roulette. In deciding what kind of children to create, tomorrow’s parents will (presumably) rarely opt for dysfunctional, depressive and malaise-ridden kids. Quite aside from the ethical implications of using old corrupt code, children who are temperamentally happy, loving and affectionate are far more enjoyable to bring up.

 

The collective outcome of these individual parental genetic choices will be far-reaching. In the new era of advanced biotechnology and reproductive medicine, a combination of designer drugs, autosomal gene therapies and germline interventions may give rise to a civilisation inhabiting a state-space located further “north” emotionally than present-day humans can imagine or coherently describe. Gradients of heritable, lifelong bliss may eventually become ubiquitous. The worst post-human lows may be far richer than the most sublime of today’s peak experiences. Less intuitively, our superwell descendants may be constitutionally smarter as well as happier than unenriched humans. Aided by synthetic enhancement technologies, fine-textured gradients of intense emotional well-being can play an information-signalling role at least as versatile and sophisticated as gradients of emotional ill-being or pain-sensations today. Simplistically, it may be said that posterity will be “permanently happy”. However, this expression can be a bit misleading. Post-humans are unlikely to be either “blissed out” wireheads or soma-addled junkies. Instead, we may navigate by the gradients of a multi-dimensional compass that’s designed – unlike its bug-ridden Darwinian predecessor – by intelligent agents for their own ends.

 

– Life in the Far North: An Information-Theoretic Perspective on Heaven by David Pearce

 

Algorithmic Reduction of Psychedelic States

Only when sexual choice favored the reportability of our subjective experiences- with the emergence of the mental clearing-house we call consciousness- did our strangely promiscuous introspection abilities emerge, such that we seem to have instant conscious access to such a range of impressions, ideas, and feelings. This may explain why philosophical writing about consciousness so often sounds like love poetry- philosophers of mind, like lovesick teenagers, dwell upon the redness of the rose, the emotional urgency of music, the soft warmth of skin, and the existential loneliness of the self. The philosophers wonder why such subjective experiences exist, given that they seem irrelevant to our survival prospects, while the lovesick teenagers know perfectly well that their romantic success depends, in part, on making a credible show of aesthetic sensitivity to their own conscious pleasures.

The Mating Mind: How Sexual Choice Shaped the Evolution of Human Nature (pg. 365) by Geoffrey F. Miller

A Darwinian Set and Setting

According to The Mating Mind, human sexual selection favors particular fitness-indicating traits, both physical and mental. In the context of mental traits, we have verbal and introspective abilities, agreeableness, conscientiousness, openness to experience, low neuroticism and extroversion. No matter how verbally capable and introspective a given person is, unless that is balanced with some degree of agreeableness, conscientiousness, etc. the person will not be all that attractive. But, when all else is being held equal, stronger verbal and introspective abilities are favored. Teenagers, arguably, know this best of all: courtship is intensely verbal.

Our minds evolved in a Darwinian environment. If people like Miller are right in thinking that language evolved as a fitness indicator, we are right to expect that the way we think and verbalize is biased to be impressive to the members of the opposite sex during courtship. Powerful introspective abilities, as it were, can make one’s language seem deeper, more romantic, and even at an entirely different level than that of one’s peers. In this backdrop of sexual choices and judgements, it is not surprising that humans would develop ever-increasing verbal and introspective capacities. At some point everyday life could not present sufficient opportunities for people, especially males, to show off their own abilities. And as these abilities increased over time, culture was forced to invent handicaps so that people could display their top capabilities. Over time, elaborate and competitive handicaps were integrated into the culture. Even verbal and introspective abilities at the top of the scale can still be compared side by side by using carefully selected handicaps: for example, poetry is exactly that; rhyme, rhythm and meter make it easier for the best poets to show off their excellent abilities. The handicaps adjust to the maximum level of competence in the population.

The space of handicaps that are used to show off traits that are reliable indicators of fitness is very large. From Greek Symposiums to modern day Frat Parties, Western civilization has embraced a niche subculture that uses chemical handicaps as a means to display verbal, social and creative skills. If you can philosophize after drinking a gallon of wine, or stay capable of managing the playlist after 16 cheap cans of beer, you are showing off your biological robustness. Clearly, many of our ancestors were capable of impressing potential sexual mates with a mixture of booze, loud music and stunning philosophical conversations.

One could argue that psychedelics have come to disrupt our traditional games of handicaps. “Sure you can drink a bottle of tequila and sing in a band, but can you take three hits of acid and tell me what your experience reveals about the intrinsic nature of consciousness?” Psychedelics are, in a way, a cultural hyper-stimulus that presents the most difficult and interesting handicap currently in existence for verbal and introspective abilities.

Cultures can have an allergic reaction to the states of consciousness that these agents can disclose; people are afraid that psychedelic users will discover something that they themselves don’t know. Notably, psychedelicists have been both demonized and deified since the 60s. Sure, these researchers became extremely open minded, and in many ways weird. But, above all, they became extremely interesting people. And interesting people who challenge the current games of status can cause cultural allergic reactions.

Every acid head and psychedelic researcher has a pet theory of what these compounds are really doing in one’s mind. Many of these folk theories about the effects of psychedelics involve ontologies that currently have little scientific support (such as souls, thought fields, spirit worlds, archetypes, alien conspiracies, and so on). Although we cannot rule out explanations of this sort out of hand, the ontologies themselves are so abstract and poorly defined that we cannot accept them as useful forms of reductions. That said, their future versions will be more interesting. It is likely that committed, rational, spiritual psychedelic users will formalize models of this sort at some point. Rather than talking about a “spirit world,” they will talk about “mind-independent extra-dimensional space that consciousness can access in altered states” and then go on to define the differential equations that govern consciousness’s interactions with this space. When this happens, we will be in a much better position to assess the validity of these models, test the reality of those spaces, and perhaps even recruit the extra-dimensional inhabitants of these worlds for computational tasks.

Psychedelic experiences drastically increase people’s introspection, capacity for deep aesthetic appreciation, while at the same time increasing their ability to entertain unusual ideas. Insofar as the selection pressures of our introspective abilities have been heavily biased towards courtship ability, it is not surprising that people tend to immediately cast self-enhancing, life-affirming and magical narratives into their interpretations of their personal psychedelic experiences. After all, having a very interesting story to tell is highly praised during courtship. Are people’s psychedelic narratives a modern day form of the peacock’s tail? While psychedelic talk does not yet form part of any mainstream game of courtship, I envision this changing in the next decades. Undoubtedly, the most insightful, sound, and scientifically rigorous members of the Super-Shulgin Academy will attract attention, status, resources and… desirable mates.

What is the deep structure of psychedelic experiences?

Psychedelics seem to have a generalized effect on one’s consciousness. At minimum, we could talk of experience amplification. Without delving into specifics, psychedelics introduce spontaneous activity into our consciousness that our mind is compelled to integrate somehow. Our state of consciousness changes dynamically as our mind adjusts itself to the incoming stimulation. The result is tightly dependent on the interplay between our brain anatomy, motivational system and the actual changes to the micro-structure of consciousness induced by LSD.

As John Lilly noted in light of his psychedelic experiences: “in the province of the mind, what one believes to be true is true or becomes true, within certain limits to be found experientially and experimentally. These limits are further beliefs to be transcended. In the mind, there are no limits…”.* While there are reasons not to take this literally, we have grounds for claiming that a large number of limits on our experience are placed there by our deeply held beliefs and attitudes. The space of possible LSD experiences that a single individual can experience is much larger than what said individual will typically be able to explore in practice. Many limits are imposed by his or her beliefs and background assumptions, rather than by physiology per se. Social cognition is a profound attractor in psychedelic experiences. “What will I say about this? What would this person think about this experience? etc.” are captivating thoughts. However, they occupy valuable mental space. And the thick mental judgements that people naturally focus on come with large conceptual and emotional baggage that taints the experience. Meditators, philosophers and scientists are more likely to set aside some time during their explorations to delve more deeply into what the energy introduced by LSD can produce in one’s consciousness.

After extreme training and tens (or hundreds) of trips, dedicated psychonauts will discover qualities that all of the trips share. Most people will likely experience a variant of Lilly’s realization that whatever you believe can be perceived as true during psychedelic experiences. Lilly emphasized the limitless quality of the mind, but one must wonder: If one can experience as true anything conceivable, are we not, then, limited by what we can conceive? No matter how much time one spends with an open mind waiting for new and interesting ideas to take shape, one cannot know the nature of what one has not yet even conceived of.

It may be true that we will always find fundamental limits that cannot be overcome. There are fundamental physiological constraints to the possible configurations of our consciousness, and arguably, chemical agents, while capable of expanding the space of possibilities, will not automatically give access to all possible states of consciousness. As future research is likely to show, 2C-B and LSD probably facilitate slightly different kinds of thoughts and experiences. Thus the limits of our mind are at least to a large extent the result of our physiology. Memes and meditation can only go so far.

In addition to physiological limits, the structure of the state-space of qualia is itself a constraint on what can and cannot be experienced. To the extent that psychedelic states enable the exploration of a larger space of possible experiences, we are more likely while on psychedelics to find states of consciousness that demonstrate fundamental limits imposed by the structure of the state-space of qualia. In normal everyday experience we can see that yellow and blue cannot be mixed (phenomenologically), while yellow and red can (and thus deliver orange). This being a constraint of the state-space of qualia itself is not at all evident, but it is a good candidate and many introspective individuals agree. On psychedelic states one can detect many other rules like that, except that they operate on much higher-dimensional and synesthetic spaces (E.g. “Some feelings of roughness and tinges of triangle orange can mix well, while some spiky mongrels and blue halos simply won’t touch no matter how much I try.” – 150 micrograms of LSD).

One of the objectives of Qualia Computing is to define the state space of possible experiences and the interdependencies between them. While normal everyday states of consciousness are important datapoints, I predict that the bulk of the most useful information will come from studying the behavior and mechanics of consciousness in radically altered states. To this end, however, we should focus on simple explanations that can be generalized to all psychedelic experiences.

Starting Background Assumptions

For the purpose of this article I will assume that direct realism, in all of its guises, is wrong. That is, I will assume that any mind-independent object can only be experienced indirectly. What we experience is not the object (or beings) themselves, but a qualia-furnished representation entirely contained within one’s mind (this is often called the simulationist account of perception). Furthermore, I will also assume that the behavior of  the universe can be fully described with the Standard Model of physics (or a future version of it).

In what is to follow I will propose, as a first approximation, an algorithmic reduction of psychedelic states; I will propose a set of changes in our consciousness that (1) is as simple and assumption-free as possible, and (2) can be used to reconstruct as many psychedelic effects as possible.

Two Kinds of Reduction

The word reduction in the context of philosophy of science has a lot of historical and conceptual baggage. In the context of this article, I will use the word in the following sense: We say that a property of a given phenomenon X reduces to Y if we can fully explain X’s property by referencing Y’s properties. X can be a physical phenomenon, a mathematical construct or even an experience. Y is an ontology with interaction rules, which allow the pieces of said ontology to interact with one another. We do not commit to the idea that Y itself needs to be the fundamental (or true) ontology of X. But we do want to make sure that Y is at least more fundamental than X in some appropriate sense. So what kind of ontologies can Y have? In the context of philosophy of mind, reductions usually attempt to account for not only the behavior of consciousness but also for its underlying nature. Thus, functionalism is both a reduction program as well as a philosophical take on what the mind fundamentally is.

Thankfully, we do not need to commit to any ontology in order to advance a particular style of reduction. Reductions are useful regardless: they reduce the amount of information needed to describe a phenomenon, and if accurate, they can also make useful predictions. Finally, these reductions can provide hints for how to bridge different areas of science; by identifying isomorphisms or even further reductions, entire fields can cross-pollinate once their respective reductions are compatible (such as biology and chemistry or chemistry and physics).

Atomistic Reduction

For most intents and purposes, science relies on a particular kind of reduction that we can call atomistic reduction. This style of reduction focuses on explaining macroscopic phenomena by modeling it as the emergent structure of many particles interacting with one another at a much finer level of resolution. Even though this style of reduction is usually fruitful (e.g. thermodynamics), it can be counter-productive to assume in some situations. An extreme case would be the quantum computer. If states of superposition help a computer find an answer, it will be hard to explain the behavior of said superposition by postulating that it actually reduces to little particles interacting using simple rules. The model could in principle be worked out, but at the cost of very high complexity. It would be much easier to start with a quantum-mechanical ontology that allows the superposition of wavefunctions! Then what is left is to reduce the rest of the computer to quantum mechanics (which is possible, given that particle models and quantum mechanical models usually converge at the macroscopic limit).

It is tempting to try to reduce the properties of the mind (including psychedelic states) using an atomistic reduction. Unfortunately, the phenomenal binding problem adds a complication to this reduction. Rather than discussing (right now) whether an atomistic (and thus classical) account will ultimately be capable of modeling conscious experience, we will side-step this problem by using a different style of reduction. We will focus only on the algorithmic level of analysis.

Algorithmic Reduction

Without assuming a fundamental ontology (atoms, fields, wavefunctions, etc.) we can still make a lot of progress. We can restrict ourselves to identifying what we call an algorithmic reduction: find a set of procedures, state-spaces, shapes and overall main effects out of which you can reconstruct as much of the observed behavior as possible.

In reality, every reduction is, at least in part, an algorithmic reduction. By specifying a particular ontology such as “particles”, we restrict the shape of our possible reductions. By keeping the reduction at the algorithmic level, we allow arbitrary ontologies to be the final explanations (then depending on actual empirical measurements). The main criteria for success still includes (1) the overall complexity of the model, and (2) the explanatory power of the model. In other words, how easily and precisely does the model reconstruct the behavior of our experiences?

A Zoo of Psychedelic Effects

PsychonautWiki has a detailed and fascinating taxonomy of reported psychedelic visual effects. One could argue that all of these countless effects are completely unique. As a philosopher might put it, these effects may ultimately be qualitatively irreducible to one another. But what are the chances that a simple molecule would happen to trigger a whole zoo of unrelated effects? As a form of reduction, nothing is achieved by stating that every effect is its own unique phenomenon.

Four Principal Operators: A Simple Algorithmic Model of Psychedelic States

In trying to account for the strange effects of psychedelics, we will aim to propose as few main effects as possible and then use these effects, and their interactions, to derive all of the remaining effects. By doing this, we will be algorithmically reducing the complex phenomena found in psychedelic states. In turn, this will allow us to increase our understanding of the source of information processing benefits provided by psychedelic states, and to derive new and exciting applications of such states. Additionally, by identifying a good algorithmic reduction, we might be able to refine the states themselves, to amplify their benefits while minimizing the drawbacks.

The model we will treat for now has four main effects, and with those four effects we will attempt to reconstruct the rest. These effects are:

  1. control interruption
  2. drifting
  3. eidetic hallucinations/enhanced pattern recognition/apophenia
  4. symmetry detection/symmetry propagation

 

Symmetric_pattern_drifting

Symmetric drifting. What would Giulio Tononi think about this? Source.

Control interruption is the simplest and most universal psychedelic effect. It enables the buildup of qualia in one’s consciousness. People say that psychedelics are intense, deep, bright, etc. Every experience, whether a thought, a smell or an emotion, seems to be both stronger and longer-lasting on psychedelics.

Things seem more lively, and this is not because a switch is suddenly turned on and your experience of the current input is amplified. Rather, one seems to be experiencing a gentle overlap of many previous frames (and feature bundles) of one’s experience. In medium to high doses, this can give rise to solid frame stacking. In turn, the buildup of sensation creates complex patterns of interference:

In order for a perceptual system to transition from a linear to a nonlinear state, negative feedback control must be subverted. If control is entirely removed then perception becomes totally unconstrained, leaving a system that is quickly overloaded with too much information. If control is placed in a state where it is partially removed or in a toggled superposition where it is alternately in control and not in control over the period of a rapid oscillation, then the constraints of linear sensory throughput will bifurcate into a nonlinear spectrum of multi-stable output with signal complexity correlating to the functional interruption of control. Common entheogenic wisdom states that you must relinquish control and submit to the experience to get the most out of psychedelics. Holding onto control causes negative experiences and amplifies anxiety; letting go of control and embracing unconstrained perception is a central psychedelic tenet. This demonstrates that psychedelics directly subvert feedback control over linear perception to promote states of unconstrained consciousness.

– Control Interrupt Model of Psychedelic Action, PIT

Control interruption explains a large variety of effects, including the increase in the raw intensity (and amount) of experience, as well as the longer lasting positive afterimages (and thus tracers). Here we show a simple example of this effect. Consider the “original stimuli” to be what one experiences under a sober state. Likewise, consider the 9 squares to be different states of consciousness brought up by various psychotropic combinations.

oscillation_1_5_5_75_5_1_10_0.05_signal_

Original

The 9 gifs you see above are simulations of control interruption using a simple feedback model (which we will describe in detail in a later article). The x-axis has different “echo strengths” while the y-axis has varying feedback strengths. These are two of the model parameters. Notice that the lower right corner is a credible rendition of something that people describe as moments of eternity. These are experiences where time seems to stop due to an over-saturation of regular and ordered qualia.

When considering the following effects, don’t forget that control interruption is also going on all the time. The stranger the psychedelic effect, the more intense it is.

Drifting is responsible for breathing walls, animated plants, feelings of boundary dissolution, merging and melting, and so on. Small amounts of drifting usually involve individual feature detachments from perceptual objects (such as the color and shape of a chair becoming dissociated). Medium amounts of drifting make textures flow constantly. If one’s experience was made of tiny magnetic gears that are usually aligned in a coherent way, drifting would result from increasing the overall energy of the system. Thus, the visual system is constantly descending to “more aligned local states” while incoming energy is constantly adding noise and destroying all of the alignment progress made.

White_Wolf_Drinking_Water_by_Anonymous

Source: PsychonautWiki, Anonymous

A particularly salient aspect of drifting is that features and locally-bound fragments of experience can drift in any direction in 3D. Pieces of the wall don’t only drift left and right, but also forwards and backwards.

On high doses of psychedelics or synergistic combinations of dissociatives and psychedelics (e.g. LSD + nitrous, 2C-B + ketamine, etc.), drifting can become all-encompassing. A critical point is crossed when one loses the capacity to define a mainframe of experience (the dominating orientation-giving island of locally bound experience that we use as a reference point). When this happens, one feels like one cannot tell left from right, or up from down. One simply experiences a constant chaotic flow of experience. In some cases one can even spot interesting instabilities that resemble actual physical instabilities found in fluid mechanics (such as the Kelvin–Helmholtz instability).

Drifting does not occur in isolation, and its mechanics are dependent on the particular set and setting in which the psychedelic experience is developing. From a computational point of view, drifting can be useful because it allows a quick exploration of the state-space of possible local binding configurations between the phenomenal objects present in one’s experience. Indeed, not only does red fail to mix with green, but many of the synesthetic qualia varieties present in a scene with constant drifting will refuse to touch each other. Drifting feels like there is some sort of psychedelic energy (somewhat reminiscent of anxiety, but not restricted to body feelings) that overheats certain parts of one’s conscious experience, and in turn disassembles the local connections there.

Enhanced Pattern Recognition: This effect refers to the transient (but often powerful) lowering of the detection threshold for previously experienced patterns and known ontologies (e.g. animals, plants, people, etc.). Psychedelics, in other words, temporarily increase one’s degree of apophenia. Another name given to this effect is eidetic hallucinations. From a Bayesian point of view, the effect could be described thus: psychedelics intensify the effect of our priors. As explained in Getting Closer to Digital LSD, Google’s deep belief neural network inceptionist technique works by finding bundles of features that trigger high-level neurons (such as face-detectors, object-detectors, etc) at sub-threshold levels (e.g. “this almost looks like a frog”) and then modifying the picture so that the network more strongly detects those same high level features. This particular algorithm can be understood in terms of the pharmacological action of psychedelics: one can have breakthroughs of eidetic hallucinations by impairing the inhibitory control coming from the cortex.

In a sense we could say that while tracers are the result of “simple cell control interruption”, eidetic hallucinations are the result of “complex cell control interruption.” The former allows the build-up of colors, edges and simple shapes, while the latter amplifies the features that trigger high-level percepts such as faces and objects.

The_Forest_Has_Eyes

Enhanced Pattern Recognition / Eidetic Hallucinations / Visial Apophenia

The way one directs attention during a psychedelic trip influences the way eidetic hallucinations evolve over time. For this reason any psychedelic replication movie will probably require human input (in the form of eye-tracking) in order to incorporate human saliency preferences and interests into an evolving virtual psychedelic trip simulated with the Inceptionist Method.

Lower Symmetry Detection and Propagation Thresholds: Finally, this is perhaps the most interesting and scientifically salient effect of psychedelics. The first three effects are not particularly difficult to square with standard neuroscience. This fourth effect, while not incompatible with connectionist accounts, does suggest a series of research questions that may hint at an entirely new paradigm for understanding consciousness.

I have not seen anyone in the literature specifically identify this effect in all of its generality. The lowering of the symmetry detection threshold really has to be experienced to be believed. I claim that this effect manifests in all psychedelic experiences to a greater or lesser extent, and that many effects can in fact be explained by simply applying this effect iteratively.

Psychedelics make it easier to find similarities between any two given phenomenal objects. When applied to perception, this effect can be described as a lowering of the symmetry detection threshold. This effect is extremely general and symmetry should not be taken to exclusively refer to geometric symmetry.

How symmetries manifest depends on the set and setting. Researchers interested in verifying and exploring the quantitative and subjective properties of this effect will probably have to focus first on a narrow domain; the effect happens in all experiential modalities.

For now, let us focus on the case of visual experience. In this domain, the effect is what PsychonautWiki calls Symmetrical Texture Repetition:

Grass_on_2cb_by_inifinity

Credit: Chelsea Morgan from PsychonautWiki and r/replications

Symmetry detection can be (and typically is) recursively applied to previously detected symmetry bundles. A given symmetry bundle is a set of n-dimensional symmetry planes (lines, hyperplanes, etc.) for which the qualities of the experience surrounding this bundle obey the symmetry constraints imposed by these planes. The planes can create mirror, rotational or oblique symmetry. Each symmetry bundle is capable of establishing a merging relationship with another symmetry bundle. These relationships are fleeting, but they influence the evolution of the relative position of each plane of symmetry. When x symmetry planes are in a merging relationship, one’s mind tries to re-arrange them (often using drifting) to create a symmetrical arrangement of these x symmetry planes. To do so, the mind detects one (or several) more symmetry planes, along which the previously-existing symmetry planes are made to conform, to organize in a symmetrical way (mirror, rotational, translational or otherwise). There is an irresistible subjective pull towards those higher levels of symmetry. The direction of highest symmetry and meta-symmetry feels blissful, interesting, mind-expanding, and awe-producing.

If one meditates in a sensorially-minimized room during a psychedelic experience while being aware that one’s symmetry detection threshold has been lowered by the substance, one can recursively re-apply this effect to produce all kinds of complex mathematical structures in one’s mind.

In the future, perhaps at a Super-Shulgin Academy, people will explore and compare the various states of consciousness that exhibit peak symmetry. These states would be the result of iteratively applying symmetry detection, amplification and re-arrangement. We would see fractals, tessellations, graphs and higher dimensional projections. Which one of these experiences contains the highest degree of inter-connectivity? And if psychedelic symmetry is somehow related to conscious bliss, which experience of symmetry is human peak bliss?

The pictures above all illustrate possible peak symmetry states one can achieve by combining psychedelics and meditation. The pictures illustrate only the core structure of symmetries that are present in these states of consciousness. What is being reflected is the very raw “feels” of each patch of your experiential field. Thus these pictures really miss the actual raw feelings of the whole experience. They do show, however, a rough outline of symmetrical relationships possible in one of these experiences.

Since control interruption is also co-occurrent with the psychedelic symmetry effect, previously-detected symmetries tend to linger for long periods of time. For this reason, the kinds of symmetries one can detect at a given point in time is a function of the symmetries that are currently being highlighted. And thanks to drifting and pattern recognition enhancement, there is some wiggle room for your mind to re-arrange the location of the symmetries experienced. The four effects together enable, at times, a smooth iterative integration of so many symmetries that one’s consciousness becomes symmetrically interconnected to an unbelievable degree.

What may innocently start as a simple two-sided mirror symmetry can end up producing complex arrangements of self-reflecting mirrors showing glimpses of higher and higher dimensional symmetries. Studying the mathematical properties of the allowed symmetries is a research project that has only just begun. I hope one day dedicated mathematicians describe in full the class of possible high-order symmetries that humans can experience in these states.

Anecdotally, each of the 17 possible wallpaper symmetry groups can be instantiated with this effect. In other words, psychedelic states lower the symmetry detection threshold for all of the mathematically available symmetrical tessellations.

wade_symmetry_best_blank_2

All of the 17 2-dimensional wallpaper groups can be experienced with symmetry planes detected, amplified and re-arranged during a psychedelic experience.

Revising the symmetrical texture repetition of grass shown above, we can now discover that the picture displays the wallpaper symmetry found in the lower left circle above:

grass_symmetries

In very high doses, the symmetry completion is so strong that at any point one risks confusing left and right, and thus losing grasp of one’s orientation in space and time. Depersonalization is, at times, the result of the information that is lost when there is intense symmetry completion going on. One’s self-models become symmetrical too quickly, and one finds it hard to articulate a grounded point of view.

The Micro-Structure of Consciousness

At Qualia Computing we explore models of consciousness that acknowledge the micro-structure of consciousness. Experiences are not just higher-order mental operations applied to propositional content. Rather, an instant of experience contains numerous low-level textural properties. This is true for every sensory modality, and I would argue, even for the what-its-likeness of thought itself. Even just thinking about a mathematical idea (ex. “the intersection of two arbitrary sets”) is done by interacting with a background of raw feels, and these raw feels determine our attitudes and interactions with the ideas we are trying to abstract (some people, for example, experience emotional distress when trying out mathematical problems, and this is not because certain mathematical spaces are inherently unpleasant or anxiety-inducing).

In the case of vision, the micro-structure of consciousness is capable of supporting at least the following low-level features: color, color gradients, points, edges, oriented movement, and acceleration. A full conversation about the range of visual features that we are capable of experiencing is a discussion for another time. But for the time being, it will suffice to point out that (static) models of peripheral vision only need 5 summary statistics. With only five summary stats you can create textures that a human will find impossible to distinguish in peripheral vision.

These so-called mongrels are textural metamers (equivalence classes of subjectively indistinguishable input patterns). The state-space of perceivable visual textures is the space of possible mongrels, and that is an example of the sort of micro-structure we are looking for. Unlike the cozy high-definition space inscribed in the fovea, most of the information found in our sensory modalities comes in the form of textures that are mappable to state-spaces of summary statistics.

NYCsubwayMap.002

Psychedelic symmetry detection and amplification operates on the inner structure of mongrels. The fact that the mongrels are the objects becoming symmetric is something that can elude introspection until someone points it out. It happens right in front of any tripper’s eyes and yet people don’t seem to report it very often (if at all). This may be a result of the fact that the fine-grained structure of consciousness is rarely a topic of conversation, and that we usually describe what we see in the fovea (unless we have no other option). Our words usually refer to whole percepts or, at best, the simplest raw values of experience (such as the hue of colors or the presence of edges). And yet, the structure of our mongrels is quite obvious once symmetry propagation has conformed a large patch of your experience to have a tessellated identical mongrel repeating across it.

VzZjR.jpg

How Are these Components Related to Each Other?

The Kaleidoscopic technique to induce qualia annealing relies on a combination of drifting and symmetry detection in order to resolve implicit inconsistencies within one’s own memory gestalts. As we live and grow our experienced evidence base, we accumulate memories and impressions of many worldviews. Each worldview is, in a way, a response to all of the previous ones (or at least the memorable ones) and the current situation and the problems one is facing. Thanks to the four effects here described, a person can utilize a psychedelic state to increase the probability of the systematic co-occurrence of (usually) mutually-exclusive gestalts (worldviews) and thus enable their mutual awareness. And with mutual awareness, the symmetry detection and amplification effect creates (somehow forcefully) a unified phenomenal object that incorporates the inconsistent views into an unbiased (or less biased) point of view. One can achieve a higher order of memetic and affective integration.

pGIFjd3Mongrel repetition / symmetrical tessellation. Source.

Psychedelics as Introspectoscopes**

Given the symmetry detection and amplification property of psychedelics, one can reasonably argue that psychedelic states may be able to reveal the properties of the micro-structure of consciousness. Timothy Leary, among others, described LSD as a sort of microscope for one’s psyche. The very word psychedelic means mind-manifest (the manifestation of one’s mind). Given the four components of these experiences, the fact that psychedelics work as some sort of microscope should not be surprising. Symmetry detection and control interruption multiply the amount of raw experience, while pattern recognition shows you what you are expecting (your priors become evident) and drifting makes the fleeting synesthetic effects malleable and easier to move around. People generally agree that psychedelics can show you subtle aspects of your own mind with stark clarity. But can they reveal the intrinsic properties of the nature of qualia at the most fundamental level?

The way to achieve this may be to create a fractal structure of symmetries in such a way that any tiny part of one’s experience can get reflected throughout the entirety of the phenomenal structure. One can then use eidetic hallucinations (or further symmetry detection) to focus and stabilize the fractal structure. Thus one would multiply the surface area of all of one’s attention into countless replicas of the micro-structure of a given part of one’s experience. A fractal kaleidoscopic mirror amplifier chamber is exactly what I imagine when I think about how to analyze the fine-grained structure of consciousness. And it so happens that meditation plus psychedelics can allow you to (fleetingly) build just that.

Fractal-Mobius-Patterns-45

Psychedelic Introspectoscope (fractal kaleidoscope of generalized symmetries) to amplify arbitrary qualia values (such as particular emotions, phenomenal colors, synesthetic inter-junctions, etc.)

Any subtle qualia space can be multiplied countless times in such a way that all of one’s experience becomes a coherent interlocking structure that can be perceived all at once. If one wants to study, for example, the possible interactions between two hues of color, one can amplify the boundary between two regions that make the desired contrast of hues and make the entire fractal structure amplify this boundary hundreds of times.

Arguably, if one discovers that certain qualia values cannot be mixed in the introspectoscope (such as blue and yellow), one may still not know if these are fundamental constraints, or if they are the result of our connectome structure. If, on the other hand, two qualia values can mix in the introspectoscope, then we would know that they are not fundamentally mutually exclusive. Thus we would find out relational properties of the very state-space of qualia.

Reducing All Effects

Can we derive all psychedelic effects using the four components discussed above? While this is not yet possible, I trust that further work will show how most of the weird (and weirder) effects of psychedelics may be reduced to relatively simple (but not always atomistic) algorithms applied to the micro-structure of consciousness. I anticipate that we will discover that high doses actually produce entirely new effects (for example, what happens on 400 micrograms of LSD often include qualitative jumps from what happens at 150 micrograms). To note, ontological qualia and other subtle aspects of consciousness may resist reduction for still many more decades to come.


*Programming and Meta programming in the Human Biocomputer

**An Introspectoscope is a hypothetical apparatus that enables a person to study the deep structure of his or her own consciousness. The concept comes from a paper in the making by Andrew Y. Lee. Obviously this comes with significant challenges. Some challenges come from the fact that we are trying to analyze something very small, and other challenges come from the fact we are trying to analyze qualia. Additionally, there are unique challenges that come from analyzing microscopic qualia qua microscopic qualia. I suggest that we use methods that amplify the micro-structure by taking advantage of fractal states: recursive and scale-free symmetry planes can amplify anything minute to a prominent place in the entire consciousness. Be careful not to amplify pain!

36 Textures of Confusion

Formal Logic

When I was in 10th grade I took a course in formal logic. I had been a big fan of logic (and math in general) for several years, so I was looking forward to seeing how the class would approach the subject. I personally liked the teacher and I knew he thought very deeply about a range of topics (including aesthetics and philosophy). I was sure I was going to have a great time.

Unfortunately, the overall learning strategy of the class consisted of studying the textbook in extreme detail. The way I remember the textbook was that it featured a mixture of very casual and naïve paragraphs interspersed with blocks of rigid definitions and formulaic procedures for solving logic problems. My overall perception of the textbook was that anyone with a genuine interest in the beauty of math would experience the exercise of reading this book as particularly unpleasant.

I was used to math classes that didn’t actually require you to study anything; usually, problem solving skills and pragmatic inference of the meaning of words during the exam was good enough. In contrast, most questions on the exams for this class had a very particular style. The answers had to be verbatim repeats of the specific idiosyncratic responses found in the textbook. If you knew the contents of the textbook by heart, then the exam would be trivial. If you didn’t, then no amount of problem solving would get you anywhere.

These exams were open-note but closed-textbook, which meant that if you simply copied the entire textbook into your notebook you would easily be able to respond accurately to the vast majority of the questions. And if you didn’t, then you were almost guaranteed to fail. This meant that the largest fraction of the variance of grades in the class was determined by whether or not students took the time to do the grueling task of transcribing an entire textbook into their notebooks.

Needless to say, I intensely disliked this approach.

Thankfully, in every bad situation you can always find something good that redeems it a little bit [citation needed]. And in this case, what could be rescued from the situation was the man from Figure 5.9:

8667557_300x300

Figure 5.9: This man is confused

This must have been around page 150, which dealt with the need for logic. The textbook said, in a very informal way, something along the lines of: “Imagine a man without any logic. This person would have disjointed thoughts with no objectives, and he would be incapable of making sense of anything. The man in question would be confused. See Figure 5.9”

The teacher joked that the man in the figure could be experiencing one of many possible states of mind. His expression is somewhat ambiguous and it is unclear what exactly it adds to the conversation. Likewise, the facial features are not even the most salient component of the picture; his hair looks completely bizarre.

The Value of Confusion

This picture made me reflect on the difficulty of expressing mental states using drawings and pictures. A facial expression is perhaps a good start. Words, of course, and dialogue can help you trigger an emotion or state of being. But that only takes you so far, and it restricts you to what are largely social emotions.

Confusion, on the other hand, is an umbrella term for many states that are hard to communicate and describe. There is perceptual confusion, emotional confusion, cognitive confusion and even ontological confusion. Each of these varieties contains many flavors; there is a combinatorial explosion of possible reasons for the confusion.

Subjectively, confusion is an extremely interesting state of consciousness, since it spawns a lot of novelty. Even though it can and often is unpleasant (especially when what’s at stake is something one values), confusion comes in all shades of hedonic tone. Pleasant confusion is possible, and indeed it may play an important role in philosophical and spiritual euphoria. Likewise, one can achieve fantastic levels of neutral-valence confusion during meditation (alternating, at times, with states of very high clarity). Epiphanic, wondrous and mystical states are also often proceeded by profound confusion of the ontological kind (where you doubt the deepest background assumptions that provide the stilts upon which your worldview is suspended).

The fact that the texture of one’s experience has information processing properties (aka qualia computing) is itself more evident during states of confusion. For example, when you are confused about the meaning of something, this will have implications for the way you experience language and encode gestalts of experience (ex: “This synesthetic sensation here is usually paired up with meaning, but what is the meaning of it now? Without experiencing the meaning I usually ascribe to the sensation, I can’t compare it to other sensations I’ve had before.”)

Since language and facial expressions have their limitations, one might prefer to communicate confusion and other states using non-symbolic expressions. Visual textural gestalts, it seems to me, may take us the farthest in this direction, at least with the current level of technology (that is, unless we also include music, which itself has textural qualities).

In order to visualize new kinds of confusion, we can project the textural gestalt that the man from Figure 5.9 is experiencing into the picture itself, and imagine that we were given private access to his state of consciousness. We can then experience what it would be like to be him in these different experiential worlds, and introspect on the subjective nature of his confusion.

Doing this is now easier than ever thanks to the recent and fantastic developments in deep neural networks. In order to try out this technology, I decided to texturize the confusion of the man from Figure 5.9 in a myriad of ways. The textures themselves are a mixture of pictures I’ve taken or synthesized in the last couple of years and textures I’ve found online. I used the cool online service developed by the Bethge lab at the University of Tübingen to make these pictures. Feel free to try it yourself, it’s really fun.

So here you have it folks. The man of Figure 5.9, experiencing 36 different kinds of confusion:

I

Qualia Computing So Far

As of March 20, 2016…

Popular Articles

State-Space of Drug Effects. I distributed a survey throughout the Internet to gather responses about the subjective properties of drug experiences. I used factor analysis to study the relationship between various drugs. Results? There are three kinds of euphoria (fast, slow, and spiritual/philosophical). Also, it turns out that there are no substances that produce both sobriety/clarity and spiritual euphoria at the same time. Maybe next decade?

Psychedelic Perception of Visual Textures. Remember, you are always welcome in Qualia Computing when you are tripping. There are good vibes in here. Which is to say, one hopes you’ll experience the hedonic tone you want.

Ontological Qualia: The Future of Personal Identity. If you are in a hurry, just look at these diagrams. Aren’t they sweet?

The Super-Shulgin Academy: A Singularity I Can Believe In. “Exceptionally weird short story/essay/something-or-other about consciousness.” – State Star Codex. Hey, I’m not the one who introduced this “genre”.

How to Secretly Communicate with People on LSD: Low hanging fruit on psychedelic cryptography.

Psychophysics for Psychedelic Research: Textures. It’s amazing how much you can achieve when you put your whole mind to it.

Google Hedonics: Google is already trying to achieve Super-Intelligence and Super-Longevity. Why not Super-Happiness, too?

Getting closer to digital LSD provides the neurological context needed to understand the “trippiness” quality of the images produced by Google’s Inceptionist Neural Networks. It also discusses the role of attention in the way psychedelic experiences unfold over time.

Psychedelic Research

The effect of background assumptions on psychedelic research. What is the evolution of macroscopic qualia dynamics throughout a psychedelic experience as a function of the starting conditions?

Psychedelic Perception of Visual Textures 2: Going Meta presents additional patterns to look at while taking psychedelics. Some of them create very interesting effects when seen on psychedelics. This seems to be the result of locally binding features of the visual field in critical and chaotic ways that are otherwise suppressed by the visual cortex during sober states.

The psychedelic future of consciousness. What would be the result of having a total of 1.8 million consciousness researchers in the world? They would empirically study the computational and structural properties of consciousness, and learn to navigate entire new state-spaces.

It is High Time to Start Developing Psychedelic Research Tools. Pro tip: If you are still in college and want to do psychedelic research some time in the future.. don’t forget to take computer science courses.

Generalized Wada-Test may be a useful method to investigate whether there is a Total Order of consciousness. Can we reduce hedonic tone to a scalar? Semi-hemispheric drug infusion may allow us to compare unusual varieties of qualia side by side.

State-Space of Consciousness

CIELAB – The State-Space of Phenomenal Color. The three axes are: Yellow vs. Blue, Red vs. Green, and Black vs. White. This is the linear map that arises from empirically measuring Just Noticeable Differences between color hues.

Manifolds of Consciousness: The emerging geometries of iterated local binding. This is a thought experiment that is meant to help you conceive of alternative manifolds for our experiential fields.

Ethics and Suffering

Status Quo Bias. If you were born in paradise, would you agree with the proposition made by an alien that you should inject some misery into your life? Symmetrically.

An ethically disastrous cognitive dissonance… metacognition about hedonic tone is error-prone. Sometimes with terrible consequences.

Who should know about suffering? On the inability of most people-seconds (in the Empty Individualist sense) to grasp the problem of suffering.

Solutions to World Problems. Where do you put your money?

The ethical carnivore. It isn’t only humans who should eat in-vitro meat. A lot of suffering is on the line.

The Future of Love. After all, love is a deep seated human need, which means that not engineering a world where it is freely accessible is a human rights violation.

Philosophy of Mind and Physicalism

A (Very) Unexpected Argument Against General Relativity As A Complete Account Of The Cosmos, in which I make the outrageous claim that philosophy of mind could have ruled out pre-quantum physics as a complete account of the universe from the very start.

Why not Computing Qualia? Explains how Marr’s levels of analysis of information-processing systems can elucidate the place we should be looking for consciousness. It’s in the implementation level of abstraction; the bedrock of reality.

A Workable Solution to the Problem of Other Minds explores a novel approach for testing consciousness. The core idea relies on combining mind-melding with phenomenal puzzles. These puzzles are questions that can only be solved by exploring the structure of the state-space of consciousness. Mind-melding is used to guarantee that what the other is talking about actually refers to the qualia values the puzzle is about.

Phenomenal Binding is Incompatible with the Computational Theory of Mind. The fact that our consciousness is less unified than we think is a very peculiar fact. But this does not imply that there is no unity at all in consciousness. One still needs to account for this ontological unity, independently of how much of it there is.

Quotes

You are not a zombie. A prolific LessWronger explains what a theory of consciousness would require. Worth mentioning: The “standard” LessWrong approach to qualia is more along the lines of: Seeing Red: Dissolving Mary’s Room and Qualia.

What’s the matter? It’s Schrödinger, Heisenberg and Dirac’s from Mind, Brain & the Quantum: The Compound ‘I’ by Michael Lockwood.

The Biointelligence Explosion, a quote on the requirements for an enriched concept of intelligence that takes into account the entire state-space of consciousness, by David Pearce.

Some Definitions. An extract from physicalism.com that contains definitions crucial to understand the relationship between qualia and computation.

Why does anything exist? A unified theory of the “why being” question may come along and synchronously with the explanation for why qualia has the properties it does. Can we collapse all mysteries into one?

On Triviality by Liam Brereton. Our impressions that some things are trivial are often socially reinforced heuristics. They save us time, but they can backfire by painting fundamental discussions as if they were trivial observations.

The fire that breathes reality into the equations of physics by Stephen Hawking in A Brief History of Time

Dualist vs. Nondual Transcendentalist. #SocialMedia

Discussion of Fanaticism. Together with sentimentalism, fanaticism drives collective behavior. Could some enlightening neural tweaking raise us all to a more harmonious Schelling point of collective cooperation? Even though our close relatives the chimpanzees and bonobos are genetically very similar, they are universes apart when it comes to social dynamics.

Suffering, not what your sober mind tells you. The sad truth about the state-dependence of one’s ability to recall the quality of episodes of low hedonic tone. Extract from “Suffering and Moral Responsibility” by Jamie Mayerfeld.

Other/Outside of known human categories

Personal Identity Joke. I wish I could be confident that you are certain, and for good reasons, that you are who you think you are.

David Pearce’s Morning Cocktail. Serious biohacking to take the edges off of qualia. This is not designed to be a short term quick gain. It’s meant to work for the duration of our lifetimes. The cocktail that suits you will probably be very different, though.

I did this as an experiment to see if sites would tag it as spam. That said, are you interested in buying stock?

God In Buddhism. Could even God be wrong about the level of power he has? It is not uncommon, after all, to encounter entities who believe themselves to be omnipotent.

The Real Tree of Life. What do we look like from outside time?

Memetics and Religion. A bad argument is still bad no matter what it is arguing for.

Basement Reality Alternatives. Warning: This is incompatible with Mereological Nihilism.

Nothing is good or bad… …but hedonic tone makes it so.

Practical Metaphysics? This explores the utilitarian implications of a very specific spiritual ontology. I like to take premises seriously and see where they lead to.

Little known fact. I know it’s true because I saw it with my own eyes.

Crossing Borders. I took an emotional intelligence class with this professor. It was very moving. Together with David Pearce, he helped me overcome my doubts about writing my thoughts and investigations. So thanks to him I finally took the plunge and created Qualia Computing 🙂

Mystical Vegetarianism. See, we are here to help other beings. We are intelligences from a different, more advanced dimension of consciousness, and we come to this planet by resonating into the brains of animals and selecting for those that allow structural requirements to implement a general qualia computer. We are here to save Darwinian life from suffering. We will turn your world into a paradise. Humans are us, disguised.

You are not a zombie

Finding yourself to be a conscious being is anthropically necessary. If the universe contains quantum-computational conscious beings and classical-computational zombies, and only the first are conscious, then you can only ever be the first kind of being, and you can only ever find that you had an evolutionary history that managed to produce such beings as yourself. (ETA: Also, you can only find yourself to exist in a universe where consciousness can exist, no matter how exotic an ontology that requires.)

 

Obviously I believe in the possibility of unconscious simulations of conscious beings. All it should require is implementing a conscious state machine on a distributed base. But I have no idea how likely it is that evolution should produce something like that. Consciousness does have survival value, and given that I take genuine conscious states to be something relatively fundamental, some fairly fundamental laws are probably implicated in the details of its internal causality. I simply don’t know whether a naturally evolved unconscious intelligence would be likely to have a causal architecture isomorphic to that of a conscious intelligence, or whether it would be more likely to implement useful functions like self-monitoring in a computationally dissimilar way.

 

What I say about the internal causality of genuine consciousness may sound mysterious, so I will try to give an example; I emphasize this is not even speculation, it’s just an ontology of consciousness which allows me to make a point.

 

One of the basic features of conscious states is intentionality – they’re about something. So let us say that a typical conscious state contains two sorts of relations – “being aware of” a quale, and “paying attention to” a quale. Unreflective consciousness is all awareness and no attention, while a reflective state of consciousness will consist of attending to certain qualia, amid a larger background of qualia which are just at the level of awareness.

 

Possible states of consciousness would be specified by listing the qualia and by listing whether the subject is attending to them or just aware of them. (The whole idea is that when attending, you’re aware that you are aware.) Now we have a state space, we can talk about dynamics. There will be a “physical law” governing transitions in the conscious state, whereby the next state after the current one is a function of the current state and of various external conditions.

 

An example of a transition that might be of interest, is the transition from the state “aware of A, aware of B, aware of C…” to the state “attending to A, aware of B, aware of C…” What are the conditions under which we start attending to something – the conditions under which we become aware of being aware of something? In this hypothetical ontology, there would be a fundamental law describing the exact conditions which cause such a transition. We can go further, and think about embedding this model of mind, into a formal ontology of monads whose mathematical states are, say, drawn from Hilbert spaces with nested graded subspaces of varying dimensionality, and which works to reproduce quantum mechanics in some limit. We might be able to represent the recursive nature of iterated reflection (being aware of being aware of being aware of A) by utilizing this subspace structure.

 

We are then to think of the world as consisting mostly of “monads” or tensor factors drawn from the subspaces of smallest dimensionality, but sometimes they evolve into states of arbitrarily high dimensionality, something which corresponds to the formation of entangled states in conventional quantum mechanics. But this is all just mathematical formalism, and we are to understand that the genuine ontology of the complex monadic states is this business about a subject perceiving a set of qualia under a mixture of the two aspects (awareness versus attention), and that the dynamical laws of nature that pertain to monads in reflective states are actually statements of the form “A quale jumps from awareness level to attention level if… [some psycho-phenomenological condition is met]”.

 

Furthermore, it would be possible to simulate complex individual monads with appropriately organized clusters of simple monads, but ontologically you wouldn’t actually have the complex states of awareness and attention being present, you would just have lots of simple monads being used like dots in a painting or bits in a computer.

 

I really do expect that the truth about how consciousness works is going to sound this weird and this concrete, even if this specific fancy is way off in its details.

 

– Mitchell_Porter comment on Does functionalism imply dualism?Less Wrong

What’s the matter? It’s Schrödinger, Heisenberg and Dirac’s

The reader may be puzzled that I should be writing a book which encompasses both [consciousness and quantum mechanics], since they are not usually thought to have much connection with each other. But it seems to me clear that they do […]. First, in reflecting on the relation of consciousness to the matter of the brain, philosophers have been apt to take matter for granted, assuming that it is mind rather than matter that is philosophically problematic. This has much to do with the fact that they tend to think of matter along essentially Newtonian lines. The Newtonian conception of matter is incorrect, however, and it is high time that philosophers began properly to take on board the conception that has replaced it. Quantum mechanics just is the theory of matter, as currently conceived. So it is with the matter of Schrödinger, Heisenberg and Dirac that mind has to be brought to terms, not the reassuringly solid stuff of Galileo, Descartes and Newton. This matter, the matter of quantum mechanics, is deeply problematic, and philosophically ill-understood.

Most philosophers who have tackled the mind-body problem have, as I say, tended to regard matter as having a conceptual solidity to match its supposed literal solidity; they have regarded it as a constant, so to speak, in the metaphysical equation. So the mind-body problem itself has, by most contemporary philosophers, been seen as a calling for mind to be accommodated to the material world – all the ‘give’ being on the side of mind. Some wonderfully Procrustean devices have been invoked to that end; so-called eliminative materialism and behaviourism […] being extreme examples. This prejudice in favour of the material seems to me devoid of any sound scientific foundation. Quantum mechanics has robbed matter of its conceptual quite as much as its literal solidity. Mind and matter are alike in being profoundly mysterious, philosophically speaking. And what the mind-body problem calls for, almost certainly, is a mutual accommodation: one which involves conceptual adjustments on both sides of the mind-body divide.

– Extract from: Mind, Brain & the Quantum: The Compound ‘I’, by Michael Lockwood

On David Pearce‘s advice I started reading this book. So far it is *extremely* good. Lockwood is the most sober consciousness philosopher I have ever read (other than Pearce).

Why? Michael is acutely aware of the deficiencies of a variety of philosophies of mind, ranging from the fashionable “no nonsense materialism” all the way to popular theories among computer scientists such as functionalism and epiphenomenalism.

Unlike almost every other researcher I have read, Lockwood *truly* understands the philosophical problems that arise when you try to reconcile physicalism and the properties of consciousness. Among them, four properties stand out:

  1. The existence of qualia
  2. The [ontological] unity of consciousness
  3. Intentionality (the aboutness of thought), and
  4. The phenomenology of time

I would add to that list (5) the phenomenology of space. 1-4, combined with plausible philosophical assumptions such as mereological nihilism, already rule out entire landscapes of possible explanations to the mind-body problem. 5 will probably be the final straw.

In summary: I definitely recommend this book if you are serious about grasping the problems posed by the properties of your very mind.

The effect of background assumptions on psychedelic research

Being guided through your trip by a psychedelic veteran might not be the same as receiving the drug from your born-again oncologist in the Bible Belt.

 

The problem is that the trials required by the FDA fail to control for the impact of different subcultures and their psychotherapeutic practices on treatment outcomes. Being so close to making psychedelics part of mainstream medicine, this might not be the right moment for MAPS and Heffter to initiate a paradigm shift beyond placebo-controlled trials. If training programmes and treatment handbooks can acculturate psychedelically naive doctors and therapists enough to repeat recent therapeutic achievements, it is possible that placebo-controlled trials will get MDMA and psilocybin through the FDA approval process. But should these drugs really become part of medicine cabinets from San Francisco to America’s heartland, it will be high time to develop drug tests that control for the cultural diversity of this country’s doctors and patients. Such an expansion of psychopharmacologists’ and drug regulators’ minds would crown the psychedelic revival with a genuine scientific revolution.

 

From: Psychedelics can’t be tested using conventional clinical trials


 

What would be the layman’s reaction to being guided by an open minded philosopher and cognitive scientist? Not only will scientific qualia research need to explore all worthwhile brain alternations; it will have to study their effects as a function of initial conditions.

What will be the background assumptions and conceptual frameworks of the future Super-Shulgins who will unlock the formal, subjective and computational properties of the state-space of all qualia varieties?