Titans Anonymous

Excerpt from Opening the Heart of Compassion: Transform Suffering Through Buddhist Psychology and Practice by Martin Lowenthal and Lar Short (pgs. 101-107, 112-113)

Beyond Struggle and the Quest for Power: From Titan Realm to Skillful Means

Sure winning isn’t everything. It’s the only thing.” – “Red” Sanders

Fanaticism consists in redoubling your efforts when you have forgotten your aim.” – George Santayana, Life of Reason, Volume 1

Only where love and need are one – And the work is play for mortal stakes – Is the deed ever really done – For Heaven and the future’s sakes.” – Robert Frost, “Two Tramps in Mud Time”

The Titans, dressed in full armor, are beings inflamed by jealousy. They see everything in terms of struggle, feel attacked by the gods, and seek the power to become gods. A giant tree grows on the border between the titan realm and the god realm and bears wish-granting fruit. While the tree grows in the territory of the titans, the fruit falls in the land of the gods. The gods, oblivious of where the blessings come from, eat the fruit and toss the pits over the wall between the two realms, which the titans take to be arrows of assault. They fire arrows and spears toward the gods, which magically turn to blossoms as they descend into their neighbor’s realm.

Avalokiteshvara appears to the titans as the Spiritual Father Amogasiddhi, realizer of the aim and of all-accomplishing wisdom, and as the Divine Mother Tara, the All-Merciful. Amogasiddhi is an impeccably skilled warrior who remains cool and fearless in the face of attacks by all the titans, and who radiates a luminous green light. Unable to defeat him, the titans attempt to learn his skill. As they learn to separate their actions from their emotions, and to develop the qualities of skillful means — stillness and quietude, freshness of being, cool unfettered mind, productive activity, harmony with both comrades and opponents, precision, and selfless volition — their original desire to conquer the kingdom of the gods is undermined by their realization that there is nothing to be gained by the struggle.

Tara, as a “savior”, invites the titans, particularly the female titans, to look into the pool of tears they have shed for their husbands, brothers, and sons lost in battle. They reflect on the suffering that flows from their sense of entitlement, their tendency to be aggressive, and their orientation towards struggle. From this reflection comes a pause, a realization of the dangers of fixation, and a sense of grace and gratitude.


When we live in the titan realm, we want to prove that we deserve to be respected, to be honored, to be loved, to be secure, and to be treated justly. We furiously engage in one activity after another, and often in many activities simultaneously, in an effort to show the world that we are worthy. We strive to avoid being criticized or attacked for some failure. We have an enormous fear of failure because it would leave us vulnerable to those who would destroy us with criticism and shame.

In our struggle to prove our worth and prevent failures, we feel compelled toward greater accomplishments and ever grander goals. If only we could control situations, we could use our intelligence, our energy, and our hard work to make things turn out as they should.

Shame and the Fear of Violation

As titans, we feel shame, envy, and fear of attack. All are rooted in the feeling that our basic integrity — who we are and what we feel — can and will be violated. We fear what others think of us, and we are convinced that they think we are not good enough. Shame is specifically this feeling of being unworthy and inadequate as human beings.

Robert Bly points out that, when our inner sovereignty is not respected by our parents, our teachers, or our society, we not only develop shame, but also become confused about boundaries. When we live as titans, we live with paranoia. We think our boss is setting us up to fail. We are sure that the driver passing us on the right is defeating us in an imaginary race. Or we sense that our lover is holding back from acknowledging our achievements out of jealousy.

As titans we are haunted by the feeling that our friends, bosses, lovers, and powerful people are competing with us. They attack us, seeking to destroy our sense of worth and to steal what we have. Those who have more than we have are shaming us by example; they are revealing our failings. Those who help us must have ulterior motives such as domination and dependency. Those who do not help us are selfish and untrustworthy. Those who desire our friendship want the riches we have to offer. Those who give us gifts expect more in return. We know that we work hard and diligently, yet the fruits of our labor seem to benefit others more than ourselves.

So we frequently feel that we are being cheated, that others are reaping the rewards of our efforts. We become protective of our accomplishments. Rather than sharing the joy of our victories, we erect protective walls to secure our gains. This realm is characterized by the illusion of scarcity, the conviction that there is not enough to go around. Therefore, we must fight not only for our fair share now but also for control, so that we can get ours in the future.

Envy and Entitlement

In this realm we are preoccupied with our desire for what other people have. Our territory is extended beyond simply what we own to include those things that we deserve. If we are unable to obtain what we want, we experience not only frustration, but the pain of undeserved loss. We justify what we want as entitlement, and feel that we have a rightful claim not only to what we have but to what we think we need.

This sense of righteous entitlement shapes our attitude toward others: those who support our activities are friends, and all others are enemies. For the titan, even friends and allies are regarded with suspicion because they might shift positions, becoming enemies. This means that we are continually gauging relative positions, not only with foes, but also with friends. We cannot afford to let our friends become too good, too famous, too successful. Instead of rejoicing in their triumphs we feel alienated from them. We feel envy and shame at not having accomplished all that they have accomplished.

This frame of suspicion and threat means that we mistrust information from other people and cut ourselves off from learning from them. We think that only we can judge what is useful and true. We are preoccupied with the way information is manipulated for competitive ends. We think that one of the few things that we can control is the information that we give other people, and we not only use this to advance our own position but assume that others are doing the same. In fact, we believe that everyone is the same, with the same desires and motives and combative spirit. To us people act out of self-interest and are motivated by the desire for accomplishment, acquisition, status, and power. We distrust protestations to the contrary and demonstrations of alternative motives.

Torn by Desire and Distrust

We are torn between our desire for approval and our distrust of others and their motives. We seek peaceful relationships and secure sense of belonging, but feel constant distrust and competition. We want to relax and are often exhausted by our constant struggles; yet we fear the consequences of lowering our guard.

We long to fit into the world, but we are convinced that we have to fight for our place and defend it. This means perpetual alienation from other people. We often decide to settle for their respect rather than seeking their love, as this appears safer in the world of competition.

Competing for Esteem

Competition, as such, is neither good nor bad. Competition can support us by giving feedback on our performance, by providing examples of what is possible, by engendering appreciation for the abilities of others, and by creating side-by-side intimacy through fellowship with our competitors. If, however, it is viewed simply in terms of winning and losing and of proving self-worth, it cuts us off from our aliveness. Our competitive urge drives us to be better, smarter and richer than other people. Even religious leaders and spiritual seekers work to become greater, more devout, more skilled and even more humble than anyone else. Yet, when we are concerned with surpassing others, we cut ourselves off from our own best qualities and energies.

This type of competition distances us from other people, making it easy to ignore the feelings and situations of those around us. The desire to win leads us to concentrate on weaknesses of others so that we will look better. We point out their failings as part of our campaign to appear superior. One paradox of competition is that we want to validate our inherent self-worth beyond all comparison by using comparison with others.

The preoccupation with winning distorts our natural inclination for meaningful action. We search for our arena, our field of competitive advantage. Then we specialize, narrowing the ground of competition to increase our chance of winning. We share less and less with others and lose interest in things outside our sphere of endeavor. Win/lose competitiveness not only alienates us from others but also from our own openness.

To make a virtue of our struggle, we elevate winning to an ideal, excellence to the greatest expression of human nature, and competitiveness to an innate human quality. […] The pressure to succeed, however, breeds the fear of failure and shame, which undermines our self-confidence and keeps us trapped in issues of self-esteem.

We use our continual comparisons with others and with our ideals to judge our progress and to map out strategies for the competitive struggle. The success of others is not an indication of our impoverishment, as in the preta realm, but a basis for shame and a target for achievement. We do not want to be less than others, and so we struggle to be superior to them. Comparisons spur us into action. Whereas in the preta realm we internalize the sense of comparison and evaluation, in the realm of the titans we externalize it and try to change our position. We often treat others as obstacles to be moved out of the way, or as data to be manipulated.

We feel shamed by the accomplishments of other people, as though they succeeded in order to spite us. We try to dismiss their sharing as “showing off” — another insult added to the injury of our relative failure.

In our titan frame of mind, we may come to feel that we must be the best at almost any cost. If we cannot exceed everyone else, then we will diminish their successes. If we cannot be taller naturally, we can at least lop off the heads of those around us.

Conceits of Superiority, Inferiority, and Equality

When we inhabit this realm we are prone to three conceits: superiority, inferiority, and equality. The superiority conceit argues, “I am better than you,” or “You are worse than me.” The inferiority conceit says, “I am worse than you,” or “You are better than me.” The equality conceits suggests that “I am as good as you,” or “I am as bad as you are.”

This last conceit can be the most insidious because it seems virtuous. As titans, we are trying to make everyone at least as bad as we are. If we are angry with our partners and they are calm, we will try to make them upset to show that they are no different and certainly no better than we are. If we confess our failings, we want everyone else to confess theirs to demonstrate that they are no better than us. We want to bring them down to a common level where we can feel equal and can thereby validate ourselves. We enlist the political virtue of equality in the cause of proving that everyone is the same as we are.

[…]

Appealing to the Public

In our drive for respect and approval, we may be seduced by superficial judgments. People will encourage us to show only our most appealing behaviors and to say what they want to hear. We pander to an audience and take public attention as validation, even though it is dependent on outward appearances and manipulated impressions.

This habit of superficiality minimizes the threat to our constructed identity and therefore feels comfortable. We befriend people who are engaged in the same game because there is an implicit agreement that “I won’t call you on your game, if you won’t reveal mine.” With most people we attempt to manipulate their feelings, saying what will maintain their esteem for us and prevent their honest feedback. This further obscures both our feelings and our capacity for insight into our own habits.

When we equate manipulation with success, genuine honesty appears naive and unproductive. Our lives seem to be functioning in high gear, our work resulting in material rewards and fame. Yet underneath this superficial progress, we sense that our integrity has been violated, thus aggravating our insecurity and agitation.

Our dissatisfaction and striving prevents us from finding any natural balance in the world and experiencing harmony within ourselves. Our heart posture of struggle also prevents us from greeting new situations freshly. We become jaded in relating to ourselves and other people. Everything appears to be the same old thing, as we cloak our innate freshness with habitual perceptions and unconscious assumptions.

Spiritual Masquerade of the Warrior

As titans we may enter the spiritual path to improve our personal power and to enhance our self-image and public image. We become warriors in our struggle for perfection. We want to mobilize the energy body in our pursuit of success and excellence. We are preoccupied with the psychic powers and impeccability of the warrior, and view other spiritual aspirants — and even our own teachers — as competitors. We also sense the power of harmony, spontaneity, and authenticity and want these for ourselves to serve our titan goals.


Commentary

(with 120 mg [of MDMA]) “I feel absolutely clean inside, and there is nothing but pure euphoria. I have never felt so great, or believed this to be possible. The cleanliness, clarity, and marvelous feeling of solid inner strength continued throughout the rest of the day, and evening, and through the next day. I am overcome by the profundity of the experience, and how much more powerful it was than previous experiences, for no apparent reason, other than a continually improving state of being. All the next day I felt like ‘a citizen of the universe’ rather than a citizen of the planet, completely disconnecting time and flowing easily from one activity to the next.” – PIHKAL entry on MDMA

The abolitionist project, i.e. the goal of preventing all future suffering, is tremendously ambitious and grandiose. It is not surprising, then, that one would assume that the demographic that it will tend to attract consists of people who inhabit the titan realm first and foremost. Likewise, when we talk about ending suffering, the grandiosity of this aspiration can likely trigger in the listener precisely the defense mechanisms of the titan realm. How many of the counterarguments against ending suffering are really coming from a place of equanimity and balance, and how many of them are just habitual titan realm reactions to a perceived threat to one’s status in the hierarchies we are invested in?

One may say: “I had to suffer to be great! To be meaningful, to be useful, to be respected, all of that has cost me a sea of sweat and tears. Without great sacrifice there is no great reward! Do you want to take that away from me?”

The Bingo of responses to the Hedonistic Imperative

Compare such pained responses to the mindset that MDMA instills in us. Because on MDMA one often experiences one’s sense of self-worth as inherent rather than conditional, one is able to see our motivations with complete self-honesty. More so, one does not get entangled in the status competitions of others, as the unshakable sense of inner worth is not diminished by one’s relative position in these consensus realities.

One may surely worry that our natural low self-worth is perhaps necessary to achieve great things. That if we could actually emotionally get by with feeling better than well — in a state of compassion, bliss, and wholesomeness — we would have evolved to be that way already. Alas, evolution does not care about our wellbeing; only the inclusive fitness of our genes. And it surely was the case that back in the African Savannah being driven by titan realm energies was highly adaptive. But today, I suspect, we will gain a lot of value by examining all the ways in which titan realm energies, in fact, get in the way of great achievements. Indeed, the very meaning of greatness as seen from the point of view of the titan realm is highly impoverished, narrow, and one-sided. For greatness of an even higher kind is to be found in the wonder and majesty of working towards a world of beautiful feelings for everyone.

It is surely the case that a lot of human accomplishments come straight out of the titan realm. However, I would like to challenge the notion that titan realm feelings are necessary, desirable, or perhaps inevitable in high-achievers. In particular, we should recall that group selection has limits: while every cell of your liver is indeed “in it to win it” with you, this is not quite true for each “cell” of a human group. The reason is simple: we are not all genetic twins, so human colonies are generally bound to be unstable, filled with internal competition, and sabotage. I would posit that one can indeed work towards ambitious and beautiful goals without invoking titan realm energies. In particular, we should be frank about all the ways in which titan motivations are in fact detrimental to our very goals. The low mood and self-loathing caused by internalized low-status is undoubtedly a huge cause of low productivity (see: rank theory of depression); office politics a massive waste of internal resources; and the paranoia overhead of the realm a derailment of effective and coherent group action. Thus, while MDMA-like states of consciousness may not have been the optimally adaptive mindsets from the point of view of our selfish genes, I think that a strong case can be made that they might in fact be extremely adaptive at the group level in modern times. This can be empirically tested. Looking ahead, this maybe is especially so post-reproductive revolution, as we will get to decide the gene distribution of our offspring in anticipation of their expected benefits at the individual and group level.

Much has been said about how we are, by nature, status-seeking monkeys. But an important thing to point out here is that the objective of our actions can be disentangled from the way in which their underlying motivations are implemented. We are not utility maximizers as much as we are adaptation executors. Sure we may nominally act in a way that maximizes our inclusive fitness, but the way we do so is by executing adaptations rather than having a “gene copying maximizing brain module” or anything of the sort. More so, that such adaptations result in the maximization of our genetic inclusive fitness is only guaranteed to be the case in our ancestral environment of adaptiveness. The connection between the (largely male-dominated) titan realm temperament and constant warfare is undeniable in communities largely untouched by modern civilization like Yanomami tribes in South America. And I would argue, it also explains inter- and intra-group aggression in modern times. Today in modern society a lot of (most?) groups indeed run on the fumes of the titan realm. And the fact that this causes huge misery inside these groups is only one reason to want to change it. Even more importantly, the titan realm paranoia, attachment to group identity, and its desire to win at all costs are especially dangerous in an era of drones and nuclear weapons. The maintenance of group pride no matter the consequences is threatening the survival of our species. But modern environments can in principle be designed so that this temperament becomes thoroughly maladaptive.

Thankfully, there is a sliver of a chance that we will soon find ways to motivate large groups of people by entirely wholesome energies. How far-fetched is this? Well, research into MDMA is just starting. We are at the foot of a hockey stick figure of “studies per year” of MDMA and related empathogenic/entactogenic drugs and interventions. This research has the potential to bootstrap a new modus operandi for human groups in a way that is sustainable and adaptive at the personal and group level, such that it effectively makes everyone in them happy, wholesome, and productive. If we manage to do this, we may in fact experience a complete overhaul of the old world energies of pride and domination, in lieu of an adaptive sense that “I love the world and the world loves me”.

(source)


Featured image: source.

Types of Binding

Excerpt from “Mindmelding: Consciousness, Neuroscience, and the Mind’s Privacy” (2012) by William Hirstein (pgs. 57-58 and 64-65)

The Neuroscience of Binding

When you experience an orchestra playing, you see them and hear them at the same time. The sights and sounds are co-conscious (Hurley, 2003; de Vignemont, 2004). The brain has an amazing ability to make everything in consciousness co-conscious with everything else, so that the co-conscious relation is transitive: That means, if x is co-conscious with y, and y is co-conscious with z, then x is co-conscious with z. Brain researchers hypothesized that the brain’s method of achieving co-consciousness is to link the different areas embodying each portion of the brain state by a synchronizing electrical pulse. In 1993, Linás and Ribary proposed that these temporal binding processes are responsible for unifying information from the different sensory modalities. Electrical activity, “manifested as variations in the minute voltage across the cell’s enveloping membrane,” is able to spread, like “ripples in calm water” according to Linás (2002, pp.9-10). This sort of binding has been found not only in the visual system, but also in other modalities (Engel et al., 2003). Bachmann makes the important point that the binding processes need to be “general and lacking any sensory specificity. This may be understood via a comparison: A mirror that is expected to reflect equally well everything” (2006, 32).

Roelfsema et al. (1997) implanted electrodes in the brain of cats and found binding across parietal and motor areas. Desmedt and Tomberg (1994) found binding between a parietal area and a prefrontal area nine centimeters apart in their subjects, who had to respond with one hand, to signal which finger on another hand had been stimulated – a conscious response to a conscious perception. Binding can occur across great distances in the brain. Engel et al. (1991) also found binding across the two hemispheres. Apparently binding processes can produce unified conscious states out of cortical areas widely separated. Notice, however, that even if there is a single area in the brain where all the sensory modalities, memory, and emotion, and anything else that can be in a conscious state were known to feed into, binding would still be needed. As long as there is any spatial extent at all to the merging area, binding is needed. In addition to its ability to unify spatially separate areas, binding has a temporal dimension. When we engage in certain behaviors, binding unifies different areas that are cooperating to produce a perception-action cycle. When laboratory animals were trained to perform sensory-motor tasks, the synchronized oscillations were seen to increase both within the areas involved in performing the task and across those areas, according to Singer (1997).

Several different levels of binding are needed to produce a full conscious mental state:

  1. Binding of information from many sensory neurons into object features
  2. Binding of features into unimodal representations of objects
  3. Binding of different modalities, e.g., the sound and movement made by a single object
  4. Binding of multimodal object representations into a full surrounding environment
  5. Binding of representations, emotions, and memories, into full conscious states.

So is there one basic type of binding, or many? The issue is still debated. On the side of there being a single basic process, Koch says that he is content to make “the tentative assumption that all the different aspects of consciousness (smell, pain, vision, self-consciousness, the feeling of willing an action, of being angry and so on) employ one or perhaps a few common mechanisms” (2004, p15). On the other hand, O’Reilly et al. argue that “instead of one simple and generic solution to the binding problem, the brain has developed a number of specialized mechanisms that build on the strengths of existing neural hardware in different brain areas” (2003, p.168).

[…]

What is the function of binding?

We saw just above that Crick and Koch suggest a function for binding, to assist a coalition of neurons in getting the “attention” of prefrontal executive processes when there are other competitors for this attention. Crick and Koch also claim that only bound states can enter short-term memory and be available for consciousness (Crick and Koch, 1990). Engel et al. mention a possible function of binding: “In sensory systems, temporal binding may serve for perceptual grouping and, thus, constitute an important prerequisite for scene segmentation and object recognition” (2003, 140). One effect of malfunctions in the binding process may be a perceptual disorder in which the parts of objects cannot be integrated into a perception of the whole object. Riddoch and Humphreys (2003) describe a disorder called ‘integrative agnosia’ in which the patient cannot integrate the parts of an object into a whole. They mention a patient who is given a photograph of a paintbrush but sees the handle and the bristles as two separate objects. Breitmeyer and Stoerig (2006, p.43) say that:

[P]atients can have what are called “apperceptive agnosia,” resulting from damage to object-specific extrastriate cortical areas such as the fusiform face area and the parahippocampal place area. While these patients are aware of qualia, they are unable to segment the primitive unity into foreground or background or to fuse its spatially distributed elements into coherent shapes and objects.

A second possible function of binding is a kind of bridging function, it makes high-level perception-action cycles go through. Engel et al. say that, “temporal binding may be involved in sensorimotor integration, that is, in establishing selective links between sensory and motor aspects of behavior” (2003, p.140).

Here is another hypothesis we might call the scale model theory of binding. For example, in order to test a new airplane design in a wind tunnel, one needs a complete model of it. The reason for this is that a change in one area, say the wing, will alter the aerodynamics of the entire plane, especially those areas behind the wing. The world itself is quite holistic. […] Binding allows the executive processes to operate on a large, holistic model of the world in a way that allows the model to simulate the same holistic effects found in the world. The holism of the represented realm is mirrored by a type of brain holism in the form of binding.


See also these articles about (phenomenal) binding:

Modeling Psychedelic Tracers with QRI’s Psychophysics Toolkit: The Tracer Replication Tool

Try it yourself!


By Andrés Gómez Emilsson (see special thanks)

TL;DR

We developed a new method for replicating psychedelic tracer effects in detail: the Tracer Replication Tool. This tool gives us a window into how the time-like texture of experience determines the state of consciousness we find ourselves in, which clarifies what makes both meditating and taking psychedelics such powerful state-switching activities. We discuss how the technique of using the tracer tool may find useful applications, such as allowing us to describe exotic “ineffable” experiences in clear language, standardize a scale of intensity of psychedelic drug effects (a.k.a. a “High-O-Meter”), help us quantify the synergy between different drugs, and test theories for what makes an experience feel good or bad such as the Symmetry Theory of Valence. The pilot data collected with this tool so far is suggestive of the following patterns: (1) THC and HPPD result in a smooth and faint trail effect. (2) The characteristic frequencies of the strobe and replay effects for 2C-B are slower than those of either DMT or 5-MeO-DMT. And, (3) whereas DMT comes with a strong color pulsing effect leading to very colorful visuals, 5-MeO-DMT gives rise to monochromatic tracer effects. We conclude by discussing the implications of these patterns in light of an analysis of experience that allows for a varying time-like texture. We hope to inspire the scientific community and curious psychonauts to use this tool to help us uncover more patterns.

Introduction

Rhythmic activity in the brain is a staple of neuroscience. It shows up in spiking neurons, synchronous oscillations at the level of networks, global patterns of resonance and coherence in EEG recordings, and in many other places. The book Rhythms of the Brain by György Buzsáki is a systematic review of what was known about these rhythms back in 2006.[1] One of the things György talks about in this book is how a lot of neuroscience techniques focused on finding the neural correlates of perception tend to consider the variable activation of neurons from one trial to the next as noise. In experiments that look into how neurons respond to a specific stimulus, datasets are constructed that track the neuronal activity that stays the same across trials. That which changes is discarded as noise, and György argues that such “noise” is really where the information about the internal rhythms is to be found.[2] We concur with the assessment that understanding these native rhythms is key for making sense of how the brain works. Perhaps one of the most exciting developments in this space is the method of Connectome-Specific Harmonic Wave analysis (Atasoy et al., 2016). This way of analyzing fMRI data describes a “brain state” as, at least partly, consisting of a weighted sum of its resonant modes. This paradigm has been used with success for comparing brain states across widely different categories of experience: LSD, ketamine, and anesthesia, among others (Luppi et al., 2020).

These are exciting times for exploring the native rhythms of nervous systems in neuroscience. But what about their subjective quality? One would hope that we could connect a formal third-person view of these rhythms with their experiential component. Alas, at this point in time the behavioral and physiological component of brain rhythms is far better understood than the way in which they cash out in subjective qualities.

Could there be a way to make these rhythms easily visible to ourselves as scientists? One interesting lens through which to see psychedelics is in terms of the way they excite specific rhythm-generating networks. This lens would present psychedelic states as giving you a sense of what it feels like to have many of these rhythms simultaneously activated, thus having access to a wider repertoire of brain states (Atasoy et al., 2017).

But you don’t need psychedelics to realize there’s something fishy about the solidity of our perception. Intuitively, one may get the impression that normal everyday states of consciousness do not show the signatures of being the result of ensembles of rhythmic activity. That said, some would affirm that paying attention to the artifacts of our perception may in fact be a window into these rhythms. For example, Lehar’s Harmonic Resonance Theory of the gestalt properties of perception (Lehar, 1999) attempts to explain the characteristics of well known visual illusions (such as the Kanizsa triangle) with principles derived from the superposition of rhythmic activity.

Kanizsa Triangles

Paying close attention to the act of observing an object over time has led some researchers to play with the idea that our experience of the world is best understood as music (Lloyd, 2013), for our feeling of a solid surrounding results from the interplay between finely coordinated sensations and acts of interpretation. Indeed, the fluidity of sensory impressions betrays our common-sense notion that we experience a solid and stable world. It often takes a perturbation out of our normal everyday state of consciousness to notice this. As an example here, we can point out that insight meditation practices peer into the illusion of solidity and continuity of our experience, whereas concentration meditation enhances these illusions (Ingram, 2018).

Arguably, like a fish who cannot notice water until it’s taken out of it, the stitching process by which our brain constructs reality is usually hidden from view. To be taken out of the water in this context would be to be in a state that allows you to notice the seams of one’s experience. To the extent that this normal stitching process breaks down in exotic states of consciousness, they are clearly useful for research in this domain. Thus we argue that the artifacts of perception in alien states of consciousness are not noise; they provide hints for how normal experience is constructed. In particular, we posit that “psychedelic tracers” (i.e. the cluster of persisting visual phenomena caused by hallucinogens) may be a window into how rhythmic feedback dynamics are used to control the content of our experience. For this reason, we have been interested in turning what until now has been qualitative descriptions and informal approximations of this phenomenon into concrete quantitative replications.

In what follows we will showcase the value of a psychophysics toolkit we developed at the Qualia Research Institute called the Tracer Replication Tool for modeling psychedelic tracer phenomenology. Although we will focus on psychedelic experiences, this tool can have a much broader set of applications. For example, we show how the tool can be used to visualize and quantify the severity of HPPD, which currently has a very qualitative, and imprecise at best, diagnostic criteria. Likewise, the tool has the potential to bring together the complex clinical presentation of visual disturbances such as palinopsia, photopsia, oscillopsia, visual snow, and other conditions, into a coherent framework. Perhaps, speculatively, the connection between all these visual disturbances is to be found in the dysregulation of the rhythms of the visual control systems, which is what the tracer tool sets out to quantify.

The only attempt of arriving at quantitative replications of psychedelic tracers in the scientific literature we are aware of is by (Dubois & VanRullen, 2011). They used multiple-exposure stroboscopic photography in order to depict video scenes. They then asked many people who have had LSD experiences to identify the strobe frequency that best approximated their tracers (which on average was in the 15-20 Hz range).

As we will see, our model for psychedelic tracers is more detailed: it has multiple persistence of vision effects that combine together into a complex tracer. For this reason, the kind of tracers used in Dubois & VanRullen turn out to be a special case of our tool, which we call the strobe effect:

LSD users perceive a series of discrete positive afterimages in the wake of moving objects, a percept that has been likened to a multiple-exposure stroboscopic photograph, somewhat akin to Etienne-Jules Marey’s chronophotographs [5] from 1880, or to more recent digital art produced in a few clicks (Figure 1).


Visual Trails: Do the Doors of Perception Open Periodically? by Dubois & VanRullen
Multiple-exposure stroboscopic photograph. (source)

By using a wider set of effects, the Tracer Replication Tool might give us hints about how psychedelics disrupt native rhythms given how they affect the processing of perceptual information at a granular level.

Before we provide the full set of tracer effects along with their associated vocabulary, let us jump into the preliminary psychedelic replications we have obtained thanks to this tool.

Psychedelic Replications

Over the years since I’ve run the Qualia Computing blog, I’ve received many messages from people who, for lack of a better term, we could call rational psychonauts. This should not be too surprising, with pieces like “How to Secretly Communicate with People on LSD” and “5-MeO-DMT vs. N,N-DMT: The 9 Lenses”, the site has become a bit of a Schelling point for people who like to blend computational reasoning and the study of exotic states of consciousness. These rational psychonauts are people who not only are well acquainted with exotic states of consciousness, but also like to use a scientific and rational lens to make sense of such states. In particular, people in this cluster often ask me to send them experiments to try out next time they take a psychedelic substance. I certainly never encourage them to take drugs, but under the assumption they will do so anyway, I sometimes send them tasks to do. Thus, once we had a prototype for the tracer tool, I already had a set of more than willing anonymous pilot participants. I sent them the link to the tool along with some brief instructions. Namely:

Look at the ball for a few minutes in state X (where X can be any substance, meditation, etc.). Then as soon as you come down, try to fiddle with the parameters on the left until the simulated tracer looks as close as possible to how you experienced it in the state. When you are ready, simply click “submit parameters” and add info about what the state you were in was at the time. In the case of HPPD, just try your best to replicate the tracer (I know it gets confusing when we talk about the tracers of the simulated tracers, but try to ignore those and just replicate the tracer of the original input).

Without further ado, here are the resulting replications I received:

HPPD

Mild HPPD (participant said it was strongest on color red)

THC

12.5mg edible, 60 minutes post-ingestion
15mg edible, 90 minutes post-ingestion

2C-B

20mg orally ingested
12mg “gummed”

Notice how although the replication of the higher dosage is more mild in a way, they both share the presence of a strobe effect at roughly 5.5 Hz!

DMT

5mg vaped
10mg vaped
20mg vaped

The higher dose has a complex mixture of effects, including 40 Hz color pulsing (positive and negative afterimages mixed together), 22 Hz replay, and 27 Hz strobe. I’ll note that the participant included the following comment: “Aside from extremely fast tracers, the white space consisted of pixelated fractals. Color was abundant.”

5-MeO-DMT

5mg vaped
10mg vaped

As we will discuss further below, it is worth noting that at least in this sample, there are no color pulsing effects present (which is unlike “regular” DMT).

Drug Combination: Mescaline + ETH-LAD

125μg ETH-LAD + 2 teaspoons of San Pedro powder

The above is the only datapoint we have so far from the combination of psychoactive substances. The participant took 125μg of ETH-LAD, and then two and a half hours later 2 teaspoons of San Pedro powder. The replication is of the way the ball looked like 5 hours after taking the first drug.

Definitions

Let us now look into the specifics of the tracer tool:

Core Effects

Core effects are pillars of the tracer tool where a particular feedback dynamic is used. The core effects include trails, strobe, and replay.

Modifiers

A modifier effect is one that plays with a core effect and alters it in some way. We will talk along the way about the modifying effects of persistence, intensity, and frequency, and then have a separate section to talk in more detail about the modifier effects of envelope (ADSR), pulse, and color pulse.

Trails (Core Effect)

This is perhaps the most basic effect. Making an analogy with sound, trails are akin to a soft reverb with no delay:

The three settings for trails are: persistence, intensity, and exponential decay (which is binary in the current implementation and otherwise takes on the value of linear decay). Persistence determines how quickly the tracer vanishes, whereas intensity is a constant multiplier for the entire trail. Thus, by changing those parameters you can choose between e.g. a long but dim trail or a short but bright trail.

High persistence / low intensity

Low persistence / high intensity

The exponential decay parameter slightly changes how quickly the brightness goes down; when it’s on, the trails go down more smoothly (cf. gamma correction).

Without exponential decay

With exponential decay

Strobe (Core Effect)

The strobe effect takes snapshots of the input at regular intervals. It works like chronophotography, and it is perhaps what most people think about when you first talk about visual tracers. It is the effect that Dubois & VanRullen used to find that LSD produces visual tracers at ~15-20 Hz.

Strobe effect at 16.4 Hz

The strobe effect, just as the trail effect, also has intensity, persistence, and exponential decay modifiers. In addition, it also has frequency, which encodes how many snapshots per second are being taken.

5 Hz Strobe

10 Hz Strobe

20 Hz Strobe

Note: The current implementation of the trails feature is done with a very fast strobe. In this way, when you set the strobe frequency to the maximum you get something that starts to look a little like the trails effect.

Replay (Core Effect)

With an analogy to sound, replay would be akin to adding an echo or delay to a signal. Replay adds to the raw signal a copy of the output from a fraction of a second into the past. The result is a current output that contains a sequence of increasingly dimmer video replays of itself at regular time intervals into the past.

6 Hz Replay

As with strobe, replay has intensity, persistence, exponential decay, and frequency as its modifying effects.

3 Hz Replay

12 Hz Replay

Note: the replay effect is difficult to distinguish from the strobe effect with only still images

Pulse (Modifier)

This is a modifier effect that can apply to trails, strobes, and replays (right now the implementation only applies to strobe, but we may change that in the future). It takes a fraction of the input and modulates it with a sine wave at a given frequency. This way the trails, strobes, and replays can come and go (either in part or in full) at a given frequency. This adds sparkle to the experience, and it can plausibly help create a sense of reality or object-permanence for the hallucinations as they “vibrate at their own frequency”.

Compare the difference between a strobe at 4 Hz vs. a strobe at 4 Hz with a pulse at 2 Hz:

4 Hz Strobe
4 Hz Strobe + 2 Hz Pulse at 50% amplitude

As you can see, the pulsing effect makes the strobes look like they have a sort of life of their own.

ADSR (Modifier)

This modifier effect was something we decided to add because James Kent of Psychedelic Information Theory (Kent, 2010) talks about ADSR envelopes for tracers in the section titled “Control Interruption Model of Psychedelic Action”:

Using control interrupts as the source of hallucinogenesis, we can model hallucinogenic frame distortion of multisensory perception the same way we model sound waves produced by synthesizers; by plotting the attack, decay, sustain, and release (ADSR envelope) of the hallucinogenic interrupt as it effects consciousness. (Fig. 2)3,4 For example, nitrous oxide (N20) inhalation alters consciousness in such a way that all perceptual frames arise and fall with a predictable “wah-wah-wah” time signature. The throbbing “wah-wha-wah” of the N20 experience is a stable standing wave formation that begins when the molecule hits the neural network and ends when it is metabolized, but for the duration of N20 action the “wah-wah-wah” completely penetrates all modes of sensory awareness with a strobe-like intensity. The periodic interrupt of N20 can be modeled as a perceptual wave ambiguity that toggles back and forth between consciousness and unconsciousness at roughly 8 to 11 frames-per-second, or @8-11hz.5 Consciousness rises at the peak of each “wah” and diminishes in the valleys in between. On sub-anesthetic doses, N20 creates a looping effect where frame content overlaps into the following frame, causing a perceptual cascade similar to fractal regression. We can thus model the interrupt envelope of N20 as having a rounded attack, fast decay, low sustain, medium release, with an interrupt frequency of @8-11hz. Any psychoactive substance with a similar interrupt envelope will produce results that feel similar to the N20 experience. (Fig. 3) For instance, Smoked Salvia divinorum (vaporized Salvinorin A&B, or Salvia) has an interrupt envelope similar to N20, except Salvia has a harder attack, a slightly longer decay, a more intense sustain, a slightly longer release, and a slightly faster interrupt frequency (@12-15hz).6 These slight changes in the frequency and shape of interrupt envelope cause Salvia to feel more physically intense, more hallucinatory, and more disorienting than N20, even though they share a similar throbbing or tingling sensation along the same frequency range.


The chapter about the Control Interrupt Model of Psychedelic Action in Psychedelic Information Theory by James L. Kent

“Figure 2.” (source)

This actually seems to be important for showcasing what makes drugs with similar characteristic frequencies capable of feeling so different.

2 Hz Strobe
2 Hz Strobe + soft ADSR pattern

A really interesting research lead that is connected to the ADSR envelope of psychedelic tracers can be found in The Grand Illusion (Lehar, 2010), where cognitive scientist Steven Lehar narrates some of his experiences with LSD vs. LSD + MDMA. One of the things he discusses is the way that MDMA makes the experience jitter in a pleasant way that results in the LSD visuals becoming smoother (emphasis mine):

Under LSD and ecstasy I could see the flickering blur of visual generation most clearly. And I saw peculiar ornamental artifacts on all perceived objects, like a Fourier representation with the higher harmonics chopped off. LSD by itself creates sharply detailed ornamental artifacts, like a transparent overlay of an ornamental lattice or filigree pattern superimposed on the visual scene, especially in darkness. Ecstasy smooths out those sharp edges and blurs them into a creamy smooth rolling experience.


The Grand Illusion (pg. 62) by Steven Lehar

I would suspect that this distinction will become legible with the judicious use of ADSR envelopes. Below you will find a possible rendition of this effect:

10.3 Hz Strobe (maybe LSD)
10.3 Hz Strobe + soft ADSR pattern (maybe LSD + MDMA)

As we will discuss further below, a more creamy ADSR envelope may cash out in a more pleasant experience, whereas a sharper or spikier envelope may in turn create more harsh experiences.

Color Pulse/Negative After Images (Modifier)

The color pulse effect transforms the image’s color towards its opposite in the CIELAB color space with a given frequency. It modifies strobe, replay, and trails (in principle, there can be a different color pulse for each effect, but for now it modifies all three simultaneously).

23.6 Hz Strobe
23.6 Hz Strobe + 2 Hz Color Pulse

Unlike pulse, color pulse modulates the color rather than the brightness of the input. The way we determine what color to transform into is by going to the opposite side of the CIELAB color space. This accurately approximates the negative afterimage of any phenomenal color (such as yellow being the negative afterimage of blue, and green being the negative afterimage of red). In our current implementation, color pulsing affects strobe and replay quite differently. For replay, the effect is one where there are now versions of the ball (or image, more generally) that have the opposite color that are chasing the original ball, whereas for strobe the effect is that of giving a seizure to each of the recent snapshots of experience! See for yourself:

26 Hz Replay + 13 Hz Color Pulse
26 Hz Strobe + 13 Hz Color Pulse

In a future version of the tracer tool, color pulse may become a sub-property of each main tracer layer in the same way ADSR is a sub-property of the strobe and replay layers.

Color pulsing may be an important piece of the puzzle for understanding how otherwise similar drugs can have such dramatically different effects. Tentatively, color pulsing showed up as a distinction between DMT and 5-MeO-DMT according to one of the persons who submitted parameters (as you can see above in the replication section). For that person, DMT produced color pulses while 5-MeO-DMT did not. Of course this is just a sample size of N=1. But it seems like an important research lead if true! After all, DMT trip reports do talk of highly colorful hallucinations that typically involve the combination of colors and their opposites (e.g. “The wall looked like a Persian carpet with an alternating checkerboard pattern design of neon green and magenta light” – anonymous 10mg DMT), whereas most 5-MeO-DMT trip reports don’t feature color very much. In fact, 5-MeO-DMT trips are often in black and white, pure white, pure black, or “nothingness color”. We discuss the implications of this in more detail in the last section of this piece (Getting Realms from Time-Like Textures).

Face Value vs. Dynamic Feedback Model

It is important to point out that the tracer tool works under the assumption of linearity between the effects it models. In other words, each effect modifies the input in its own way, and the corresponding modifications are added linearly at the end. This does not need to be the case. And in fact, we must expect the brain to have a lot of complex non-linearities where e.g. the pulsing effect is then used in a replay loop which entrains a strobing pattern which focuses your attention and so on. This complication aside, there is a lot of value in postulating the simple model first, and then adjusting accordingly when it fails to model the more complex phenomena. When we get there, once we have identified particular drugs, doses, and combinations that produce strange nonlinearities, we can then build tracer tools that explore how the parameters of particular dynamic systems can best explain the empirical data. Until then, let us start mapping out the space with this (relatively) simple linear model.

Useful Vocabulary

I would like to highlight the fact that using the tracer tool can be very educational. Familiarizing yourself with the effects and their modifications will allow you to be able to describe in detail psychedelic tracers even without having to use the tool again. For instance, I find myself now able to describe what kind of tracer effect appears on any given replication or trippy video. For example, now that you have read about them, can you tell us what is going on in the following gifs?:

(source)

The Explanatory Power of the Time-Like Texture of Experience

Exotic Phenomenal Time

We have previously suggested that tracers in the most general sense (i.e. including tracers for emotions, thoughts, and all sensory modalities in addition to visual experience) are very important for understanding the time distortions one experiences in exotic states of consciousness. The overall idea is that the aspect of our experience that gives rise to the feeling of time passing is the result of implicit causality in the network of local binding connections, which we call the pseudo-time arrow (see a recent presentation about it). Don’t worry about the details, though. All you need to know is that here we model phenomenal time as the direction along which causality flows within one’s experience. And because this is a statistical property of our experience, it turns out that phenomenal time ends up being very malleable; it admits of “exotic phenomenal time” variants:

This framework can articulate what is going on when you experience crazy psychedelic states such as moments of eternity, time branching, time looping, and so on. Now, even these are just some of the possible ways in which the network of local binding connections can give rise to exotic phenomenal time experiences. In reality, because the pseudo-time arrow emerges at a statistical level in the network, one can have all manners of local pseudo-time arrows nested in complex ways, as briefly discussed in the presentation:

 I will end by speculating: I just walked you through seven types of exotic phenomenal time, but if indeed [the experience of time] can be explained in terms of causality in a graph, then there are many other exotic phenomenal times we can construct. This is especially so when we consider the space of possible hybrid phenomenal times. For instance, where in some regions in the network we may find time looping, some other region might be a moment of eternity, and perhaps another region is branching, and you know, if you have a very big experience, there is no reason why you wouldn’t be able to segment different regions of it for different types of phenomenal time. This is not unlike, perhaps, how we think of Feynman diagrams, where this part of it here is moving forwards in time, this part here is doing a loop, this part here is branching… I think a lot of the topologies we see here could be used to represent completely new [hybrid] exotic phenomenal times.


The Pseudo Time Arrow | Andres Gomez Emilsson (2020)

Given the diversity of ways in which phenomenal time can be expressed in an experience, I will start talking about the patterns encoded in the pseudo-time arrow as the time-like texture of experience. This way, rather than assuming that one’s sense of time is globally consistent in a given way (e.g. as in “I am fully inside a time-loop”), we can discuss how various patches and components of one’s experience have this or that time-like texture (e.g. “my visual field was looping, but my proprioception was strobing and my thoughts felt timeless”).

Drugs

As a generic effect, all psychedelics seem to increase the duration of qualia in one’s experiential field, leading to a buildup of energy. But the precise shape this takes matters a lot, and it is certainly different between drugs. An example pointed above is how LSD and DMT seem to produce strobe and replay patterns of markedly different frequencies. For DMT, the spatial and temporal frequency of the visual hallucinations is usually described as “very high”. Based on the replications thus far, along with personal reports from a musician I trust, DMT’s “characteristic frequency” seems to be in the 25 to 30 Hz range. In contrast, LSD’s frequency is more in the range of 15 to 20 Hz: both Dubois & VanRullen’s LSD tracer study and subjective reports I’ve gathered over the years point to the hallucinations of acid having this rough frequency. Hence, the very building blocks of reality of a high-dose DMT breakthrough experience consist of tiny time-loops and strobe effects interacting with one another, weaving together a hallucinated world with surprising levels of detail and intense freshness of experience (as all the time loops are “young” due to their short duration). Really, when you take a small dose of DMT and you see the walls tessellating into wallpaper groups, notice how each of the tiny “bricks” that make up the tessellation is itself a time loop of sorts! It is not a stretch to describe a DMT experience as a kind of complex Darwinian ecosystem of tiny coalition-based time loop clusters bidding for your attention (cf. Hyperbolic Geometry of DMT Experiences).

Taking this paradigm seriously allows us to interpret psychoactive effects at a high level in novel ways. For example, these are some of the general patterns we have identified so far:

  1. Psychedelics tend to have strong replay and strobe effects
  2. HPPD, cannabis, and dissociatives seem to have a much smoother trail effect
  3. MDMA and 5-MeO-DMT have characteristically creamy ADSR envelope effects

Using the sound metaphor to restate the above, psychedelics introduce beats and recursion, dissociatives introduce reverb, and empathogens/valence drugs may affect the temporal blur of one’s experience. Thus, we arrive at a model of psychoactive substances that makes sense of their effects in the language of signal processing rather than neurotransmitters and functional localization. This sheds a lot of clarity on the mysterious and bizarre state-spaces of consciousness disclosed by psychoactive drugs and paves the way for a principled way of predicting the way drug combinations may give rise to synergistic effects (more on that below). More so, it lends credence to the patternceutical paradigm of drug effects.

Meditation: Insight and Concentration Practices

The pseudo-time arrow paradigm suggests that one of the ways in which meditative practices can switch one’s state of consciousness is by disrupting sober time-like textures and enabling exotic time-like textures not available to the sober mind (see also: The Neuroscience of Meditation: Four Models (Johnson, 2018)). My personal experience with meditative practices is limited, but I’ve had the pleasure of experiencing some strange effects so far. In particular, I would say that concentration practices seem to give rise to experiences with long and stable pseudo-time arrows – a peacefulness in which nothing is happening yet the flow of time is constant and rather uneventful. The phenomenal time of highly focused states of mind may be full of reverb, but I do not think it has crazy time loops. Moments of eternity and timelessness may be present at the limit here (e.g. moments of eternity and Jhanas may be deeply connected), though I will need more personal experience to say this with confidence. 

On the other hand, insight practices such as noting meditation may have more of a replay and strobe effect. In particular, this may happen as a result of three core effects from this kind of meditation: (1) it stops you from dissipating energy across long narratives, (2) it recaptures the energy you were going to use for a longer narrative to feed the noting process instead, and (3) it entrains the rhythm of noting. This in turn (a) energizes a regular constant-frequency pattern (the frequency of noting) and (b) reduces the energy of every other rhythm, which in turn (c) canalizes sensory stimulation energy towards the brain’s noting frequency and all of its harmonics, which eventually leads to a high-frequency energized state of consciousness whose building blocks are tiny time-loops. These can synchronize and create experiences with characteristic time-like textures made up of such tiny energized loops. Hence, noting practice above some level of skill (e.g. with a noting frequency above 3 Hz) can be DMT-like to an extent (in light of thinking of DMT realms as made up of energized high-frequency mini-time-loops).

These experiences characterized by intense tracer effects are in a similar space as the strange temporal distortions that happen when you are dizzy (like when you stand up too fast or hyperventilate). The “loss of context” that results from this effect is due to the longest replay loops becoming too short to contain the necessary information to “keep you in the loop about what is going on”. Hence the confusion about who or what you are, what you are doing, and how you got here that happens when you are near passing out from standing up too quickly. That confusion takes place in an otherwise highly detailed and intense high-energy and high-frequency “rush” made of tiny time loops.

Thus, one of the gateways into altered states of consciousness via meditation with noting can be summarized as what happens when you induce a self-reinforcing pattern of strobing, replay, and pulsing that fully captures your attention. This process builds up a lot of energy, which one can only wield up to a point. When one fails to control it, the state decays into a series of tracer patterns that use the clean loop as its background reference. As this happens, one experiences a world whose building blocks are beautiful tiny jewels of attention, slowly decaying as one loses the ability to stay focused. The decay process also seems to do something good when properly orchestrated. Namely, as the decay process begins, one naturally experiences a Cambrian explosion of qualia critters eager to feed off of the negentropy generated, as thought-forms need attention to survive. This whole process, one could argue, lends phenomenological credence to the paradigm of neural annealing, where one’s brain uses a heating and cooling schedule to entrain brain-wide harmony.

In other words, with something like a noting practice, one ends up creating a world simulation whose building blocks are all embedded in a very tight time-loop, a wind-up universe of concentrated awareness. Perhaps we are going too far with this explanation. Either way, we really feel that thinking in terms of these generalized tracer dynamic patterns is an exciting new conceptual toolkit that allows us to describe the quality of exotic experiences that were hard to pinpoint before.

Three Exciting Possible Applications of the Tracer Tool: High-O-Meter, Synergy Quotient, and Harmonic World-Building

(1) High-O-Meter

How high are you? It is often difficult to put a number on this question. But once we have established the parameters for different drugs (e.g. characterized DMT as living in a region of the parameter-space that is of higher frequency than LSD, etc.) we can show a series of gifs to someone and ask them to point at the one that best shows what tracers looked like at the peak of their experience. This way we can quickly estimate how high they got (at least visually) with a very simple question.

For example, we may find that the “modal response” to 50, 100, 200, and 300 micrograms of LSD looks as follow:

Simulated tracer for 50 μg of LSD
Simulated tracer for 100 μg of LSD
Simulated tracer for 200 μg of LSD
Simulated tracer for 300 μg of LSD

If this works, we would be able to sort research participants into one of these ranges just by asking them to point at the image that best captures their experience. Similar tools for other modalities could be used to obtain a global “highness score” meaningful across people.

(2) Synergy Quotient (orthogonality vs. synergy vs. suppression vs. harmonization)

What happens when you combine psychoactive drugs together? We have previously discussed in great detail what happens when you take combos of drugs from various categories (see: Making Amazing Recreational Drug Cocktails), but admit that there are huge puzzles and unknowns in this space. Of note is that some combinations give rise to synergistic effects (e.g. psychedelics and dissociatives), others blunt each other’s action (e.g. agmatine and nootropics), while yet others seem to create competing effects due to some kind of mutually-exclusive qualities of experience (e.g. salvia and DMT, a.k.a. “drugfights”). For an illustrative example of the third category, famous psychonaut D. M. Turner reports:

I smoked 30 mg. of DMT in three tokes, followed immediately by 650 mcg. of Salvinorin that I had preloaded in a separate pipe.

The effects were felt almost immediately. The first thing I noticed was a grid of crosshatch patterns. I had perceived something similar when using 2C-B with mushrooms, which I believed to be the result of using two psychedelics that were not compatible with each other. However, in this case the patterns were defined to a much sharper degree, and it seemed apparent that these two substances affect consciousness in differing ways that are not synchronistic when used together. Both the Salvia and DMT entities seemed to have been taken entirely off guard and had not been expecting this confrontation. These entities seemingly paid no attention to me as their attention was entirely fixed on each other. It soon became apparent that the two were going to battle, vying to determine who would have control of my consciousness.


Source: #9  D.M. Turner – 650 mcg. Salvinorin with 30 mg. N.N. DMT

We think that the tracer tool can be useful to quantify the degree of interaction between two drugs. For instance, say that drug A produces a robust 10 Hz replay effect, whereas drug B produces a 7 Hz Strobing effect. Would drug A + drug B cause a tracer that blends these two facets, or does it produce something different? If the combination’s tracers are different than the sum of its parts, how large is this difference? And can this difference be identified with a particular recursive stacking of effects, or as the result of a nonlinear interaction between dynamic systems? We believe that this line of research may be very illuminating.

Drug A
Drug B
Drug A + Drug B (“orthogonal”)
Drug A + Drug B (“suppression”)
Drug A + Drug B (“synergy”)
Drug A + Drug B (“harmonization”)

In the above example, we show what various possibilities for the result of drug combos may be. “Orthogonal” effects mean that the resulting tracer is the sum of the tracers of each drug, “suppression” means that one drug’s effect reduces the effect of the other, “synergy” means that the resulting effects are stronger than you’d expect by just linearly adding the effects of each drug, and “harmonization” refers to the possible slight-retuning of the characteristic frequency of each drug’s effect that allows for a consonant blending. How strongly the combo is from the predicted effect based on each drug would determine the synergy quotient of the pair.

A few possible (tentative) examples: alcohol + psychedelics give rise to orthogonal effects, opiates and psychedelics result in effect suppression, dissociatives and psychedelics result in strong synergy (not unlike what you get when you stack reverb and looping in music), and MDMA and psychedelics might result in harmonized tracers (hence the creamy and harmonious visuals of candy-flipping). We would love to see research tackling this question.

(3) Harmonic World-Building

Tinnitus is usually loud and distracting, but in addition, it can also be annoying and unpleasant. At QRI, we posit that the precise pattern of tinnitus—not only its loudness—has implications for how bad it is for someone’s mental health: dissonant and chaotic tinnitus might be worse than consonant and harmonious patterns, for instance. 

In a similar vein, we think that the particular tracer patterns, over and above just their intensity, of perceptual conditions like HPPD probably matter for how the condition affects you at a cognitive, perceptual, and emotional level. Concretely, we would like to study how valence is related to one’s particular tracer patterns: we think that when psychedelic tracers feel good, that such positive valence may show up in the form of (a) harmonious relationships between the components of the effects, and (b) a sort of creaminness in the way the tracers come over time (as shown in the MDMA + LSD trip report by Steven Lehar).

We take seriously the possibility that something akin to the rules of harmony in music (see: Tuning Timbre Spectrum Scale by William Sethares) will have a showing in the way resonance in any experiential field cashes out into valence. In other words, the way patterns of resonance in the brain combine might be responsible for whether the experience feels good or bad. In particular, under psychedelics and other high-energy states of consciousness, one’s visual field is capable of instantiating visions of both tremendous beauty and tremendous terror. It is as if in high-energy regimes, one’s visual field acquires the capacity for creating pleasure and pain of its own (albeit “visual” in flavor!). While sober, one can get something akin to this effect, though only mildly in comparison: you can experience beautiful patterns by staring at a smooth strobe with eyes closed, or experience unpleasant reactions when the strobe shines at irregular intervals. The quality of the self-generated light-show in energized states of consciousness (such as a psychedelic experience) will likely have an impact on one’s sense of wellbeing. Is one’s inner light show all irregular, uncoordinated, sharp, and jarring? Or is it smooth, clean, robust, and soft? Based on the Symmetry Theory of Valence, one can anticipate that one’s tracer phenomenology feels good when it expresses or approximates regular geometries and bad when the implied geometries are irregular or disjointed.

Dissonant emergent pattern
Consonant emergent pattern

The creaminess of smooth ADSR envelopes would likewise prevent sensory and emotional dissonance by virtue of softening spikes of sensations. This, of course, is ultimately an empirical question. Let’s investigate it!

Final Thoughts: Getting Realms from Time-Like Textures

The complexity and information content of one’s state of consciousness as induced by a substance may depend on what fits in the repertoire of time-like textures of the state. For example, some states might be much more prone to generate quasi-crystals as opposed to crystals, as we argued in DMT vs. 5-MeO-DMT (Gomez Emilsson, 2020).

What are these crystals? One of the characteristic spatial effects of psychedelics is that they lower the symmetry detection threshold. This gives rise to the beautiful tessellations (at times Euclidean, at times hyperbolic (Gomez Emilsson, 2016)) everyone talks about. Analogously in time, psychedelics are notorious for creating time loops (cf. Going Loopy (Alexander, 2014)). In a deeper sense these are, we might argue, two facets of the same underlying effect. Namely, the creation of, for lack of a better term, qualia crystals. We can be cautious about assigning an ontological interpretation to qualia crystals; all we are proposing here is to accept them as phenomenological artifacts that tie together a lot of these experiential qualities. These gems of qualia come in many flavors, but they all express at least one symmetry in a clean and deep way. Whereas our experience of the world is usually made of a complex distribution of (tiny) qualia crystals which form the macroscopic time-like texture of our mind, we find in exotic states of consciousness the possibility of experiencing the refined, pure version. Timothy Leary in The Psychedelic Experience describes what he believes is the key existential conundrum close to the peak of an ecstatic trip:

Is it better to be part of the sugar or to taste the sugar?


Timothy Leary, Richard Alpert, and Ralph Metzner in The Psychedelic Experience

In line with the neural annealing frame (Johnson, 2019), there is a very real sense in which slightly past the peak of a psychedelic experience you will find some of the largest, purest, most refined qualia crystals (at least relative to the human norm). And what this looks like will depend a lot on what the available building blocks are! The diversity of these building blocks makes the time-like texture of experience triggered by different drugs dramatically variable. 

Some of the realms of experience are made with a time-like texture of interlocking time loops of different frequencies allowing you to experience the sense of “a big other”. In some other realms, the time loops are all aligned with each other, which makes self-other distinctions hard to represent and reason about. The various flavors for the felt sense of non-duality, for example, may correspond to different ways in which strobes, replays, pulse, etc. align perfectly to dissolve the internal boundaries used as building blocks to represent duality. At the extreme of “unification”, such as the state found in the 5-MeO-DMT breakthrough, one “becomes” a metronome whose tune is reflected faithfully everywhere in one’s experience, such that there is nothing else to interface with. Hence, one becomes “invisible to oneself”. To be in a state of near total oneness may entail the feeling of nothingness for this reason (thus the highest Jhanas being “nothingness” and “neither nothing nor something”).

This overall interpretative frame of exotic states as the result of time-like textures may show up empirically, too. One of the exciting early results, as mentioned above, is the report that while DMT creates complex positive and negative after-image dynamics full of color and polarity, the tracers on 5-MeO-DMT are monochromatic, meaning that one only experiences their positive after-image.

This alone may go a long way in explaining why the visual character of these two drugs is so distinct at their upper ranges. Namely, because DMT gives rise to complex checkerboard grid-patterns of overly-saturated colors intermingling with their polar opposites, whereas on 5-MeO-DMT, one often experiences an incredibly bright white light, or even a sense of translucid empty space, but no colors! The paradigm of using tracer patterns to make sense of states of consciousness would here suggest that a “breakthrough” experience can be interpreted as what happens when one’s world is saturated with the time-like texture characteristic of the tracer pattern of either drug. The realms of experience these agents disclose are the universes that you get when the building blocks of reality are those specific time loops and attention dynamics, leaving no room for anything that does not follow those “phenomenal time constraints”. When the dose is low, this manifests as just a gloss over one’s otherwise normal experience, a mere modifier on top of one’s sober reality. But when the dose is large, these time loops and attention dynamics drive the very way one’s mind constructs our whole sense of the world.

In this light, rather than thinking of exotic states of mind as places (as the “realm” metaphor alludes to), one can imagine conceptualizing them as ways of making sense of time. When you smoke salvia, you make sense of time in a salvia kind of way, which involves looping back chaotically in a way that typically results in losing the normal plot altogether and instead exotic narratives better fitted for the salvia attentional dynamics end up dominating the world-building process of the mind. Hence you end up in “salvia land”. Which is what you remember best. But the salvia land one ends up in is only a circumstantial part of the true story. The fundamental generator that is upstream of this realm would be the overall tracer pattern, the time-like texture of the experience: the neuroacoustic effect of salvia. He who controls the time-like texture of experience, controls the world-building process of the mind. Thus the paramount importance of understanding tracer patterns.


Do you want to collaborate on this project?

For Researchers

The Tracer Replication Tool is the first of a series of research tools we are creating at QRI specifically designed with psychedelic phenomenology in mind. The spirit of this enterprise is to identify the ways in which psychedelic states of consciousness can enhance the information processing of the mind in some ways. Rather than focusing on how information processing is impaired, we develop these tools with the goal of finding the ways in which it is enhanced (cf. psychedelic cryptography (Gomez Emilsson, 2015), psychedelic problem solving (Harman, 1966)). We take very seriously high-quality trips reports from rational psychonauts, which help us ideate tasks that are likely to show large effect sizes. Thus, rather than bringing traditional psychometric tools to the psychedelic space, we think that developing the tools to assess the psychedelic state in its own terms is more likely to provide novel and significant insights. We would love to have academic researchers include some of these tasks in their own study designs. Becoming familiar with the Tracer Replication Tool takes less than 10 minutes, and based on the pilot results, operating it during a psychedelic experience is possible for a good fraction of people under the influence of these substances. It would be amazing to have tracer replications included in psychedelic studies to come. If you are involved in psychedelic research and would like to use the Tracer Replication Tool or learn more about the toolkit we are developing please reach out to us! We would love to hear from you.

For Participants and Volunteers

There are several ways you can help this project. As a beta tester participant, you can use the tracer tool to replicate tracers that you yourself have experienced. There are three categories here (which you can specify at the point of submission when using the tool):

  1. Retroactively: If you have experienced visuals tracers in the past and think you can remember them accurately (or at least recognize them when you see them), you can play with the Tracer Replication Tool and submit the parameters that best match your memory of the tracers you experienced.
  2. Post-Trip: If you are planning on taking a psychedelic in the near future* and want to submit a datapoint from your experience, open the tracer tool during the trip and look at the bouncing ball (and other animations). While staring at the center of the animation for about a minute, try to get a clear picture of what the tracers look like. We encourage you to play with the color, speed, and animation type while you are in the state so that you see how tracers react to different visual inputs. Then as soon as possible after the trip is over, come back to the tool and find the tracer parameters that best replicate what you saw.
  3. Within Trip: If you are familiar with the tracer tool parameters so that you can tell in real time whether you are experiencing strobing, replays, color pulsing, etc. then you may want to try to replicate the tracers you are seeing in real time. We recognize that this has the problem that the tracer replications will have psychedelic tracers of themselves, and that they get in the way of the tracers you are trying to reproduce. That said, the early reports we have received state that it is actually easier to do a good job at replicating the tracers while in the state than after it. So we also welcome submissions of this type.

The case of HPPD and other non-drug induced tracers could be considered in this frame as well. For instance, we have been made aware that during the meditation practice of Fire Kasina, one experiences many pronounced tracers of various kinds. Thus, if you are currently experiencing meditation-induced tracers, you can submit parameters of the within trip kind. If you saw the bouncing ball (or other animations) during the meditation but have now exited your state, then you could submit a datapoint of the post-trip kind. And if you only have the recollection of tracers but did not see the ball at the time, then submit a retroactive datapoint. Likewise, HPPD and other tracer phenomena may come and go and their intensity may wax and wane, so these categories are also useful in such cases.

Please sign up to the QRI mailing list if you want to stay informed about the development of QRI’s Psychophysics Toolkit. We also want to emphasize, as we note in the Special Thanks section below, that this tool could not have been made without our amazing QRI volunteers. We are very eager to work with anyone with technical skills useful for this and related projects. If you would like to help us build these tools and advance our collective understanding of exotic states of consciousness, please get in touch. For more QRI volunteer projects see our volunteer page.


 [1] A significant message of the book is that it is useful to conceptualize these rhythms as being the result of endogenous pattern-generating networks specialized to create specific frequencies, envelopes, and types of synchronization.

[2]  “There are only two sources that control the firing patterns of a neuron at any time: an input from outside the brain and self-organized activity. These two sources of synchronization forces often compete with each other (Cycle 9). If cognition derives from the brain, this self-organized activity is its most likely source. Ensemble synchrony of neurons should therefore reflect the combination of some selected physical features of the world and the brain’s interpretation of those features. Even if the stimulus is invariant, the brain state is not. From this perspective, the most interesting thing we can learn about the brain is how its self-generated internal states, the potential source of cognition, are brought about. Extracting the variant, that is, brain-generated features, including the temporal relation between neural assemblies and assembly members, from the invariant features evoked by the physical world might provide clues about the brain’s perspective on its environment. Yes, this is the information we routinely throw away with stimulus-locked averaging.” (Buzsáki, 2006)


*Disclaimer: We are not encouraging anyone to ingest psychoactive substances. 


Special Thanks to: Lawrence Wu for implementing the current version of the tool. To Andrew Zuckerman, Quintin Frerichs, and Mike Johnson for a lot of useful ideas, conversations, and keeping the project afloat. To Robin Goins and Alex Zhao for getting a head start in implementing an earlier version of the tool. To the QRI team for encouragement and many discussions. And to the anonymous rational psychonauts and the HPPD sufferer for contributing pilot data with visual replications of their own experiences.


Bibliography

Buzsáki, G. (2006). Rhythms of the Brain. Oxford University Press.

Atasoy, S., Donnelly, I., & Pearson, J. (2016). Human brain networks function in connectome-specific harmonic waves. Nature Communications, 7(1), 10340. https://doi.org/10.1038/ncomms10340

Luppi, A. I., Vohryzek, J., Kringelbach, M. L., Mediano, P. A. M., Craig, M. M., Adapa, R., Carhart-Harris, R. L., Roseman, L., Pappas, I., Finoia, P., Williams, G. B., Allanson, J., Pickard, J. D., Menon, D. K., Atasoy, S., & Stamatakis, E. A. (2020). Connectome Harmonic Decomposition of Human Brain Dynamics Reveals a Landscape of Consciousness [Preprint]. Neuroscience. https://doi.org/10.1101/2020.08.10.244459

Rudrauf, D., Lutz, A., Cosmelli, D., Lachaux, J.-P., & Le Van Quyen, M. (2003). From autopoiesis to neurophenomenology: Francisco Varela’s exploration of the biophysics of being. Biological Research, 36(1). https://doi.org/10.4067/S0716-97602003000100005

Lehar S. (1999) Harmonic Resonance Theory: An Alternative to the “Neuron Doctrine” Paradigm to Address Gestalt Properties of Perception. Available at http://slehar.com/wwwRel/webstuff/hr1/hr1.html

Lloyd, D. (2013). The Music of Consciousness: Can Musical Form Harmonize Phenomenology and the Brain?. Neurophenomenology. https://commons.trincoll.edu/dlloyd/files/2012/07/Lloyd-2013-Music-of-Consciousness.pdf

Ingram, D. (2018). Mastering the Core Teachings of the Buddha: An Unusually Hardcore Dharma Book. Newburyport: AEON Books. Available at: https://www.integrateddaniel.info/book

Dubois, J., & VanRullen, R. (2011). Visual Trails: Do the Doors of Perception Open Periodically? PLoS Biology, 9(5), e1001056. https://doi.org/10.1371/journal.pbio.1001056

Atasoy, S., Roseman, L., Kaelen, M., Kringelbach, M. L., Deco, G., & Carhart-Harris, R. L. (2017). Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Scientific Reports, 7(1), 17661. https://doi.org/10.1038/s41598-017-17546-0

Kent, J. L. (2010) Psychedelic Information Theory. PIT Press. Available at http://psychedelic-information-theory.com/pdf/PIT-Print-Web.pdf

Lehar, S. (2010). The Grand Illusion: A Psychonautical Odyssey Into the Depths of Human Experience. Available at: http://slehar.com/wwwRel/GrandIllusion.pdf

Turner, D. M. (1996). Salvinorin – The Psychedelic Essence of Salvia Divinorum. Panther Press. Available at: http://www.lavondyss.com/donut/toc.html

Leary, T. Metzner, R. Dass, R. (1964). The Psychedelic Experience: A Manual Based on the Tibetan Book of the Dead. Available at: http://www.leary.ru/download/leary/Timothy%20Leary%20-%20The%20Tibetan%20Book%20Of%20The%20Dead.pdf

Harman, W. Fadiman, J. (1996). Selective Enhancement of Specific Capacities Through Psychedelic Training. Psychedelic Reports. Available at: http://druglibrary.org/schaffer/lsd/harman.htm

Gomez Emilsson, A. (2015). How to Secretly Communicate with People on LSD. Qualia Computing. Available at: https://qualiacomputing.com/2015/05/22/how-to-secretly-communicate-with-people-on-lsd/

Gomez Emilsson, A. (2016). The Hyperbolic Geometry of DMT Experiences: Symmetries, Sheets, and Saddled Scenes. Qualia Computing. Available at: https://qualiacomputing.com/2016/12/12/the-hyperbolic-geometry-of-dmt-experiences/

Gomez Emilsson, A. (2018). The Pseudo-Time Arrow: Explaining Phenomenal Time With Implicit Causal Structures In Networks Of Local Binding. Qualia Research Institute. Available at: https://www.qualiaresearchinstitute.org/s/The-Pseduo-Time-Arrow.pdf

Gomez Emilsson, A. (2020). 5-MeO-DMT vs. N,N-DMT: The 9 Lenses. Qualia Research Institute. Available at: https://qualiacomputing.com/2020/07/01/5-meo-dmt-vs-nn-dmt-the-9-lenses/

Alexander, S. (2014) Going Loopy. Slate Star Codex. Available at: https://slatestarcodex.com/2014/04/11/going-loopy/

Johnson, M. (2018). The Neuroscience of Meditation: Four Models. Qualia Research Institute. Available at: https://opentheory.net/2018/12/the-neuroscience-of-meditation/

Johnson, M. (2019). Neural Annealing: Toward a Neural Theory of Everything. Qualia Research Institute. Available at: https://opentheory.net/2019/11/neural-annealing-toward-a-neural-theory-of-everything/


If you want to use the software, please reference it by citing it in the following way (APA style):

Wu, L., Gomez Emilsson, A., Zuckerman, A. (2020). QRI Psychophysics Toolkit, Qualia Research Institute. https://qualiaresearchinstitute.github.io/psychophysics/

And cite this article as (APA style):

Gomez Emilsson, A. (2020, October). Modeling Psychedelic Tracers with QRI’s Psychophysics Toolkit: The Tracer Replication Tool. Qualia Computing.

Learning the Trade

Excerpt from “Perfume: The Alchemy of Scent” by Jean-Claude Ellena (pgs. 36-38)

Odor Classifications

To help beginners memorize odors, different perfume companies have created various classifications. The one I provide is based around nine categories of odor.

  1. Flowers. They are subdivided into five groups.
    1. Rose Flowers: This group, which includes rose e.o.[1], geranium e.o., and the odor of hyacinth, lily of the valley, and peony, is characterized by the fragrance of two components of these flowers – phenylethyl alcohol and geraniol.
    2. White Flowers: This group is determined by the combination of two molecules – methyl anthranilate and indole – that characterize the absolutes of orange flower, jasmine, and tuberose, but also the aromas of sweet pea, gardenia, and honeysuckle.
    3. Yellow Flowers: This group is defined by the presence of ionone beta, a molecule produced by the breakdown of the pigment carotene, which is responsible for the color of flowers like freesia and wallflower, extracts of which are in cassia absolute and osmanthus absolute.
    4. Exotic or Spiced Flowers: This group is defined by the combination of benzyl salicylate and eugenol, which is present in the odor of carnations and lilies and as a component in ylang-ylang e.o.
    5. Anise Flowers: This group includes mimosa absolute and the odors of lilac and wisteria. They are created using anisic aldehyde or heliotropin.
  2. Fruits. They are subdivided into three groups.
    1. Citrus: Lemon e.o., bergamot e.o., orange e.o.
    2. Orchard Fruits: Aldehyde C-14 (called peach), fructone.
    3. (Soft) Fruits: Black currant absolute, frambinone.
  3. Woods. They are divided into five groups.
    1. Sandal: Sandalwood e.o.
    2. Patchouli: Patchouli e.o.
    3. Vetiver: Vetiver e.o., vetiveryl acetate.
    4. Cedar: Virginia cedarwood e.o., Atlas cedarwood e.o.
    5. Lichen: Oak moss absolute.
  4. Grasses. They are subdivided into three groups.
    1. Green or fresh-cut grass: Hexenol, galbanum e.o.
    2. Aromatic: Lavender e.o., rosemary e.o., thyme e.o.
    3. Aniseed: Basil e.o., tarragon e.o., anise e.o.
  5. Spices. They are divided into two groups: cool spices and hot spices.
    1. Cool Spices: Pepper e.o., cardamom e.o., nutmeg e.o., pink pepper rose e.o.
    2. Hot Spices: Cinnamon e.o., clove e.o., pimento e.o.
  6. Sweet Products. They are subdivided into three groups.
    1. Vanillas: Vanilla absolute, vanillin, benzoin resinoid.
    2. Coumarins: Tonka bean absolute, coumarin.
    3. Musks: Synthetic musks.
  7. Animal Products. They are subdivided into three groups.
    1. Ambers: Labdanum absolute, cistus e.o.
    2. Castoreums: Castoreum absolute, birch tree e.o.
    3. Civets: Civet, skatole, indole.
  8. Marine Products: Seaweed absolute, calone.
  9. Minerals: Aledhydes.

In addition to this classification, I recommend another system for identifying odors. To make it easier to memorize and to conceptualize “odor” as an object, I use words associated with another sense, in particular the sense of touch. So I say of an odor that it is hard, soft, cold, hot, velvety, dry, flat, sharp, silky, prickly, gentle, thin, heavy, light, harsh, fragile, oily, greasy, and so forth.

So the vocabulary specific to olfaction consists of words for aromatic objects (soap, sweet, cigar, etc.), of names of flowers (jasmine, lilac, lily of the valley, etc.), of the names of chemical molecules (linalool, benzyl acetate, hexenol, etc.), or of their function (salicylate, aldehyde, etc.), and of words drawn from other senses.

However, what distinguishes the vocabulary of the perfumer from that of laypeople is the choice of a common language based on the training provided in perfumery schools and the discussions between perfumers and experts within the profession. This linguistic community creates a consensus around certain perceptual features. For the perfumer, soap, aldehyde, jasmine, nail varnish, rose, leather, wood, bonbon, and so forth are terms that describe the odor and not the object that produces it. A lily of the valley can be described as “jasmine”, as can a fragrance, a washing powder, and so on. For the perfumer, the word “jasmine” refers to an olfactory experience, which can be very different from the fragrance given off by jasmine flowers. For the professional, therefore, the vocabulary of odors no longer brings to mind the image of the source but a mental picture of the odor. The perfumer thus invents the object of his science; he invents odor, and that is the source of his creativity.

[1] e.o.: abbreviation for essential oil.


See also these articles that discuss the state-space of scents:

Improve your Indoor Air Quality by 99% by Optimizing the Use of HEPA Filters

TL;DR: You can achieve much greater reductions than 50% of PM2.5 with a HEPA filter if you are clever about how you use it. Using a “concentric shells” approach in a 100m^2 apartment has allowed me to enjoy air with up to 99% less PM2.5 than outdoors.

Some of you may recall that QRI held an event called “Cause X” a year and a half ago. Indeed, Dony Christie (whom I recently credited for sounding the alarms in mid-January about the coming coronavirus pandemic) presented: “The researching of possible Cause Xs as itself Cause X“. I think this is a great idea, and it is already bearing some fruit…

Recently, Lukas Trötzmüller reached out to me to follow-up on one of the causes I proposed at the event. Namely, to subsidize HEPA filters as a potentially EA-level intervention. Here was my justification:

[Subsidizing HEPA filters] might be a highly effective way of improving the health-span of a country’s population in a cost-effective fashion. As Robin Hanson has argued over the years, if we truly cared about the health of people, we would be spending more resources on the top 4 drivers of health (diet, exercise, sleep, and clean air) rather than on extravagant medical interventions designed to convince us that “an attempt was made.” Clean air, in particular, seems easy to influence at a rather minimal cost. HEPA filters capable of providing clean air to entire apartments (reducing by 10X the PM2.5 concentrations in the apartment) can cost as little as $70, with an upkeep of about $30 a year for renewing filters, and about $20 a year for electricity. Fermi calculation would indicate this would cut the average person’s daily PM2.5 exposure by half. I haven’t worked out the math concerning the amount of micromorts prevented per dollar this way, but the numbers seem extremely promising.

After stumbling upon the Cause X post, Lukas and some of his friends decided to do a more thorough cost-benefit analysis, which was recently posted on the EA Forum: Cost-Effectiveness of Air Purifiers against Pollution. I mostly agree with his analysis (and I commented on the post with what I thought was missing). His conclusion?

Air pollution is one of the biggest public health problems of our time. Simple air purifiers are surprisingly effective at reducing the harm. In our sample calculation, the intervention easily meets WHO criteria for a “highly effective” intervention in Austria, and the criteria for an “effective” intervention in India. With just a few small improvements to cost-effectiveness, it would qualify as “highly effective” in India too.

There are many ways in which effectiveness could be improved: If the bedroom is shared by two people, effectiveness doubles. Our calculations were made for 10 hours per day of use. Many people stay home for longer than that, and would correspondingly benefit more from an air purifier in their home. It is plausible that we could find more energy-efficient devices and optimize location, placement and timing. Furthermore, devices could be preferentially given to individuals which are at special risk of pollution-induced illness.

Buying air purifiers for people to place in their homes is probably not a promising EA intervention: Cost-effectiveness is two orders of magnitude worse than GiveWell-recommended charities. That being said, there might be much more cost-effective ways of helping people get access to air purifiers. We might lobby governments to subsidize those devices, or to make HEPA filters mandatory for public buildings and vehicles.

I’ve been quite surprised by the results. It seems that using an air purifier has solid health benefits, both in very polluted and in averagely polluted locations. It is surprising that in affluent countries, where people can easily afford these devices, air purifier use is not commonplace. The health benefits are clear and well-studied. I have installed a homemade device in my bedroom, together with a PM2.5 sensor, and plan to place a second device in the office.

If you’re interested in air pollution, air purifiers, or would like to collaborate on future research please get in touch.

I take this as a sign that encouraging people to sketch out new EA causes can be of very high-value*. Indeed, holding semi-regular “Cause X” events might be a great way to find completely new cost-effective interventions to improve human and non-human welfare across the globe.

Now, the topic of air purifiers has been on my mind again lately. And the reason should be quite obvious. Namely, that in September of 2020 we in the West Coast are currently experiencing one of the worst air qualities in the entire world due to the forest fires. I’ve been recommending friends and acquaintances who live in this area to get a HEPA filter NOW, since the fires are expected to continue for a month at least (and the worst is likely yet to come as we are only in the middle of the fire season). Unfortunately, a lot of HEPA filters are now out-of-stock, in what mirrors perhaps the spike in demand for PPE at the onset of the COVID pandemic. As they say, the prevention is better than the cure – I happened to have both air filters and N95 masks on hand before these two events, but not everyone is as lucky. Ideally, everyone in the West Coast would have at least two air filters from the start (I’ll get to why in a minute) but we do what we can with what we have.

Similarly to how early official advice for how to protect against COVID was deadly (e.g. downplaying the importance of masks early on), I am dumbfounded by the low-res and relatively useless listicles of advice I see for how to deal with the smoke from the wildfires. Yes, staying indoors and avoiding exerting yourself is better than nothing. But we could do much better than that. In particular, I think that a little cleverness in positioning can go a long way in optimizing the effectiveness of HEPA filters for maximum health. Below you will find a brief account of my experience with HEPA filters in a fairly-insulated ~100m^2 (~1100 square feet) apartment in California over the last few years (YMMV) and what I recommend you do if you find yourself in a similar situation:

The basic claim I want to put forth is that the ~50% reduction of PM2.5 quoted in most studies can be massively improved upon with a little work. In particular, with two air filters intelligently placed I’ve been able to achieve a reduction of PM2.5 in the 95 to 99% range. But first, what equipment am I using?

  • We’ve owned four air quality monitors over the last few years – one I sacrificed by giving it to a friend who went to Burning Man to get some sense of what the air over there is like (answer: really bad), and another one I forgot at the house of a cousin pre-COVID which I haven’t had a chance to retrieve. The two I currently own are: Temtop LKC-1000S+, and BIAOLING’s JSM-131. They both make very similar measurements for PM2.5 and PM10, which also agree fairly closely with the values I get from PurpleAir and AirNow. That said, Temtop seems to be better on the whole – it is even more correlated with the values I get online, is faster (it takes only 1 minute to adapt to a new environment vs. 3 or 4), and is far more granular (it does not jump in increments of 3). So below I will just report the values from the Temtop devise.
  • We’ve owned two air purifiers for about 3 years – the LEVOIT LV-H132 with H13 filters. It’s really similar to other LEVOIT models, and as far as I can tell, indistinguishable in its performance:

So here is my experience over the last couple of years:

  • With no air filters the difference between the PM2.5 outside and inside is small, typically in the 20% range. So let’s say the air outside is 20PM2.5, then inside with all the windows and doors closed for many hours, the reading will be no less than 16PM2.5. This is one of the reasons why I feel like the advice of “staying indoors with all the windows closed” is not really that useful (and in my experience people tend to believe they are staying out of harm’s way that way, which is very much not the case).
  • With one air filter on in the living room, with all of the inside-doors open, I get a stable state where the reduction is in the 60 to 80% range. With two air filters on in separate rooms but with all the inside-doors open, the reduction is a bit higher, in the order of 80 to 85%.
  • When I have only one air filter on inside one room with no door to the outside (and closed windows), the reduction is more dramatic, in the vicinity of 90%. This makes sense, as both the “surface area” to the outdoors, and the volume of air to clean are smaller.
  • The best outcome seems to come from having (a) one air filter in the living room, and (b) a second air filter in the room I’m in with its door closed. This is what takes the PM2.5 value to be as low as 1 to 5% of what’s outside. For instance, by using this method, when the air quality outside reached 400 PM2.5 outside a few days ago, I was able to enjoy a 5PM2.5 inside my room (!!!). The living room would be at 60PM2.5 and the smoke still somewhat noticeable, but once inside the bedroom there would be no way to detect there was anything off about the air.
  • I’ve generally found that the biggest point of entry for PM2.5 is not the windows (which seal pretty well) but the doors that lead to outside. The air also gets in more efficiently when a bathroom vent is on (obviously, as this causes a slight pressure differential with the outside).
  • Once a room has been cleaned (i.e. the filter has been running inside it for one or two hours), it takes up to 6 hours for the room to become half as dirty as the rooms it’s connected with through doors. I was really surprised by this, actually. But yes, even though most doors do not work as airlocks, they do dramatically reduce the airflow between rooms.

Based on the above, I would offer a few heuristics for how to maximize the benefits from your HEPA filters:

First, use the fact that your place likely has “concentric shells” that separate the outside from the inside. If you have more than one filter, distribute them along the shells: it is much better to have one filter in your studio and another in the living room than having two in the living room. Each shell’s “outside environment” is the shell surrounding it, so make use of the fact that there is this “sequence of relative outdoors” and place a filter on each of them when possible for an exponential reduction of PM2.5 as you move inwards.

Second, if you only have one filter, place it in your bedroom when you sleep and in your studio when you work.

Third, if you are living with other people, you can basically do this iteratively: clean the air in your room, then pass the filter to the next person, who will clean the air in their room and pass it along to the next one and so on. If each person keeps the filter for one hour, by the time it gets back to you, the air inside your room will still be very good.

Fourth, if you have filters to spare, I would recommend placing one right next to each door that leads outside, as this is the place from which you will be getting most of the particles (assuming your windows are pretty good).

Fifth, if you have the stamina for it, you could in principle partition your place into more concentric shells using plastic sheets and tape. Then you can filter the innermost room, then filter the second innermost shell, then the third, and so on until you reach the shell that is connected to the outside doors. If done properly, this will have created highly clean air for the entire apartment. More generally, once you are done cleaning the air of one concentric shell, you can move the filter to the next one. Think of it as a “moving airlock” that cleans the air one step at a time from the center to the edge.

More generally, I would encourage you to notice that thinking in terms of more dakka really does pay off when the air outside is really bad. Don’t just say to yourself “well, I have a filter so I’m doing all I can already” because the above heuristics (and plain just getting more filters) can dramatically increase the effectiveness of the air filtration. Be thirsty for clean air – crave that 99% reduction!

Now, what about even smaller particles? A lot of people worry that particles smaller than PM2.5 may be the most harmful to health, and HEPA filters may leave them free to roam. Is this true? Thomas Talhelm wrote a wonderful answer to the Quora question “Do air purifiers remove PM2.5” where he shows that not only are HEPA filters effective at removing particles around 2.5 micrometers in diameter, but that they are in fact even more effective at removing even smaller particles. He shows the results of a few of his own experiments using a professional-grade air quality monitor capable of detecting PM0.5 particles.

And what about CO2 concentrations? Scott Alexander has written about the importance of maintaining a low CO2 environment for optimal cognition. I agree with this, and arguably the measures I’ve proposed above may lead to a lot of CO2 in one’s living space. I do happen to also have a CO2 monitor, which shows around 600PPM when the space is very well ventilated, but can reach upwards of 1200PPM if we’ve kept all windows and doors closed for several days (and it seems to stabilize around there). This is worth it, I think, when the choice is between 5PM2.5 and 400PM2.5. But I think you can actually have your cake and eat it too:

The solution I’ve found is what I call the “FF procedure”, which is “Flush and Filter”. Don’t just open a little crack in one window hoping that that the CO2 you are removing will make up for the PM2.5 you are getting. Even if you are filtering the air inside, when the air outside is outrageously bad (e.g. 200+PM2.5) you will notice a fast reduction in the quality of air inside. A formal treatment for how to approach this problem optimally will undoubtedly involve playing with differential equations, but I think my solution is pretty effective and I think minimizes the total exposure to PM2.5 while also giving you good CO2 levels. The idea is to wait for a time when the air outside is not as bad and you then open all the windows and turn all the fans on for an hour and a half or so, which will effectively replace the air inside with the air outside. You then quickly close all the windows and turn the air filters on to their maximum capacity. The drop in PM2.5 will be quick (and indeed exponential), while you will now enjoy fully restored CO2 levels that will last for a day or two.


*I would point out, as another example of this paying off, the light we’ve cast on the issue of cluster headaches and how easily they can be dealt with thanks to psychedelics; it is partly thanks to this work that now OPIS is lobbying for the decriminalization of psychedelics for migraines and cluster headaches in Finland – I have to say that being part of the effort to reduce the incidence of cluster headaches in the world (if successful) will give me tremendous joy. Fingers crossed that it works!

[Featured image taken from: NASA Earthdata on September 10th 2020]

Psychoactive Anecdata

[Epistemic Status: anecdotal data; this is not a list of “life hacks”; it is intended as a list of interesting research leads; don’t take drugs unless you really know what you are doing!]

I’ll mark to the right of each anecdata:

  • n=x when I can remember clearly how many people have said this to me up to n = 10 (e.g. n=7 means that 7 people have told me this)
  • n=x/y when I know that y people have tried it and of those x have experienced this
  • n>1 when 1 < n < 10 but I don’t remember exactly how many people have said it, and
  • pattern if it’s a pattern I’ve observed across more than 10 people pooled from online trip reports and conversations from email exchanges, forums, group chats, private messages, and things that have come up at IRL discussions (e.g. at festivals).

Psychedelics

The “best” phenethylamines in terms of the balance between mind expansion, euphoria, and low bodyload are:

  • 2C-B (low bodyload, high euphoria, unlikely to freak out at <25mg) [pattern]
  • 2C-C (like 2C-B but also relaxing, unlikely to freak out at <40mg) [pattern]
  • 2C-D (particularly easy on the body relative to other phenethylamines, unlikely to freak out at <30mg) [pattern]
  • 2C-I (more trippy and stimulating than the above, unlikely to freak out at <25mg) [pattern]

Among some of the worst 2Cs (but perhaps not worst phenethylamines) we find:

  • 2C-P (particularly bad bodyload, inevitable vomiting above some dose) [pattern]
  • 2C-E (“just too weird” for a lot of people, strong bodyload) [pattern]
  • 2C-T-2 (high bodyload, strangely similar to LSD in headspace) [n>1]
  • 2C-T-7 (same as 2C-T-2) [n>1]

IV Psychedelics

  • Do not ever IV 2C-E as it leads to instant extreme crams, nausea, and general bodily discomfort. [n=1]
  • The come-up of IV 2C-B is very fast relative to oral administration (5 minutes) and the peak is a lot more intense as well. 5mg results in an intensity of experience comparable to 35mg oral at its peak. [n=5]
  • Within 10 minutes of IV 2C-B one feels an intense urge to defecate. [n=4/5]
  • While IV 100μg LSD takes a full 30 minutes to show the start of effects, IV 300μg takes only 5 minutes to show pronounced effects. [n=1]
  • Ketamine is reportedly experienced as a “completely different drug” when the ROA is IV vs. IM vs. intranasal. [pattern]
  • IV Ketamine gives rise to a distinct metallic taste in one’s mouth within a few seconds of administration. [n>1]

Anti-Tolerance Drugs

In Anti-Tolerance Drugs we gave a list of drugs that, when taken in conjunction with painkillers and euphoric substances, can lessen, prevent, and even reverse tolerance. But “drug tolerance” is not a natural kind. Indeed, there are many systems of neuroadaptation that prevent drugs from exerting the same effect over time. Nothing makes this clearer than the typically life-long loss of “magic” to MDMA after a few experiences, which stands in contrast to the largely reversible tolerance to ethyl alcohol post-PAWS. Indeed, “drug tolerance” can mean tolerance to reduced action for: antidepressant effects (SSRIs), lessening chronic pain (opioids), increasing executive function (modafinil), enhancing motivation (amphetamine), “the magic” (ketamine, MDMA), the sense of unity and interconnectedness (LSD), otherworldliness (salvia), and so on. Indeed you can have a drug that generates tolerance to one of its effects but not others. For example, Slate Star Codex’s nootropic survey found that despite the common wisdom that prescription amphetamines stop generating a sense of euphoria after a while, most people who use them clinically for ADHD continue to experience an enhanced focus on the drug for many years. In this vein, the following anecdata highlights how anti-tolerance drugs have a much more subtle and multifaceted effect than just “reducing tolerance”:

  • DXM and other dissociatives seem to potentiate both the analgesic and euphoric effects from opioids, increase constipation, and leave pruritus the same. [n>1]
  • Proglumide reduces both the intensity of opioid withdrawal as well as the tolerance to their analgesic, sedative, and constipation effects. It does not affect euphoria or pruritus. [n>1]
  • Ultra-low dose naltrexone (ULDN) reduces tolerance to analgesic and sedative effects from opioids but not euphoria (“it makes opioids more sleep-inducing but a lot less fun“). Interestingly, ULDN prevents constipation from opioids. [n>1]
  • Black seed oil and ashwagandha reduce the tolerance to the analgesic, sedative, euphoric, and pruritus effects of opioids without influencing constipation. These effects are milder than all of the above. [n=1]
  • Agmatine potentiates the analgesic effects of opioids without an effect on other facets like euphoria or constipation. [n =1]
  • Turmeric primarily increases the sedative effects of opioids without changing much of anything else. [n=1]
  • Anti-histamine anti-cholinergic drugs (such as diphenhydramine) potentiate the sedative and analgesic effects, but leave constipation and euphoria the same. They can increase restlessness. [pattern]

Drug Combinations

In addition to all of what was said in Making Amazing Recreational Drug Cocktails:

  • DXM does not mix well with a bunch of things: 2C drugs [n>1], noopept [n=1], tianeptine [n=1], phenibut [n=1], ethyl alcohol [pattern], most nootropics. [n=1]
    • This seems to be especially bad for high-bodyload 2Cs as described above. [n>1]
  • Vaporizing DMT while on ketamine “slows down” and in some cases “freezes” some aspects of the hallucinations of DMT, allowing you to inspect them more closely. It also prolongs the DMT experience for a good 3 to 5 minutes. [n=3]
  • Taking 30mg of MDMA and 30μg LSD at the same time, followed by 10mg 2C-B four hours later, gives rise to a very positive synergy that allows you to maintain easy executive function while having trippy thoughts and a very high hedonic tone. It’s a smart and psychologically safe state. The combo has very mild hungover effects relative to how great it feels. [n=4]

Nootropics

  • Coluracetam is surprisingly psychedelic. [n=5]
  • Mixing coluracetam and weed gives rise to a mild LSD-like mindspace. [n=4]
  • Rhodiola Rosea has a distinctly “dopaminergic quality”, which is rare among nootropics other than L-tyrosine. [n=3]
  • Most racetams (piracetam, oxiracetam, aniracetam, etc.) successfully mask the verbal impairment (both comprehension and execution) caused by weed and/or alcohol (up to a point!). [pattern]
  • Agmatine (500mg) significantly blunts the intensity of orgasm. [n=1]
  • Agmatine (500mg) can be used as a replacement for NSAIDs like aspirin and ibuprofen for mild to moderate pains and aches. [n=1]

Surprising Analgesia

  • Microdosing LSD (5 to 20μg) can substantially reduce the pain of very bad premenstrual syndrome (PMS). [pattern]
  • Microdosing LSD can also reduce the pain associated with shingles. [1<n]

The Fact That We Can Smell Functional Groups is Just Such a Thing

[Excerpt from The Secret of Scent (2006) by Luca Turin, pgs 108-111]

Some Strange Clues

It has been said,* correctly in my opinion, that theories define facts as much as the other way around. Nowhere is this more true than in structure-odour relations, where all knowledge is anecdotal. Anecdotal evidence has a sort of slippery, jelly-like quality to it, and theories are needed to congeal the stuff together into single, solid facts. ‘Anecdotal’ is often used as a pejorative term in scientific circles, meaning unreliable. In practice it often means isolated, and therefore hard to assess. Think of a new field of science as a large jigsaw puzzle. Pieces are discovered one by one, and at first they are unlikely to fit together to make a picture. Things can look distinctly unpromising, sometimes for decades. But if you can bear the pain of feeling stupid and the humiliation of being wrong, anecdotal evidence is the call of the wild, the surest sign of the undiscovered. Columbus set sail on the basis of anecdotal evidence. The Mayan hieroglyphs were deciphered using anecdotal evidence. Life-saving remedies based on plants, such as aspirin and digitalis, were found by scientists who paid attention to anecdotal evidence.

Scientific problems typically go through three phases. In the first phase, a few bold explorers discover a new land and map out its basic features. In the second phase, boatloads of immigrant scientists arrive and colonize the land. In the third phase, statues are erected on town squares, sometimes to the original discoverers, more often to the able administrators who build the roads and railways. Smell, as it happens, did not follow this pattern. Scientific colonies never thrived on this particular island. Every few years, a new set of scientists claims to have cleared the jungle, but their cities are eventually overgrown and get lost in the weeds.

In smell, the difficulty is compounded by two additional factors, one obvious, the other more subtle. The first is the supposed untrustworthiness of the smell sensation I’ve mentioned earlier which makes strong men and women doubt their own noses. The second is that when facts, especially anecdotal ones, remain unexplained for long enough, a kind of question fatigue sets in, and they become accepted without being understood. The situation brings to mind a quintessentially British cartoon I saw once where a dinosaur strides past a terraced house, and a couple see it from their living room. Wife: “What was that?” Husband: “Oh, just one of those Things.” The fact that we can smell functional groups is just such a Thing.

Functional groups, as we have seen, are the specific structures of one or more atoms that are responsible for the chemical behaviour of a substance. Examples are thiols (-SH), nitriles (-CN), and aldehydes (-C(=O)H). The little hyphen indicates that these groups are, of course, attached to something and that the Something varies hugely. But the remarkable thing is that the Something matters little to the smell of the molecules. What gives the game away, especially to the casual observer, is the fact that types of smell are named after chemical groups: sulphuraceous, nitrilic, aldehydic, corresponding respectively to -SH, -CN, -(H)C=O. This is particularly clear in the case of -SH. All molecules which contain an -SH group smell (a) strong and (b) reminiscent of rotten eggs.

A word about the description ‘rotten eggs,’ since only a tiny minority of readers will be old enough to remember them. Eggs nowadays come with time stamps and serial numbers, so they seldom get a chance to rot. The rotten eggs smell is today more likely to be experienced in an oriental market (the durian fruit), by opening the gas tap on the stove (a small amount of an -SH compound is added to make sure we notice it), or best of all by going to an Indian store and asking for kala namak or ‘black salt’. Black salt, as its name does not indicate, is actually pink and is a type of rock salt that must come from Hell, as it contains ample amounts of Hell’s Kitchen smell, namely the HSH molecule. HSH is -SH repeated and smells bad twice over. Put some kala namak on your tongue and you will see what I mean. The first thing you will notice is that it reminds you mostly of a very intense hard-boiled egg smell. Clearly, eggs, even when fresh, are itching to fall apart. If you’ve done any chemistry at school, you will also recall the classroom when the teacher was making one of those stinks for which chemistry is famous. Beware though, the culinary satanism of kala namak is beguiling: a tiny amount in blackcurrant ice cream, strawberry daiquiris, coffee, and chocolate does wonders, as long as you don’t let anyone know you did it.

Do all -SH compounds smell identical then, i.e. of rotten eggs? Not a bit, actually: they smell of all manner of things, from grapefruit to garlic via blackcurrants,  but they all have this sulphuraceous (i.e. from Hell) character. The grapefruit compound is particularly instructive. It is called pinanethiol. Thiol means -SH, so pinanethiol means pinane-SH.

Remove the -SH and the rest of the molecule (pinane) smells like pine needles, as it should, since pinane is a major component of turpentine oil, itself extracted from pine. Add the -SH back and, having smelled the pinane by itself and familiarized yourself with kala namak, you can clearly smell the parts of the molecule. That is to say you smell both the pine needles and the sulphur. Smell another very strong -SH compound like H₃C-SH, or methanethiol, for a few seconds till the nose (mercifully) tires of the hideous -SH smell, then go back to pinane-SH. Surprise! The sulphur note is now almost gone and the molecule no longer smells of pinane-SH, but instead smells of pinane tout court. This means that this molecule smells like the sum of its parts. In other words, -SH is a primary, though the other smells are not. But how does that work? How do we know what parts it’s made of? This, as we shall see, is the greatest mystery of smell. Looking for an answer will take us amazingly far afield.


* Paul Feyerabend, among others, convincingly argued this view in Against Method, required reading for those who believe the scientific method is something which can be written down and followed like a recipe.



Comments:

On a recent conversation I had with Luca, I shared with him the fact that there are anti-tolerance drugs that can lessen (and even reverse) the physiological tolerance to drugs such as painkillers. He was seriously surprised by this fact. Despite spending a whole career studying biological regulatory systems, he had never in his life heard of anti-tolerance drugs in academia. Upon hearing this, he shared that in his experience, most of the innovation in science comes from people who work hands-on in the field, as this exposes them to a much broader evidential base than you would encounter when doing research in a strictly theoretical way.

Thus, he has learned far more about consciousness from psychonauts than he ever has from academic psychopharmacologists, and has learned more about electronics from radio amateurs than professional electrical engineers. In other words, the people who actually tinker with the inner mechanisms of the systems they’re interested in are the people to ask for “weird and novel phenomena”, rather than (only) those who study the field academically angling for a university post or a narrow job in the industry. Same, of course, with the science of smell: actually tinkering with aromachemicals can give rise to discoveries one may never stumble upon by merely studying scent receptors in a lab. Needless to say, the best outcomes will come from seamlessly blending both worlds; but for that to happen we will have to embrace phenomenological reports as acceptable leads for research in science.

See Luca Turin’s recent series on the science of smell on youtube: The Secret of Scent (including a video on the objections to the vibrational theory of olfaction).

Spiral

[Excerpt from Phenethylamines I Have Known And Loved (published in 1990 and usually abbreviated as PIHKAL) by Alexander and Ann Shulgin, pgs. 98-103]

Part Two: Alice’s Voice

Spiral

When I finally gave it a name, I called it the Spiral.

This is how it was. Lying down for a nap time (as a child) or at night for sleep, I would have reached that point of relaxation where one is not very much aware of the body. The small itches and discomforts have subsided, and the mind is beginning to drift. When I sensed it beginning (I never knew when it was going to come), I would immediately snap into alertness, excited and pleased, then I would just lie quietly as it unfolded.

The first thing that happened was a change in my breathing. It became increasingly shallow, to the point where my rib cage was barely moving at all.

If someone came into the room and talked to me, as sometimes happened, I could open my eyes and answer normally; the experience continued uninterrupted inside my head.

Every part of it, every stage, was the same each time. It was always in black and white. There was no color anywhere, and try as I did, especially around the age of fourteen, I could not force color to come onto the screen. And I could never extend it, by so much as a few seconds. When it was finished, it was finished.

First came the image-sensation after which I named the entire experience – the spiral. I felt my entire self drawn rapidly into a tiny point which kept shrinking, until it could shrink no further, at which time the microscopic point became a tunnel in which I continued traveling at great speed, inexpressibly small and implacably diminishing.

Simultaneously, I was expanding. I was expanding to the edges of the universe, at the same tremendous speed as that of the shrinking, and the combination, the contraction-expansion, was not only an image, it was also a sensation the whole of me recognized and welcomed. This experience of myself as microcosm-macrocosm lasted exactly four minutes.

The image of the spiral is found everywhere that the human has left his mark on earth. It has been cut into rock faces, painted on huts and clay pots, traced on the walls of initiation caves. I’m certain that it has been important to all the races of man because it is a symbol for the experience I’m describing, and for the concept, the understanding that the intellect forms out of what is initially not an intellectual, but a soul experience of the Alpha and the Omega.

The next stage came abruptly, as did all the changes. I was looking at standing figures which were vaguely human, dark thin figures being pulled into elongated shapes, like the sculptures of Giacometti. They stretched out, arms and legs like black string, until it seemed they could elongate no further, then the scene changed and I was watching obscenely rounded bodies, Tweedledums and Tweedledees without costumes, their small heads and legs disappearing into their puffed, bloated flesh.

The sensation accompanying this stage was one of discomfort, unpleasantness, a feeling of something grating on my soul. I once timed this part and the one that followed; they lasted a total of six minutes. I disliked them intensely.

Abruptly again, the inner screen became white, a horrible dead-white, nasty and aggressive like the underbelly of a sting-ray. After presenting itself for a few seconds, the flat white began to curdle from the outer edges into black, until finally the screen was totally black. A thick, awful, dead black, a pool of tar in an unlit cave deep underground. After another brief pause, the black began to curdle at its edges into the white again. The process repeated itself once, and the sensation was similar in every way to the previous one: irritating, grating, a feeling of unpleasantness that approached repugnance. I always endured it with a mental gritting of teeth, knowing it had to be gone through because that’s the way it always went and it was not to be changed.

And then, finally, I broke out into the last stage, the final part for which I had always been and always would be willing to undergo the middle parts.

Now I was at the edge of an unseen cliff, looking out into a very different blackness, the deep, cradling blackness of the infinite universe, of space which stretched without end. I was completely happy and comfortable in that place, and would have stayed there indefinitely, had I been allowed, breathing in the beautiful darkness and the exquisitely familiar sense of infinity as a living presence, surrounding me, intimate and warm.

After a moment of this pleasure, came the greeting. From the upper left-hand corner of the universe there came a greeting from Something which had known me, and which I had known, since before time and space began. There were no words, but the message was clear and smiling: Hello, dear friend, I salute you with respect-humor-love. It is a pleasure with laughter-joy to encounter you again.

That which greeted me was an entity so far removed from anything in human experience that I concluded, when I was an adult, trying to find a way to describe it to myself, that even the word, “entity”, could not be applied; a word creates boundaries, it says this is the shape of what you are describing, as different from other shapes which are bounded by other words. It had no shape, no form, no definition, no boundaries. It was. It is. It was my oldest friend and it greeted me as its equal. I always replied to it with a rush of love and delight and my own laughter.

Then it was over.

It had taken exactly twelve minutes.

It was something I’d always experienced, taken for granted, and had given no thought to when I was very young. Not until age fourteen did I take a good look at it and recognize it as unusual, something peculiarly my own, my secret private treasure. I also got very analytical about the whole thing, began my habit of timing it and made the first of my unsuccessful efforts at altering it. But I didn’t decide on a name for it until many years later, discarding “Microcosm-macrocosm,” as too long and unwieldy, and settling on the simpler “Spiral.”

It had probably been going on since I was born. There’s no way to be sure, of course, but because it had been part of my life ever since I could remember, I tend to assume it was familiar to me from the very beginning. My mother said something once about having seen a change of some kind coming over me occasionally when I was a baby; she said she didn’t worry about it because when it passed, I appeared to be quite normal.

It always (with one single exception) came under the same circumstances, when I had settled down in bed for a nap or for the night’s sleep, but well before sleep itself took over.

The one exception happened when I was around fifteen, shortly after my father had been transferred to Santiago de Cuba as American Consul. We were staying in a hotel, while those responsible for helping us find a home were still busy with their search. My father and mother, my brother Boy and I were having lunch in the hotel dinning room and my eyes focused on the butter plate on the table. In the exact center of the round plate was a single pat of butter, and somehow the sight triggered the familiar feeling I associated with the beginning of the Spiral. I was surprised and very pleased, because it was a new thing to have it start under such unusual circumstances.

I was also pleased because it was my special thing, and in asking to be excused from the table to go up to my room, I felt a certain sense of importance, which was rare when I was with my family. I said just enough to make it clear that my strange “thing” was beginning, and my parents grudgingly gave me permission for me to leave. I reached the room upstairs in time for the completion, the wonderful last few moments. It turned out to be the only time it ever happened that way – when I was out of my bed, involved with ordinary matters of daily living.

I tried to make it come, searching out all sorts of images of round space with dots in the center, but nothing worked. I never found a way to make it happen. It came when it chose to, unexpectedly, once in a while. The times it chose had no apparent connection to anything else that was going on in my life, either generally or in particular. In twenty-five years, believe me, I looked for every possible connection; I found none. When I was very little, I think it might have happened as often as once a week or so, but as I grew older it came less and less often, until around age twenty-five, when it happened only twice in one year, then never again.

The discovery that I was not alone in my journey into the interior cosmos came as a complete surprise. It gave me a great deal of excited pleasure and opened up a whole new series of questions. I happened when I was around twenty two, and – interesting enough in itself – the two proofs came to me within a single four month period.

The incidents were astoundingly similar.

The first one took place one evening when I went to a party given by a friend in San Francisco. I was in the host’s kitchen with several of the other guests, doing what people usually do in strange kitchens at informal parties – talking, drinking and munching potato chips and carrot sticks – and after a while one young man named Evan and I found ourselves alone, deeply involved in a conversation about unusual experiences, mostly read about or heard from others, the kind of conversation that seems to come about more easily, somehow, in the midst of a high energy, noisy party than at any other time.

Suddenly Evan was telling me about what he referred to as “a really weird thing,” which had been happening to him ever since he was very young. I remember the prickling that spread up my back as he began describing it, and I understood immediately the look that gradually came into his face, a mixture of embarrassment and anxiety (She’s going to think I’m crazy; why am I talking about this?). I tried to make it easier for him to continue by nodding encouragingly and once – when he faltered briefly – I volunteered what I knew was going to be the next image, and he looked startled, almost frightened, drank a bit from his glass, muttered, “Yes, exactly”, and continued to the end. His end was not mine; his journey came to a close after the black and white curdles. I thought, with a touch of pity, that he seemed to have missed the best part, although he did have the wonderful spiral at the beginning. I was glad I hadn’t prompted him further. When he’d finished his story, I told him I’d had every one of the images he had described, and that he was the first person I’d ever met who shared the experience. I said nothing about my own different ending.

He was staring at me, and I wasn’t sure he’d really heard what I’d been telling him. Finally, he smiled and said that I was the first person he’d ever told about this private, “crazy thing,” and he couldn’t believe – it was so extraordinary – that I actually knew what he was talking about. He said that he had always wondered if the experience was a sign of insanity of some kind, and it was such a relief to know that somebody else had had it. Neither of us felt it necessary to add that, in a situation like this, it was also reassuring to see that the person who shares your strangeness appears to be relatively sane and reasonably functional.

I smiled back and said I understood exactly how he felt. We left the kitchen and joined the rest of the party. I never saw him again, and didn’t particularly expect or want to. It was enough to have heard one other person repeating what I knew so well, and it was intriguing to know that my journey, or process, had gone farther, longer, than Evan’s; after all, although I was more than willing to give up exclusive rights to the whole thing, I didn’t mind retaining a little bit of superiority.

The second incident was almost identical to the first, the only difference being that the young man (whose name I forgot almost immediately) was talking to me in somebody’s living room, instead of the kitchen, in the middle of another noisy party, when he began describing the “strange vision” that he, too, had had ever since he was a small child. His, also, ended short of where mine did, and he was astounded and obviously very relieved to know that there was somebody else in the world who knew about it.

Both young men seemed quite unremarkable, although pleasant enough and intelligent. I never saw the second one again, either.

I remember wishing briefly that I could put an ad in the Chronicle or Examiner, something along the lines of, “Seek contact with others who have experienced…,” and of course, the imaginary ad stalled there.

It happened – my beloved Spiral – for the last time when I was twenty-five. I had no way of knowing, of course, that it would not come again. It may or may not have been a coincidence that, within three weeks of the last time, I had my first encounter with a psychedelic material, the Divine Cactus, peyote.



Has the above ever happened to you? Did you experience the Spiral as a kid? If so, please let us know!

See also:


Featured Image Credit: Matthew Smith

Qualia Research Diary: Scents

[Epistemic Status: Diary Entries]

“Fake it until you deep fake it.”

― Joscha Bach


“Break often – not like porcelain, but like waves.”

― Scherezade Siobhan


“Ideology has two meanings- actually, most social terms have two meanings, one for the traumatized and one for the non-traumatized.”

― Michael Vassar


“You know the old adage about monkeys typing into infinity, and the question about whether they would eventually produce Hamlet? I think that maybe we are those monkeys, and we’re producing countless Hamlets every single day.”

― Jacob Stephen


“Reality is very weird, no doubt. At the same time, it is easy to get wrong ‘what kind of weird’ reality is.”

― Matthew Barnett


“It is not true that suffering ennobles the character; happiness does that sometimes, but suffering, for the most part, makes men petty and vindictive.”

― W. Somerset Maugham

December 13th 2019

In a different timeline, I open a high-class experimental qualia-focused restaurant. There is only one kind of meal every month, and it is a challenge to finish it. Only 10% of people manage to do so. On March of 2022, the menu consists of:

  1. A soup. A liter of (tap) water with a single mint leaf in it. Do not be deceived, this is not “spa water”. The amount of mint in it is exactly right below the perceptual threshold for the most discerning of tasters. Hence, you are guaranteed to (a) not be able to taste anything at all, while (b) fully knowing you are indeed drinking aromatic molecules from the mint leaf. Also, they give you a spoon and a straw. If you use the straw, you are “drinking your soup” while if you use the spoon you are “eating your soup”. Up to you. It’s a conceptual piece after all. Once -and only once- you finish it, they serve you the second course…
  2. There are aromas and flavors out there in the state-space of qualia-triggering molecules that cancel each other out perfectly. The second course consists of a series of small hors d’oeuvres that are completely tasteless. If you can taste anything- e.g. a hint of garlic, or orange- it means the chef didn’t prepare it well. The flavors need to be perfectly balanced for them to be entirely tasteless. And once you are done, they bring you…
  3. This thing they left on your table is akin to a wire puzzle, or one of those Hanayama pieces. They tell you that your third course consists of a tiny cookie hidden inside it. Average solving time: 25 minutes. 50% of people can’t solve it.
  4. You are given a miniature 3D printed sugar statue reconstruction of someone who shares your name (as close as possible). Before eating it, you have to scream “There can be only one!” and consume your namesake in a single bite.
  5. Trace minerals. They bring you this large metallic bowl with a tiny little bit of powder at the bottom; certainly no more than 50 or 60 milligrams of material. It contains half of your daily recommended dose of iron, manganese, copper, iodine, zinc, cobalt, fluoride and selenium. You can now finally know what these actually taste like. It turns out that the characteristic taste of your grandma’s famous tapioca dish was zinc. Moving on…
  6. Negative food. You donate 300ml of blood.
  7. Distilled saliva. You spit in a bowl a number of times. You are then given a little shot of perfectly tasteless and clean water. The water is chemically pure. However, it is the water in the saliva of the spit of another customer.
  8. Double blind taste experiment. You are given a dish. The waiters do not know what it is. You do not know what it is. You have to write a 100-word report of what you think about this dish. This is actual science; the data is used by a research lab at some undisclosed university. There is something very Buddhist about this course – how much does your top-down model of what you are eating modify your perception of it? What if you do not assume an “essence” behind it – block that specific energy sink from robbing you of the experience of raw low-level sensation?
  9. Sound control. Did you know that food tastes different in an airplane? Many factors contribute to this, but a major one is the constant background noise you can hear inside the aircraft. Turns out tastes change with specific sounds. The Qualia restaurant spent $500,000 dollars researching this (and publishing a number of peer-reviewed papers in the process). The output of that research is that you can now make chocolate taste like vanilla, and strawberry taste like melon – if only you play the proper sound at the right volume. And finally…
  10. Stroboscopic taste – you put on a mouthpiece that entrains half of your tongue to a 30Hz electric seizure vibration while the other half is entrained to 17Hz. As you eat the Ice-cream of Victory (flavored with passionfruit, peanut, and anise) you realize that the flavors combine with the stroboscopic stimulation to create the hallucination of an entire meal replete with much more complex flavors. The beat patterns are tasty.

If you finish the entire thing (which usually takes about 5 hours total) they take a photograph of you and “keep it to themselves”. No, there is no “victory board”. They just want a picture of you.

5/5 | Would recommend.


January 6th 2020

Favorite essential oils at the moment: Freesia, Violet, and Pear. It turns out Freesia was a predominant note in Dior “Addict 2“, a perfume I fell in love with when I was a teen. Violet is “ethereal” in that it feels strangely anesthetizing (the ketamine of smells). Pear is lovely.

High Entropy Alloys (HEAs) and Scents:

  1. Some scent combinations “collapse categories” (e.g. too many flowers combined blend into “generic flowery”).
  2. Others make unstable multi-phase blends (e.g. too many categories – spicy, citrus, minty, woody all at once).
  3. Violet + Pear create a scent HEA.

An interesting blend with “emergent” characteristics: Freesia, Pear, Violet, Sunflower, Azalea, and Patchouli. Very high valence mixture that has a novel feeling that does not seem to come from the ingredients. #HighEntropyAlloy #HighEntropyScent


January 8th 2020

Careful with raising the “scent entropy” too high!

In sound and sight, it seems that there is an inverted U curve relationship between stimuli entropy and the entropy of the experiential response. White noise may be- objectively- the way to cram in as much information as possible into a waveform. But perceptually, white noise is more like its own (neutral valence, indifferent) tone. Likewise visually, if you crowd your images way too much you can’t actually understand its meaning and true complexity. Perceptual complexity response is maximized in the middle, where you achieve “peak useful entropy”.

More so, extremely entropic stimuli can be used to “mask” any input by adding a dose of white noise or visual static. That’s how you can degrade the valence of something when you don’t know what kind of unpleasant input you will get in advance. White noise drowns out both construction sounds and baby screams. It’s a “universal diluter”, so to speak.

And so it seems that this is the case with smells too. If you combine any 40 (42?) scented molecules that are as different as possible, you get as a result a generic smell with neutral valence that is not distinctive at all. If you make a different 40-scent mixture with completely different molecules, it also smells the same! They call it white noise scent, or “Laurax”*.

In other words, the “high-entropy alloys” of smell may only really pay off in the range of 5 to 15 different molecules, where (perhaps) we maximize the experiential “character” of the resulting fragrance.

Now, of course commercial perfumes in practice do have dozens if not hundreds of aromachemicals. But their absolute “scent entropy” is probably not that high. Why? First, the entropy is reduced by the fact that most perfumes do concentrate on a few core notes; the many other notes are usually small additions and tweaks. And second, the perfumes are usually made with relatively few categories of smells blended together (musky, citrus, and flower could be one, or green, ozonic, and non-citrus fruity another, and so on). Additionally, to get true white noise smell you need to also add negatively valenced scents, which are rarely used in actual perfumes. I do wonder, though, if the perfume industry has a sense of the “scent entropy” of their various perfumes, and if having a measure of it would perhaps improve their ability to hone in on blends that have unique emergent characters without relying entirely on heuristics and trial and error. Or how about a portable “scent-entropy-o-meter”? I bet it would find some very useful applications.

[Good article about it: The “white noise” of smells; *I first learned about Laurax here: The whiff of white could hide strong odours: Complex mixtures of many odours tend to smell the same.].


January 10th 2020

Of all the industries, I get the impression that the perfume industry is ahead of the curve when it comes to incorporating hedonistic utilitarian notes into its embedded ideology.


January 11th 2020

Cilantro tasting like soap to 10% of the population is just the tip of the iceberg.

strange_experience_differences


January 13th 2020

What are your favorite perfumes?
(and if it’s not impossible to describe – why do you like them so much?)

I’ll start:

Addict 2 by Dior
Eros pur femme by Versace
Light Blue by Dolce & Gabbana

Oh god, what kind of person have I become?


January 14th 2020

Scent combinations with unusual emergent characters that are “more than the sum of their parts” I have discovered so far:

  1. Violet + Pear
  2. Rose + Orange
  3. Honeydew Melon + Pomegranate
  4. Freesia + Golden Hydrangea

In each of these cases, combining in roughly equivalent intensities (i.e. 50-50 ‘equipotent’ mixtures) seems to give rise to qualities that are not present in either of the two scents. This is relatively rare, IMO. If you combine, e.g. lilac and jasmine, you just get something that smells like “lilac and jasmine”. But the four combinations above seem- to me- to give rise to new exotic qualia varieties.

An accord is more about getting rid of the individually distinguishable component scents. The end result, however, is one of a “generic” scent within a given category (or subcategory). For example “white flower accord” or “citrus accord” are common. And although you can distinguish between two citrus accords, they don’t really have unique character – at least not more than e.g. various kinds of brown noise have a unique character. The combinations I’m mentioning are not just ways of creating a category blend so that other elements of the perfume can be more noticeable. Rather, they are on their own uniquely characteristic, much like other pure essential oils.

If you mix a wide enough variety of flowers you inevitably get a flower accord. To get a new qualia type emergent you need something else. (I should add I’m new to the field and have a lot to learn).

I’m developing a way of explaining what a scent is like at a glance with relatively few parameters. One of them is category entropy, meaning how close a given category in the scent is to the maximally blended version of it (i.e. a fully generic “flowery” scent has maximum category entropy).

Then another parameter is the “global entropy” which describes how close the scent is to total white noise scent.

So we start by saying e.g. perfume X is “50% of the way to white noise scent and its distribution of core categories is 30% woody, 30% floral, 20% fruity, and 20% citrus”, then we zoom in to each category and describe its category entropy and salient notes: “the floral entropy is 40%, and the 60% remaining is shared in equal measure between rose and azalea” (repeat for each category).

Additionally, another important thing to add is if there are “note to note interactions”, which in my (limited) experience happens with some pairs. Maybe 10% of them, but I don’t know for sure. But you could describe them with lines between individual notes in a diagram. To round it all out, you also would point out the note accords that work as “phases” in the overall scent (drawing inspiration from high entropy alloys – an alloy that does not make a single crystal structure is called “multiphasic”). E.g. mango + patchouli + cinnamon + jasmine tends to produce two phases, a mango + cinnamon phase that toggles in your attention with the jasmine + patchouli phase. Finally, we would also note “valence inversion” effects that happen when there are combos of scents that when placed together give rise to a flipped valence (also a rare effect, IME).

For a slightly higher level of resolution, we would break down each category into subcategories and then describe the entropy of each. E.g. a floral perfume could be 80% of the way to maximum floral entropy in the “white flower” subcategory but only 10% of the way to maximum entropy in the “powdery flower” category.

This would allow us, I think, to put our finger on many scents that are hard to describe otherwise. Indeed, a lot of sophisticated perfumes, IMO, are playing a lot with different shades of high entropy, so talking about them in terms of notes like jasmine or amber is very misleading. It’s like calling a certain kind of brown noise “closest to a guitar sound” because one lacks words for describing noise profiles.


January 23rd 2020

Scent Factorization:

So we know that we can get “white noise smell” by combining 42 scents of completely different kinds at the same time. This maxes out the “scent entropy” (aka. “Laurax”).
If you combine 42 different flower scents, however, you get a maximally generic “flowery scent”. I call this “category collapse”.

Now some scents have what I call “special effects”, which are category-neutral qualities. An example is the ‘bitterness’ of grapefruit, which although is often associated with fruits, can occur in entirely different categories too.

So I thought: what if we try to combine scents from as many categories as possible that all share the same special effects? I call this “scent factorization”. Namely, you try to get “special effect + Laurax” by canceling out everything but the special effect.

I believe this actually works. Example:

A factorization of “bitter-sweetness” can be obtained by mixing:

Grapefruit + Geranium + Bergamot + Pomegranate + Cedar-wood

In this case you will see that geranium is almost like “the grapefruit of flowers” in that it is flowery in nature but still shares the same “bitter” quality as grapefruit (albeit at a different frequency – yes scent frequencies are a thing, but that’s a story for another time). Likewise, cedar-wood is the most grapefruit-like wood I’ve smelled.

Another interesting factorization is that of “creaminess”:

Coconut + Fig + Vanilla + Almond + Sandalwood

In this case, again, you’ll see that sandalwood is the most “creamy” of all woods (as far as I have tried), fig is the most creamy of all fruits, and so on.

But this is just the start. What other scent factorizations could we try? I’d say we could aim to have the special effects of “ozonic”, “green”, “ethereal”, “powdery”, “acrid”, “cloying”, and so on factorized. Each deserves to become its own perfume in my up and coming new line of high end perfumes called “The State-Space of Scents” (for the consciousness connoisseur).


February 2nd 2020

The Qualia Review – Episode 1: Women’s Perfumes (Part 1):

The Qualia Review – Episode 1: Women’s Perfumes (Part 2)

The Qualia Review is a tongue-in-cheek program where you will get non-expert opinions about the quality of experiences by people who really care about consciousness:

In each episode, Andrés Gómez Emilsson (qualiacomputing.com) reviews a particular qualia variety (i.e. category of experience) with a co-host (in this episode Victor Ochikubo).

In this first episode we review women’s perfumes. In particular, we review (from worst to best):

La Panthére by Cartiere (EDT)
By Invitation by Michael Bublé (EDP)
Guilty by Gucci (EDT)
Brit Rhythm by Burberry (EDT)
Jolie Fleur Bleue by Tory Burch (EDP)
Rose Goldea by Bvlgari (EDP)
Daisy Love by Marc Jacobs (EDT)
Valentino by Valentino (EDP)
Amazing Grace Ballet Rose by Philosophy (EDT)
Light Blue by Dolce & Gabbana (EDT)
Eros by Versace (EDT)

You will notice that this is unlike any other review of perfumes. This is because the review here provided addresses the following three aspects of scents:

  1. A qualia-focused account (i.e. entropy, categories, special effects, etc.)
  2. What kind of person would enjoy wearing this perfume (mood-congruence, personality, etc.)
  3. The social signaling that the perfume entails (sexual signaling, genetic fitness signaling, etc.)

In particular, (1) describes scents in terms of:

  • A) The global entropy (e.g. 40% of the way to white noise scent)
  • B) The within-category entropy (e.g. 70% of the way into ‘generic flowery’)
  • C) The individual notes that can be detected within each category (e.g. non-generic jasmine note being 30% of the flowery category)
  • D) Lines connecting notes that have non-linear interactions (e.g. pear & violet, rose & orange, pomegranate & honeydew make unique blends that have phenomenal properties unlike those of the individual ingredients)
  • E) Lines connecting notes that form separate “phases” across categories (e.g. with a mixture of mango, sandalwood, rose, lemon, and cinnamon you get three phases rather than a global consistent smell – mango + cinnamon, and lemon + sandalwood, with rose staying its own distinct scent)
  • F) Lines connecting “valence inversion” effects (some notes simply don’t seem to go together even though they are pleasant individually)
  • G) Special effects (e.g. “powdery”, “ethereal”, “acrid”, “creamy”, etc.)

Thus, we share an entirely new angle on how to describe the ineffable. Namely, the hard-to-put-your-finger-on elusive subjective quality of scents can finally be grounded in terms we can all understand (with a modicum of shared background assumptions).

Hope you enjoy! Happy scent qualia!

~Infinite Bliss~


February 5th 2020

Three scents that are surprisingly similar to strawberry (based on my personal experience with essential oils):

  1. Fig
  2. Freesia
  3. Peony

In fact, following the “scent factorization” concept – if you make a mixture of these three scents the resulting oil smells almost exactly like strawberry cake. Strange!


February 9th 2020

I love this video! The idea that the information content in a perfume could possibly fit so much phenomenal detail is enticing, albeit perhaps a bit optimistic.

In the interest of honesty, out of the 15 or so women’s perfumes I’ve experienced deeply so far, La Panthere by Cartier is the worst by quite a long shot.

I don’t mean this to troll! I am serious. I still don’t quite know why I feel it as so unpleasant. I think it has to do with its very high entropy quotient, and the fact that it centers around gardenia, which is my least favorite flower. It feels predatory – and perhaps the perfumist did succeed at telling a story. Too bad I aim to reprogram the biosphere so that predation is a long-forgotten nightmare of our ancestral Darwinian environment of adaptedness. So long! We should aim to transform scent exploration from its current state of commercialism mixed in with weapons of sexual conquest, and push it into new frontiers… the exploration of the state-space of consciousness, valence research, perhaps even energy parameter modulation! The future of scent qualia research is wide open.


The Qualia Review – Episode 2: Men’s Perfumes

The Qualia Review is a tongue-in-cheek program where you will get non-expert opinions about the quality of experiences by people who really care about consciousness:

In each episode, Andrés Gómez Emilsson (qualiacomputing.com) reviews a particular qualia variety (i.e. category of experience) with a co-host (in this episode Victor Ochikubo).

In this second episode we review men’s perfumes. In particular, we review (by order of appearance):

CK2 by Calvin Klein (EDT)
Pasha de Cartier Edition Noir by Cartier (EDT)
Virtu by Vince Camuto (EDT)
21 Le Fou by Dolce & Gabbana (EDT)
Le Male by Jean Paul Gaultier (EDT)
Scuderia Ferrari Light Essence Bright by Ferrari (EDT)
Jimmy Choo Man Blue by Jimmy Choo (EDT)
1 Million by Paco Rabanne (EDT)
Terre D’Hermes by Hermes (EDT)
Invictus by Paco Rabanne (EDT)
Bleu De Chanel by Chanel (EDP)

In this episode we also discuss the way in which an enriched conception of art could helps us reformulate the artistic potential of perfumes. We make allusions to the 8 models of art discussed in a previous video:

Harmonic Society: 8 Models of Art of a Scientific Paradigm of Aesthetic Qualia

See also:

Harmonic Society

Hope you enjoy! Happy scent qualia!

~Infinite Bliss~


February 10th 2020

Top 5 Male Perfumes:

  1. Bleu de Chanel (EDP)
  2. Scuderia Ferrari Light Essence Bright (EDT)
  3. Le Male by JPG (EDT)
  4. Nautica Voyage (EDT)
  5. 21 Le Fou by D&G (EDT)

It’s very sad that there is a huge paywall for scent qualia. It’s your birthright to know what they smell like!


February 11th 202084357695_2785896804835792_4296261472725499904_o

~120 essential oils and ~40 perfumes (ordered by categories and general character).

This is the dataset my brain has been training over to interpret the state-space of scent qualia for the last month and a half. This is still amateur level – but I can nonetheless confidently say that I now understand scent qualia at least 50% better than I did last year.

I would still appreciate specific suggestions for essential oils or perfumes to get that are very unusual or characteristic. I continue to be surprised by the uniqueness of oils, fragrances, and mixtures I haven’t tried before.

Also: drastic income inequality is a massive tragedy, no doubt. But why are people not talking about qualia inequality? I wish everyone was as qualia-rich as I am right now. I’m happy to share some scents with people who feel qualia-deprived; just come to the Bay and give me a call. 🙂

Ps. Peony is an incredibly versatile low-entropy flower scent with a creamy strawberry-like effect. I kept reading about how this or that perfume has peony in it, but it really took me owning an essential oil of it to grok the type of qualia peony is all about. Someday there will be a monument built to celebrate the qualia variety disclosed by peony formulas. I’m pretty sure of this.


February 14th 2020

People say “a blind buy” when they talk of buying a perfume they haven’t smelled. Shouldn’t it be more appropriate to say an “anosmic buy”?


February 18th 2020

In order to survive the apocalypse, having a “blue” fragrance on hand will become very useful. I suggest “Nautica Voyage“.

You can thank me later!


February 21st 2020

Sense of Smell is Linked to Sexual Orientation, Study Reveals

Very interesting! Two followup questions: (1) does it replicate on a larger sample size? and (2) is the baserate of different sexual orientations of anosmic people statistically different than those of the general population?

Gay men showed a strong preference for the body odour of other gay men in the scientific test of how the natural scent of someone’s body can contribute to the choice of a partner.

 

Although previous studies have shown that body odour plays a role in making heterosexual men or women attractive to members of the opposite sex, this is the first study that has investigated its role in sexual orientation. Charles Wysocki of the Monell Chemical Senses Centre in Philadelphia, a non-profit research institute, said the findings underline the importance of natural odours in determining a sexual partner whatever the sexual orientation of the person involved.

 

“Our findings support the contention that gender preference has a biological component that is reflected in both the production of different body odours and in the perception of and response to body odours,” Dr Wysocki said.


February 25th 2020

Review of Shalimar Eau de Parfum by Guerlain for women:

guerlain_shalimar_ERnMo2aUwAEU9JD


February 27th 2020

Jasmine, Tuberose, and Gardenia: the Dark Triad of White Flowers. Beware! They are treacherous, envious, and guileful. DO NOT TRUST. They will ruin your perfume with their high-entropy indolic ‘broad spectrum scent noise’. Deranged, distracting, and disingenuous. #FlowerProblems


March 12th 2020

Why you should not insufflate ketamine: (1) it can irreversibly damage your bladder and cause very serious untreatable chronic pain, (2) it can damage your liver, also very painful, but above all (3) it will slowly degrade your ability to experience scents! Not worth it IMO!

Cocaine is well known for causing anosmia in regular users. I suspect we are going to see a wave of anosmic people as ketamine becomes more popular. Don’t be a victim. “Remember kids, don’t insufflate drugs – either eat them or inject them” would be my DARE go-to phrase.


March 16th 2020

Running out of hand sanitizer but you are fab and have a perfume collection? Use some cheap perfume instead! It’s usually 70+% alcohol.

#PradaAgainstTheVirus


March 22nd 2020

There’s An Unexpected Loss Of Smell And Taste In Coronavirus Patients

Factoring in the loss of precious qualia would make this epidemic even worse. This year I’ve finally begun appreciating the state-space of scents. I’m heartbroken to learn about this effect. So much qualia in potentia that might be lost!


March 23rd 2020

We should emphasize the possibly of life-long loss of smell in order to get more young adults onboard with strict social distancing measures. A 20-something person might not fear a fever, but they may fear “having less sexy sex and enjoying food less for the rest of their lives”.


March 26th 2020EUF6KWvUEAIAbO5

Sense of smell over the years. People under 40: please do yourself a favor and get some nice scents so you enjoy them while you are still sensitive to them. It’s always a tragedy not to use a qualia variety and then lose it. #qualia #scent #aging #valence #bliss #WeAreTheQualia


March 29th 2020EUQLBqVUEAA3Nwh

This is the future – in 2010 I was saying that in the long run humanity will need to adopt entirely new and seemingly extreme measures against contagious diseases.

Nasal filters (aka. “nose condoms”) were one of the ideas I was considering at the time. Reality is now catching up with fiction.

Why adopt extreme measures? Because we haven’t seen anything yet. The possibility of rational virus design and the political will to invest in innovative weapons means that sooner or later we will encounter things with a case fatality rate > 80% and R0 > 4. Nothing short of large-scale contact network engineering and the widespread use of tech like nasal filters can really work against those long-tail risks.

Perhaps in the future going out without nasal filters will be considered as reckless as today it’s considered having unprotected sex with a random stranger. #NasalFilter #TheNewMask #PM2point5


April 8th 2020

ferrari-bright-neroli-.4577

Bright Neroli

Summer 2020 Unisex Perfume Recommendations:

1. Bright Neroli – Ferrari (amazing sharpness and cute Sicilian dry-down)

2. Monserrat – Bruno Fazzolari (incredible grapefruit punch and bitter-sweet resonance)

3. Born – Adidas (a cheap but highly rewarding lavender rhubarb scent).


April 21st 2020

Haven’t posted about scents in a while; I’m still actively researching this fascinating qualia variety (better do so while I still have scent qualia, which may of course go away if/when I acquire COVID-19).

I’ve developed a lot of new vocabulary to talk about scents. In particular, I like to break down a scent in terms of entropy (how close to ‘white noise scent’ it is), category distribution (% woody, citric, fruity, etc.), category-specific entropy (e.g. 70% of the way to ‘generic flowery’), specific notes (e.g. 10% rose), and of course, “special effects” (such as “creamy”, “powdery”, “bitter”, etc.).

A recent “special effect” I’ve explored is the rather peculiar feeling that the scent is “flammable”. For example, gasoline has it, and so does ethanol. It is similar to the feeling you get when you inhale nitrous oxide. A kind of fascinating gas-like intoxicated state that produces spatiotemporal confusion and a sense of resonance. Of the scents I currently have access to, 100% pure Neroli essential oil strongly triggers this particular special effect. Neroli has that strange “flammable” quality, perhaps an octave or two in pitch higher relative to gasoline. It’s equally enthralling as the smell of gasoline (for those who like it) but much more dinner-party-friendly.

Anyway, with this “flammable” special effect in mind, I’ve been exploring what can be added to it in order to create beautiful scents. Last night I found a combination that made me really happy. It consists of equal (intensity-adjusted) parts of:

  1. Neroli oil
  2. Orange essential oil
  3. Lime essential oil
  4. Pear essential oil

It is sweet, sour, and gasoline-like in an unexpectedly euphoric way. I highly recommend this quale. I very much like its vibe. Meet me there.


April 28th 2020

alpha_damascone

Alpha-damascone

First I tried essential oils. Then I tried perfumes. Now I’m entering a third phase in my “scent literacy” journey: pure molecules.

I have 50 pure perfume ingredients in an air-tight container now. And I have been trying out a couple each day in a systematic way in order to map out the state-space of scents.
One core insight so far:

Essential oils are extremely rough approximations for “building blocks” of scents. Perfume notes are often described in terms of fruits, woods, flowers, animalic sources, etc. But “apple” is not a natural unit of scent qualia. Although there is a general “apple vibe”, in reality that vibe can come from any of 20 or so different molecules. Additionally, many molecules that have an apple vibe do not even appear in biological apples (and vice versa). I’ve so far tried two apple-vibe molecules:

  1. Alpha Damascone: The smell of a dried out green apple, slightly past its prime, unsweetened and with trace amounts of beeswax wrapper stuck to its skin.
  2. 5-octen-1-ol: The smell of extremely mild refrigerated apple sauce, slightly waxy, reminiscent of sandalwood, and at a slightly higher “phenomenal frequency” than damascone.

In other words, I’m learning that pure molecules are indeed more “simple” than essential oils by far. They feel very specific and low-dimensional rather than voluptuous and scenic. But despite their relative simplicity, they are still not “categorically pure”. A single molecule can smell woody, fruity, and camphorous all at the same time. Part of the story is likely that a single molecule can have a broad spectrum of receptor affinities. But even if only one scent receptor were to be activated, perhaps the resulting experience would also not be uni-categorical.

The fascinating implication here is that scents that feel very uni-categorical (e.g. pear essential oil being unequivocally “fruity” with no hint of floral or woody) are more likely to be compositions of many molecules!

Each uni-categorical accord is made by mixing many molecules that all share the same “main vibe” but have different “secondary traits”. This way the accord lets the secondary traits “cancel out in white noise scent” while the main vibe is additively compounded into a broad-spectrum power-punch of a single category, like fruity (reminiscent of “scent factorization”, which I’ve described in previous posts).


May 2nd 2020

You don’t need to be phenomenally rich in order to be phenomenally rich!

I’m an advocate of high-dose behavioral enrichment (I talk about it at 22:16):


May 3rd 2020

The Perfect Scent excerpt:

Ellena will dip a touche into a molecule called isobutyl phenylacetate, which smells vaguely chemical and nothing else, and another into a synthetic molecule whose common chemical name is ethyl vanillin. (A rich gourmandy vanilla molecule, its IUPAC name is 3-methoxy-4-hydroxy benzaldehyde, and it is the heart of Shalimar.) He puts the touches together and hands them to you. Chocolate appears in the air. “My métier is to find shortcuts to express as strongly as possible a smell. For chocolate, nature uses 800 molecules, minimum. I use two.” He hands you four touches, vanillin + natural essences of cinnamon, orange, and lime—each of these has the full olfactory range of the original material—and you smell an utterly realistic Coca-Cola. “With me,” says Ellena, “one plus one equals three. When I add two things, you get much more than two things.”

 

He will hand you a touche that he has sprayed with a molecule called nonenol cis-6, which by itself smells of honeydew melon or fresh water from a stream. He’ll then hand you a second touche with a natural lemon on it, direct you to hold them together now, and suddenly before you appears an olfactory hologram of an absolutely mesmerizing lemon sorbet.

 

The explicit point was not to create a thing but an illusion of that thing, an olfactory alchemy. The point of Nil was not to create a green mango but the illusion of a green mango.

 

[…]

 

Junior perfumers discover that Vetiver Huile Essentielle from Haiti smells like a Third World dirt floor and Vetiver Bourbon from Isle de la Réunion smells like a Third World dirt floor with cigar butts. (They hope to do something wonderful with the cigar butts.) They learn, as Ellena knew from decades of work, how to create the illusion of the scent of freesia with two simple molecules, both synthetics: ionone beta + linalool. And orange blossom: linalool + anthranylate de methyl, which by itself smells like aspirin. The classic Guerlain perfumes often used a molecule called styrex, which smells of olive oil pooled on a table in a chemical factory. Add phenylethylic alcohol and you get lilac. Add the smell of corpse (indoles), you get a much richer lilac. And you can give your lilac, freesia, and orange blossom a variety of metallic edges: Add allyl amyl glycolate, you get a cold metal freesia. Add amyl salycilate, and you get a freesia with the smell of a metal kitchen sink dusted with Ajax powder. Aldehyde C-12 lauric adds an iron with a bit of starch still on it.


May 8th 2020

Excerpt from Luca Turin and Tania Sanchez’s 2008 perfume guide:

Sports Fragrances:

 

The last decade has seen the unfortunate flourishing of a dismal genre, the fragrances for men and women who do not like fragrance and suspect that none of their friends do either. The result has been a slew of apologetic, bloodless, gray, whippet-like, shivering little things that are probably impossible, and certainly pointless, to tell apart. All fragrances whose name involves the words energy, blue, sport, turbo, fresh, or acier in any order or combination belong to this genre. This is stuff for the generic guy wishing to meet a generic girl to have generic offspring. It has nothing to do with any other pleasure than that of merging with the crowd. My fondest hope is everyone will stop buying them and the genre will perish. Just say no.

 

Lastly, and by way of contrast, remember that perfume is foremost a luxury, among the cheapest, comparable to a taxi ride or a glass of bubbly in its power to lift the mood without causing subsidence the morning after. Wear it for yourself.

 

– Luca Turin in PERFUMES: THE A-Z GUIDE (2008)


May 13th 2020

The perfume Tommy Girl just registered as an outlier to my nose. It registers as high in valence as Bleu de Chanel and Bright Neroli by Ferrari. Extraordinary perfume. 10/10 #ScentQualia


May 27th 2020

The Rainbow God Experience

One of the most interesting lines of evidence pointing in the direction of the Symmetry Theory of Valence is how in the neighborhood of the peak of high-energy neural annealing events one can often glimpse states of consciousness with a characteristic “full-spectrum of qualia” property.

This may happen nearing the peak of a strong LSD trip, during intense Jhanic concentration, Fire Kasina practice, or even just spontaneously (though extremely rarely).

At the actual peak of the annealing process you are likely to arrive at a “moment of eternity“- itself extremely high-valence- where the symmetry is so complete that it becomes impossible to distinguish between self and other, before and after, or even left and right (this is a phenomenal property of peak valence states, and not proof of Open Individualism and non-duality per se, even though most people tend to interpret such experiences that way).

The “Rainbow God” phenomena lives at the edge of such peak valence states.

Timothy Leary in “The Psychedelic Experience” says that as you approach the highest bardo you are given the choice between “tasting sugar” and “being the sugar”.

The former is close to the peak of the annealing process, where there is enough asymmetry in the state for you to be able to encode information and distinguish between past and future, self and other, etc. and thus able to experience a projective world-simulation and the illusion of a self that “experiences it”. At the top of the annealing process, however, the extreme symmetry does not allow you to do that. The valence is almost certainly higher, though the degree of consciousness is arguably lower. You are “the sugar” rather than “tasting the sugar” (i.e. you are luminosity rather than a constructed world-simulation “experiencing luminosity”).

Stunningly, this edge between perfect symmetry and its surroundings in configuration space often shows extreme levels of qualia diversity. This is an empirical observation you can verify for yourself (or you can trust me, find others who have experienced it, or derive it from first principles).

What is it like? At this boundary between quasi-perfect symmetry and perfect symmetry you experience rainbows with all the phenomenal colors in the CIELAB color space (and perhaps some other colors that you only see in heaven, like blue-yellow and red-green, which require enough energy to overcome the lateral-inhibition opponent process going on in the cortex at all other times). You experience a sense of “all possible temporalities”. A sense of “all possible scents”. And a sense of all possible spatial relationships at once.
If you get any closer to the peak of annealing, the rainbows collapse into luminosity, the scents into a sense of presence, the temporalities into a sense of eternal now, and the possible feelings of space into a projective-less “view from nowhere”. The combination of all qualia values of each qualia variety somehow, incredibly, seem to add to zero. But not any kind of zero. A special “Zero” perhaps equivalent to “no information but awake”. (Cf. David Pearce’s Zero Ontology for a possible grounding of this state in fundamental physics.)

Yes, this is very much a real state of consciousness. It is profound, and extremely important.

I call it the “Rainbow God” state of mind. I do not know how to reliably induce it, but I do know that it is likely to have extremely deep computational, ethical, and experiential properties capable of advancing our understanding of the nature of the state-space of consciousness. I just figured you should know this exists.


June 2nd 2020

Andreas Keller • Olfaction and Experiential Authenticity:scent_presentation

Really excellent presentation about the biological and physical underpinnings of scent. It’s a bit on the long end (50 minutes) but you can get 80% of it by just watching the first 12 minutes. It’s really good! So much information…

For instance: did you know there are about 400,000 scented flower species in the world? I struggle to come up with more than 30 flowers off the top of my head (up from 5 just less than a year ago). The remaining 399,970? Who knows what they smell like. We don’t have words for these smells… is it “rose” or “jasmine” smell? Good luck using that kind of ontology describing the space of possible flower smells.

Also: it turns out that volatile molecules don’t diffuse very effectively. So that’s why you get “whiffs” of scents – for the most part, in the wild, air is a very non-homogeneous gas, with all kinds of pockets with specific linear combinations of aromachemicals. Hence why holding two essential oils side by side doesn’t give rise to a proper mixture between them. You need to literally mix the oils and then smell the mixed result if you want to actually know what the combination is like. Otherwise you will get a whiff of one, a whiff of the other, etc. with a Poisson-like distribution. This also reminds me that: we have an olfactory bulb in each nostril! So if you apply one scent in one nostril and another scent in the other nostril, you will get a kind of “bi-scent rivalry” [binosmic?] similar to what you get when you see one image with the left eye and one image with the right eye (i.e. “binocular rivalry”).

I do think that “digital smell” is possible (unlike the presenter). But it will require us to describe each molecule in terms of their ADSR patterns for each of the basic scent qualities (that is, to describe how the sweetness develops across time – its attack, decay, sustain, and release – and do the same for each core qualia scent dimension). Without taking into account the ADSR envelope for each molecule, the mixtures will be uneven.

The lowest-hanging fruit would be to use a non-negative least squares regression that minimizes the error for the envelope of each of the core qualia scent dimensions. Hence, the molecular spectrum is not enough – the non-negative least squares requires pattern-matching across the entire temporal envelope of each dimension. IF we do this – then digital smells might be possible after all (IMO!).


June 3rd 2020

There are a TON of questions whose real answer is: “Bleu De Chanel”. Think about it.

That’s how VAST the multiverse is.

“Bleu De Chanel” spans eons and eons of subjective time – the grapefruit/incense/amber vibe ringing on and on throughout eternity. That’s how large it ALL is.

[…]

You can get a powerfully believable Smirnoff Lime impression with as little as a few drops of citral and aldehyde C-12 in an ethanol + water mixture. Amazing what passes as a “fine drink” these days.

“At least add some linalool to make it worth it” – would be my recommendation.

[…]

Note to self: by virtue of their sharp smell, aldehydes are powerful high-frequency psychoactives.


June 6th 2020

Note to self: Smelling a bunch of aldehydes over and over for several days in a row causes bad headaches. Use them only occasionally from now on.


June 13th 2020

I asked a DMT being about the nature of scent qualia. Its response: “One hint: are you sure it’s only one kind of qualia?”

An insight came like a lightning bolt. Yes! Two types:

  1. Aromachemicals that are “character impact”
  2. Flavor-like vibes

Totally different state-spaces!

Luca Turin, the quantum neurobiologist who has done research on the vibration theory of olfaction (showing “we can smell functional groups”) told me that if perfumes are tomato soups, the money is in “making the best cream” rather than in the “tomatoes”. Character impact!

Examples of character impact molecules:

  1. Beta-ionone
  2. Iso-E-Super
  3. Ambroxan
  4. Hedione
  5. Helional

Examples of flavor-like vibe molecules:

  1. Alpha-damascone (beautiful!)
  2. Aldehyde C-12
  3. Citral
  4. Cis-3-hexanyl-benxoate (yuk!)
  5. Verdalia

June 20th 2020

magenta_104483294_3089031247855678_7126727950162356690_o

Magenta: The Non-Spectral Color

An important point of confusion about qualia to which I offer a clarification:

The qualia you experience as a result of light coming into your eyes can be logically and empirically dissociated from physical light. Color qualia, just as much as visual texture qualia, can be triggered by auditory stimuli in people with synesthesia, or people tripping. More so, you don’t even need light to ‘see’ in your dreams. Visual qualia is ultimately not intrinsically tied to physical light. Phenomenal light, as it were, is a particular spatial qualia that we use to ‘illuminate’ our inner world simulations. Yet this illumination is not based on photons.

Hence the mystery of magenta: phenomenal colors don’t always map on to frequencies of light. Even leaving aside the issue of metamerism, magenta itself is a ‘non-spectral color’ because you need to combine at minimum two frequencies of light to trigger that color qualia in your visual field (namely, a combination of the upper and lower frequencies you can detect).

Why do we experience color qualia from light, then? This is not out of logical necessity, but rather, because it happens to have the appropriate information processing properties for the mapping to be evolutionarily advantageous. The state-space of color and visual texture happen to have useful isomorphisms to the structure of visual data. But there is nothing to suggest they are the best at representing ‘projective data-structures’.

In fact, I strongly suspect that once we master free-wheeling hallucinations and qualia control techniques, we will discover new applications of exotic qualia varieties for information processing purposes. Such as, for instance, using complex synesthetic representations of natural numbers that make it easy to ‘feel’ whether a 10-digit number is prime or not.

Anyhow, this all informs the kind of answer I might give to the question “what is it like to be a bat?”. In particular, it compels me to say that for all we know echolocation information is represented with scent qualia. We simply don’t know enough about the information-theoretic properties of state-spaces of qualia varieties to make an educated guess for what kind of qualia is best at representing echolocation information.

And more so, even if you were to train a human to use echolocation from birth, there is no guarantee that the qualia varieties and the associated state-spaces their brain would recruit for that task would have anything to do with bat echolocation qualia. So the problem has more moving parts than is usually assumed.


June 28th 2020

“Son, there is something I’ve been meaning to tell you for a long time, but only now I’m brave enough to do so: I just don’t think aromatic Fougères are a good fit for you. Based on my experience, I think Chypres would fit you better. Or even some woody citruses. Not Fougères.”


July 16th 2020

I love smelling dirty every once in a while.Photo on 7-16-20 at 3.59 PM


July 19th 2020

If you have a prejudice against the smell of single molecules because they are “too simple” and you need some “entourage effect” balanced blend “only nature can provide”… try smelling Agrumen Aldehyde Light. A single molecule that smells like a full perfume!

Soapy lime herbal!


July 22nd 2020

Freesia is 90% linalool and 3% beta-ionol. I suppose that’s why my 50%/50% mixtures weren’t quite Freesia-like.


July 24th 2020

Vimalakīrti then asked the bodhisattvas from the Host of Fragrances [world], “How does Accumulation of Fragrances Tathāgata explain the Dharma?”

 

Those bodhisattvas said, “In our land the Tathāgata* explains [the Dharma] without words. He simply uses the host of fragrances to make the gods and humans enter into the practice of the Vinaya. The bodhisattvas each sit beneath fragrant trees, smelling such wondrous fragrances, from which they attain the ‘samādhi of the repository of all virtues.’ Those who attain this samādhi all become replete in the merits of the bodhisattva.”

 

– Chapter X – The Buddha Accumulation Of Fragrances

[*Tathāgata is an honorable name for the Buddha of a realm.]


July 30th 2020

Emergent scents – when you combine two or more aromachemical cocktails and you get as a result a scent that is different than the sum of its parts.

I have in the past found a number of essential oil combinations that do this (pear + violet, pomegranate + honeydew, lemon + lavender). But I figured that it’s much better to try to identify clear cases of this phenomenon by combining pure molecules.

So this little “research program” I have going on is to find pairs of aromachemicals and then mix them in many different ratios and smell the results (usually dissolved in ethanol at a concentration of ~20%). So far, it seems that about ~25% of pairs of molecules I’ve tried result in emergent scents. Here are some specific examples (please feel free to try at home and verify!!):

1) Humulene + d-limonene: Humulene smells herbal and earthy, d-limonene smells like orange or mandarin. When the ratio is ~4:1 I get an emergent scent that I can only describe as “classic chewing gum flavor”, completely distinct and phenomenally richer than the ingredients alone.

2) Linalool + beta-ionone: linalool smells like a very gasoline-like volatile version of a flower scent, beta-ionone is the classic “violet scent” molecule. When combined in 9:1 ratio I get an emergent scent that is like that of a citrus version of freesia or peony.

3) Humulene + vanillin: vanillin is the smell of vanilla, which is watery at the onset (attack and decay) and creamy on the second half (sustain and release). When combined in 1:1 ratio you get a completely new scent that feels close to a dried out old tobacco Cuban cigar blended with coffee liqueur.

That last one is also relatively close to the classic combination of vanilla + vetiver. Luca Turin told me that the perfume called Habanita is precisely playing with a vanilla/vetiver combo, which at first sniff comes across as a completely new and unrecognizable (yet very pleasant) scent. He said that a wonderful metaphor for this phenomenon is like the song Loro by Gismonti, where in the second half the piano and the flute play in such a synchronized fashion that you get the impression that there’s a new instrument involved. I’ve been smelling vanilla/vetiver while listening to this song. It’s quite beautiful.

[…]

Humulene combined with d-limonene create an emergent “missing fundamental” type olfactory illusion of classical chewing gum flavor. It only works when Humulene is between 70% and 90% of the mixture (before adding ethyl alcohol). Cleanest example of “emergent scent” I’ve found.

Humulene is a simple scent of the category “earthy”, roughly similar to a vetiver essential oil but “one octave higher”. It also has a very mild musky undertone.

D-limonene is an orange/lemon-like scent. Extremely common in perfumery. Chances are something you ate today has it.


July 31st 2020

The simplest example I can think of to illustrate what an “emergent scent” is comes from the auditory illusion called “the missing fundamental”.

If you play 200 hertz together with 300 hertz and 400 hertz you will hallucinate an emergent 100 hertz tone.

The 100 Hz tone is not there! But it is quite real in your experience.

Of course if you are very acquainted with this auditory effect, you might notice the fundamental (100hz) is a bit fainter than expected, and infer it’s an illusion. But it is nonetheless very much present in your experience.

Likewise, when you smell Humulene + Vanillin at a 1:1 ratio you will get a third smell that emerges as a sort of gestalt that “bridges together” the two underlying notes.

You can probably infer the input scent is made up of two notes if you are really experienced with this kind of phenomenon. But the third note, the gestalt, does not disappear when you have “reduced” it to the two underlying notes. It’s still there. Thus, really, the whole is greater than the sum of its parts.

————————————-

Hear the effect yourself: Missing fundamentals. Periodicity and Pitch


August 1st 2020

I like my coffee how I like my perfumes: with the fewest chemicals needed to cause the desired effect.

As an aside, learning about emergent effects in low-entropy perfume recipes makes me think that there could probably be a job for “scent simplification”. Namely, take something like cacao, with hundreds of molecules contributing to its characteristic scent. The question is: what is the minimum viable number of aromachemicals you can use to replicate it (within a Just Noticeable Difference unit)?

I suspect most natural scents that come from a complex entourage effect have relatively minimalistic reconstructions. A question that also emerges is: what is the most complex scent? I.e. what is the smell whose minimum reconstruction has the maximum number of molecular diversity?

[It’s important to distinguish between molecular entropy and phenomenal entropy. A solution of Agrumen Aldehyde Light and ethanol has low molecular entropy but pretty high phenomenal entropy, whereas a “lime accord” made of tens of molecules could be high in molecular entropy yet low in phenomenal entropy because it smells very cleanly like a ‘single note’]

———————————————-

A master perfumer like Ellena has memorized hundreds, if not thousands, of recipes for manufacturing smells. Many complex natural scents can be conjured with only a few ingredients. The scent of freesia, he explained, is created by combining two simple molecules: beta-ionone and linalool, both synthetics. (To give freesia a cold, metallic edge, a touch of allyl amyl glycolate is added.) The smell of orange blossom is made by combining linalool and methyl anthranilate, which smells like Concord grapes.

 

In my presence, Ellena once dipped a touche into a molecule called isobutyl phenal acetate, which has a purely chemical smell, and another touche into vanillin, a synthetic version of vanilla. He placed the two paper strips together, waved them, and chocolate appeared in the air. “My métier is to find shortcuts to express as strongly as possible a smell,” he explained. “For chocolate, nature uses eight hundred molecules. I use two.” He handed me four touches—vanillin plus the natural essences of cinnamon, orange, and lime. The combined smell was a precise simulation of Coca-Cola. “With me, one plus one equals three,” Ellena said. “When I add two things, you get much more than two things.”

 

The Scent of the Nile: Jean-Claude Ellena creates a new perfume.
– By Chandler Burr


August 5th 2020

Imagine you have been a musician for your village all your life. You play drums and acoustic guitar and you have never heard modern music. One day you are gifted an iPod and you listen for the first time to the crazy sounds of psychedelic trance. For the first time in your life you experience the wonders of reverb, flanging, distortions, and FM-synthesis. Surely this gives you a sense that your conception of music only tapped into a tiny fraction of what had always been possible.

An analogy could be made with smells: having tried essential oils one gets the impression of understanding what is possible in the realm of scents. But one day you discover Galaxolide, hedione, and eso E super. Like reverb and FM-synthesis in sound, these compounds are capable of giving surreal, unexpected, and space-warping properties to scents (much like reverb in sound, they are character impact molecules, meaning that they modify the presentation of other scents more than contributing a ‘flavor’ of their own).

Galaxolide in particular is something you have probably smelled, either in perfumes or detergents, but it really only becomes clear just how insane of a substance it is when you smell it raw. I associate it with “DMT Realm Aesthetics” – like a smell coming from another planet where hyperdimensional experiences are common everyday events, and the world of the arts uses exotic phenomenal time routinely. It has a vibe I can only describe as “having already always been here yet just arrived”. It’s probably what traveling in time feels like when you are in a transcendent Bardo between lifetimes.

[…]

Pellwall describes galaxolide thus: “Galaxolide is an isochroman musk, that has an odour profile that is liked by most people and is similar to a macrocyclic musk. It is strong, clean smelling and a good fixative. It combines well with other musks and is often used in combinations.”

In wikipedia, they describe the scent as: “a synthetic musk with a clean sweet musky floral woody odor”.

I think the musk-like quality accounts for maybe 60% of its effect. But I swear there is something much more special about it than just a clean musk. It has a kind of time-dilation effect, and it seems to my nose as a “musk but high-dimensional”. Perhaps it’s musk + the harmonics of musk. So while other musks are just a single note, galaxolide is like the feeling of a musky accordion.

[…]

I’ll write about my setup for doing this kind of research, but suffice to say that it’s super cheap if you know what you are doing. Each experiment (i.e. a little bottle with a few ml of a new combination in precise proportions) costs me about ~30 cents to make, all things considered (the cost of the materials, the ethanol, the pipettes, the bottle).

I highly recommend just getting a 2ml sample vial. It can cost as little as $2.16 (plus shipment) here: Galaxolide.

Other stellar molecules to try out to expand your conception of what’s possible:

Linalool, dihydro linalool, alpha-damascone, damascenone, helional, C-16 aldehyde (strawberry), agrumen aldehyde light, farnesene, nerolione, and alpha-ionone. All of that can cost you as little as $30. Not a bad price for expanding your “sense of what’s possible”.

[…]

I so wish I had a “DMT-smell accord” to use as a note in perfume compositions.

There is this one here meant to evoke the hallucinogenic state, but reportedly it has nothing to do with the actual scent of DMT, which I find very disappointing. I will try to find the way to emulate the scent of it – I suspect that linalyl acetate and coranol could be part of the compounds making up that accord. I’ll let you know if I manage to make anything vaguely resemblant of that scent.375x500.59536


August 14th 2020

Lemon Lavender World

One of the first essential oil combinations I fixated upon was that of lemon plus lavender. You could say it is the “speedball” equivalent of essential oil combos, for it relaxes and excites at the same time. I figured that trying to “understand” the “lemon-lavender world” would be a good exercise in the quest of mapping out the state-space of scents.

IMG_20200729_051727

Lemon Lavender experiments

I currently have six different lemon essential oils from different brands and places, and seven lavender essential oils. To my surprise, the variability is very substantial. The lemon essential oils range from extremely sour and astringent to sweet and waxy. The lavenders I have also have many different qualities: some are very oily and flavorful, while others are particularly camphorous. Which of the qualities are “essential” for lemon and lavender is surely a matter of convention, though I also think they point to roughly objective attractors – the citrus sharpness of lemon rings high and has a cascading sourness that can be used for waking up the senses, whereas lavender has a narcotic entrancing reverb effect. My quest to understand, and ultimately create, lemon lavender smells was not defined in terms of merely reconstructing the standard natural smells, but as an attempt at understanding how these two qualities interact at the phenomenal level.

The diversity of lemon and lavender oils means that the space of possible combinations is even larger. Of the 42 possible combinations of one lavender oil and one lemon oil I have some are far more blissful and rich than others. I picked a few of my favorite ones to use as “model lemon-lavenders” to try to emulate.

Starting in the spirit that in order to deeply understand a scent I have to be able to construct it from scratch- so that I understand how each piece contributes to the whole- I set myself the goal of creating both lemon and lavender accords and then exploring their combinations. All starting from raw aromachemical ingredients, of course:

Making a Lemon Accord

I have always wanted to know what makes citrus fruits smell the way they do. Empirically, both isomers of limonene are a key piece of the puzzle. For instance, both lemon and mandarin oil have upwards of 80% limonene. Alas, if you smell limonene alone, you will notice it is somewhat one-dimensional in character. It IS pointing in the direction of “citrus” quite clearly, but on its own is indisputably too simple to evoke a real lemon scent.

I had a false start: aldehydes. Aldehyde C-8 through C-15 are all “extremely high-pitch scents”. They give a sharp edge to perfumes like Chanel No. 5 and the like. But they are very hard to use – partly because they are extremely potent. So for a couple of days I worked with combinations of citral and aldehydes that had, though a somewhat citric quality, mostly headache-inducing effects. I ended this series of experiments when I got a headache that lasted 24 hours (this goes to show how far I am willing to go to understand that sweet, sweet lemon qualia).

Taking a step back, I decided to explore a different angle. Valencene (note the great name) is very similar to limonene, except slightly lower in pitch. When mixed in equal proportions with limonene one gets a richer, more believable citrus scent – both molecules seem to say the same thing but in a slightly different voice, which results in a kind of chorus effect (unlike merely doubling the volume of a single voice). Alas, at this point the scent is still a bit flat, and not particularly lemon-like relative to near-enemy citrus fruits like the good old orange, mandarin, or grapefruit.

I recall being very puzzled by the scent of lime, as it seems like a kind of “super lemon” when it comes to its high-pitched sour and astringent character. And no matter how much I tried mixing citrus-like aromachemicals, I found it hard to get any hint of lime in the results. That is until I discovered that lime oil has a great deal of alpha- and beta-pinene. These are molecules that are primarily found in trees (in pines!) and smell very woody. As it turns out, to turn a citrus smell into an outright lime scent you need to add woody molecules. In retrospect, this was always hidden in the name: Lemon + Pine = Lime. After having this insight, I realized that even lemon requires a bit of alpha- and beta-pinene to distinguish it from orange scent.

After a lot of trial and error, the most convincing minimalistic lemon scent I identified is (numbers represent parts):

3 D-Limonene
3 Valencene
1 Citral
2 Linalool
1 Alpha-Pinene
1 Beta-Pinene
1 Nerolione (optional; for a rindy effect)

Making a Lavender Accord

This turned out to be more difficult than making a lemon accord. I think this is not only me: I also own two “fragrance oils” (those products that are advertised in the same context as essential oils, yet in the fine print reveal they are not at all natural, and instead are synthetic reconstructions) of lavender, and neither of the two smell anything like lavender. So I wouldn’t be the first to fail.

Linalool

Linalool

Linalool is a key ingredient of lavender, making up about 30% to 50% of most lavender essential oils. This is a very powerful aromachemical that seems to work as a gasoline-like fuel amplifier and modifier for any other scent (“there is no boring ten-carbon alcohol” – Luca Turin). It is also one of the things that makes lavender so narcotic and entrancing. On its own it is already quite interesting. But it is only one of the voices in lavender.

Then you have linalyl acetate, which makes up between 0% and 30% of lavender oil, depending on the species, place of origin, and time of harvest. Linalyl acetate has a “dry” quality, which I associate with “salt” (in fact if you just add this to the lemon accord above you get a smell I would describe as “salted margarita cocktail”). Alpha and beta pinene also play a role in lavender.

Interestingly, a lot of lavender oils also have up to 10% of camphor, which contributes to its narcotic get-well-soon cozy quality. Alas, it is hard to work with this material, and it always smells too synthetic to me. I found that instead I could double-down on beta-pinene, which is more camphorous than alpha-pinene (which is more earthy), and does the job quite nicely.

Finally, centifoleather, farnesene, and various alcohols like coranol can give “flavor” to the accord. In the end, I’ve settled on a minimalistic (but I think effective) arrangement. It does not quite hit the flavor of lavender, but I think does a good job at evoking its “character impact”:

4 Linalool
1 Alpha-Pinene
4 Beta-Pinene
2 Linalyl Acetate
3 Farnesene

Putting It All Together

Ultimately, adding these two accords (and their variations) together does not always produce the best results, as some aromachemicals are repeated and the proportions that give rise to the desired interactions can be scrambled by the combination. This, by the way, is a general reason why synthetic combinations span a much larger space of possible scents. In brief, because to make reconstructions with natural oils you are constrained by non-negative least squares methods, and many combinations may simply be inaccessible that way.

Anyhow – with the combination, I found that adding some character impact molecules like abroxan and helional was important to create a “bridge” between the two phenomenal characters. Alpha-ionol also seems to do something good here that is hard to put your finger on. But I think it’s that it adds the right kind of waxy rindy effect (which it has some of) in a way that does not make the mixture feel “dry” (which more classically citrus waxy smells like nerolione inevitably do). So the end result has some of these three molecules.

I am happy to say that the best lemon lavender reconstruction so far is about as good as the median natural lemon lavender mixture. It is not as good as the best lemon lavender oil mixture, though, but it is a start. I still expect to perfect it quite a bit before unleashing it into the world.

Ladies and gentleman, I present to you Lemon Lavender World:

1 Citral
3 D-Limonene
3 Valencene
4 Linalool
1 Alpha-Pinene
4 Beta-Pinene
2 Linalyl Acetate
2 Helional
3 Farnesene
1 Ambroxan
2 Alpha-Ionol
80 Ethanol

IMG_20200813_030740

Previous experiments
Marking the interesting ones to keep
Reference bottles of pure chemicals (and one chypre accord)

That Time Daniel Dennett Took 200 Micrograms of LSD (In Another Timeline)

[Epistemic status: fiction]

Andrew Zuckerman messaged me:

Daniel Dennett admits that he has never used psychedelics! What percentage of functionalists are psychedelic-naïve? What percentage of qualia formalists are psychedelic-naïve? In this 2019 quote, he talks about his drug experience and also alludes to meme hazards (though he may not use that term!):

Yes, you put it well. It’s risky to subject your brain and body to unusual substances and stimuli, but any new challenge may prove very enlightening–and possibly therapeutic. There is only a difference in degree between being bumped from depression by a gorgeous summer day and being cured of depression by ingesting a drug of one sort or another. I expect we’ll learn a great deal in the near future about the modulating power of psychedelics. I also expect that we’ll have some scientific martyrs along the way–people who bravely but rashly do things to themselves that disable their minds in very unfortunate ways. I know of a few such cases, and these have made me quite cautious about self-experimentation, since I’m quite content with the mind I have–though I wish I were a better mathematician. Aside from alcohol, caffeine, nicotine and cannabis (which has little effect on me, so I don’t bother with it), I have avoided the mind-changing options. No LSD, no psilocybin or mescaline, though I’ve often been offered them, and none of the “hard” drugs.

 

As a philosopher, I have always accepted the possibility that the Athenians were right: Socrates was quite capable of corrupting the minds of those with whom he had dialogue. I don’t think he did any clear lasting harm, but it is certainly possible for a philosopher to seriously confuse an interlocutor or reader—to the point of mental illness or suicide, or other destructive behavior. Ideas can be just as dangerous as drugs.

 

Dennett Explained by Brendan Fleig-Goldstein and Daniel A. Friedman (2019)


It would be quite fascinating to know what Dan would say about lived psychedelic states. With that in mind, here is an essay prompt originally conceived for GPT-3 to satisfy our curiosity:

And after seeing some surprising empirical results with his heterophenomenological methods when examining the experience of people on psychedelics, Daniel Dennett decided to experience it for himself by taking 200 micrograms of LSD. The first thing he said to himself as he felt the first indications of the come-up was…


anders_and_maggie

Maggie and Anders

Maggie Wassinge and Anders Amelin (QRI Sweden volunteer coordinators and content contributors – see letters I & II, letters III, IV, V, & VI, and letters VII, VIII, & IX) decided to give it a go first. We shall then compare it with what GPT-3 can come up with at a later point.

In a way, what you are about to read can be thought of as Anders & Maggie’s simulation of a hyper-intelligent GPT-3-like system’s simulation of a hypothetical Daniel Dennett on LSD. So many layers, I know. But the results speak for themselves:


Dan says: Correlation is all that is needed. So what states a mind uses for modeling conditions of importance to it, is fundamentally arbitrary. Like with language. Words represent things to humans but there are many languages, and words do not resemble what they represent. They only correlate with what they represent, and the correlation needs to be learned. To do science about the mind, one does not need to attach any special weight to any conscious state of mind over any other. One person’s hope may be another person’s despair. These “qualia” are like internally projected hypo-languages which are different all over the map, if there were one. In fact there cannot be an interpersonal map of what things feel like personally. Only naïve people could hope for a fundamental linguistics of consciousness, as if these states were to constitute a universal language of some ground truth of the mind. Silly. Romantic. It’s all arbitrary. For the record, I never said subjective experiential states do not exist. People misrepresent me on that. What I am saying is that it will never be possible to scientifically map what the state that a word such as, for instance, “green”, translates to feels like by the brain of a given individual. My green could be your red.cielab-lch-color-tolerancing-methods

Just drop the whole idea of trying to map the state-space of qualia. That is my position. Or at least I know it is, logically. Right now I begin to notice how everything intensifies and becomes somehow more salient. More revealingly “real”. As I reflect on the notion of how “states” correlate, a humorous episode from my undergraduate student life so long ago, is brought to the surface. At Wesleyan it was, where I was taking a course in Art Appreciation. The lecturer was showing a slide of a still life. A bowl of fruit it was, conspicuously over-ripe. Pointing at one of the fruits, saying “Can anyone tell me what state this peach is in?” There was silence for about three seconds, then one student exclaimed: “Georgia”. Everyone laughed joyfully. Except me. I never quite liked puns. Too plebeian. Sense of humor is arbitrary. I believe that episode helped convince me that the mind is not mysterious after all. It is just a form of evolved spaghetti code finding arbitrary solutions to common problems. Much like adaptations of biochemistry in various species of life. The basic building blocks remain fixed as an operative system if you will, but what is constructed with it is arbitrary and only shaped by fitness proxies. Which are, again, nothing but correlations. I realized then that I’d be able to explain consciousness within a materialist paradigm without any mention of spirituality or new realms of physics. All talk of such is nonsense.Daniel_dennett_Oct2008

I have to say, however, that a remarkable transformation inside my mind is taking place as a result of this drug. I notice the way I now find puns quite funny. Fascinating. I also reflect on the fact that I find it fascinating that I find puns funny. It’s as if… I hesitate to think it even to myself, but there seems to be some extraordinarily strong illusion that “funny” and “fascinating” are in fact those very qualia states which… which cannot possibly be arbitrary. Although the reality of it has got to be that when I feel funniness or fascination, those are brain activity patterns unique to myself, not possible for me to relate to any other creature in the universe experiencing them the same way, or at least not to any non-human species. Not a single one would feel the same, I’m sure. Consider a raven, for example. It’s a bird that behaves socially intricately, makes plans for the next day, can grasp how tools are used, and excels at many other mental tasks even sometimes surpassing a chimpanzee. Yet a raven has a last common ancestor with humans more than three hundred million years ago. The separate genetic happenstances of evolution since then, coupled with the miniaturization pressure due to weight limitations on a flying creature, means that if I were to dissect and anatomically compare the brain of a raven and a human, I’d be at a total loss. Does the bird even have a cerebral cortex?03-brai-diagram

An out of character thing is happening to me. I begin to feel as if it were in fact likely that a raven does sense conscious states of “funny” and “fascinating”. I still have functioning logic that tells me it must be impossible. Certainly, it’s an intelligent creature. A raven is conscious, probably. Maybe the drug makes me exaggerate even that, but it ought to have a high likelihood of being the case. But the states of experience in a raven’s mind must be totally alien if it were possible to compare them side by side with those of a human, which of course it is not. The bird might as well come from another planet.Head_of_Raven

The psychedelic drug is having an emotional effect on me. It does not twist my logic, though. This makes for internal conflict. Oppositional suggestions spontaneously present themselves. Could there be at least some qualia properties which are universal? Or is every aspect arbitrary? If the states of the subjective are not epiphenomenal, there would be evolutionary selection pressures shaping them. Logically there should be differences in computational efficiency when the information encoded in qualia feeds back into actions carried out by the body that the mind controls. Or is it epiphenomenal after all? Well, there’s the hard problem. No use pondering that. It’s a drug effect. It’ll wear off. Funny thing though, I feel very, very happy. I’m wondering about valence. It now appeals strongly to take the cognitive leap that at least the positive/negative “axis” of experience may in fact be universal. A modifier of all conscious states, a kind of transform function. Even alien states could then have a “good or bad” quality to them. Not directly related to the cognitive power of intelligences, but used as an efficient guidance for agency by them all, from the humblest mite to the wisest philosopher. Nah. Romanticizing. Anthropomorphizing.

36766208_10160731731785637_6606215010454601728_oFurther into this “trip” now. Enjoying the ride. It’s not going to change my psyche permanently, so why not relax and let go? What if conscious mind states really do have different computational efficiency for various purposes? That would mean there is “ground truth” to be found about consciousness. But how does nature enable the process for “hitting” the efficient states? If that has been convergently perfected by evolution, conscious experience may be more universal than I used to take for granted. Without there being anything supernatural about it. Suppose the possibility space of all conscious states is very large, so that within it there is an ideally suited state for any mental task. No divine providence or intelligent design, just a law of large numbers.

The problem then is only a search algorithmic one, really. Suppose “fright” is a state ideally suited for avoiding danger. At least now, under the influence, fright strikes me as rather better for the purpose than attraction. Come to think of it, Toxoplasma Gondii has the ability to replace fright with attraction in mice with respect to cats. It works the same way in other mammals, too. Are things then not so arbitrarily organized in brains? Well, those are such basic states we’d share them with rodents presumably. Still can’t tell if fright feels like fear in a raven or octopus. But can it feel like attraction? Hmmm, these are just mind wanderings I go through while I wait for this drug to wear off. What’s the harm in it?

Suppose there is a most computationally efficient conscious state for a given mental task. I’d call that state the ground state of conscious intelligence with respect to that task. I’m thinking of it like mental physical chemistry. In that framework, a psychedelic drug would bring a mind to excited states. Those are states the mind has not practiced using for tasks it has learned to do before. The excited states can then be perceived as useless, for they perform worse at tasks one has previously become competent at while sober. Psychedelic states are excited with respect to previous mental tasks, but they would potentially be ground states for new tasks! It’s probably not initially evident exactly what those tasks are, but the great potential to in fact become more mentally able would be apparent to those who use psychedelics. Right now this stands out to me as absolutely crisp, clear and evident. And the sheer realness of the realization is earth-shaking. Too bad my career could not be improved by any new mental abilities.Touched_by_His_Noodly_Appendage_HD

Oh Spaghetti Monster, I’m really high now. I feel like the sober me is just so dull. Illusion, of course, but a wonderful one I’ll have to admit. My mind is taking off from the heavy drudgery of Earth and reaching into the heavens on the wings of Odin’s ravens, eternally open to new insights about life, the universe and everything. Seeking forever the question to the answer. I myself am the answer. Forty-two. I was born in nineteen forty two. The darkest year in human history. The year when Adolf Hitler looked unstoppable at destroying all human value in the entire world. Then I came into existence, and things started to improve.

It just struck me that a bird is a good example of embodied intelligence. Sensory input to the brain can produce lasting changes in the neural connectivity and so on, resulting in a saved mental map of that which precipitated the sensory input. Now, a bird has the advantage of flight. It can view things from the ground and from successively higher altitudes and remember the appearance of things on all these different scales. Plus it can move sideways large distances and find systematic changes over scales of horizontal navigation. Entire continents can be included in a bird’s area of potential interest. Continents and seasons. I’m curious if engineers will someday be able to copy the ability of birds into a flying robot. Maximizing computational efficiency. Human-level artificial intelligence I’m quite doubtful of, but maybe bird brains are within reach, though quite a challenge, too.

This GPT-3 system by OpenAI is pretty good for throwing up somewhat plausible suggestions for what someone might say in certain situations. Impressive for a purely lexical information processing system. It can be trained on pretty much any language. I wonder if it could become useful for formalizing those qualia ground states? The system itself is not an intelligence in the agency sense but it is a good predictor of states. Suppose it can model the way the mind of the bird cycles through all those mental maps the bird brain has in memory. Where the zooming in and out on different scales brings out different visual patterns. If aspects of patterns from one zoom level is combined with aspect from another zoom level, the result can be a smart conclusion about where and when to set off in what direction and with what aim. Then there can be combinations also with horizontally displaced maps and time-displaced maps. Essentially, to a computer scientist we are talking massively parallel processing through cycles of information compression and expansion with successive approximation combinations of pattern pieces from the various levels in rapid repetition until something leads to an action which becomes rewarded via a utility function maximization.

Integrated_information_theory_postulates

Axioms of Integrated Information Theory (IIT)

Thank goodness I’m keeping all this drugged handwaving to myself and not sharing it in the form of any trip report. I have a reputation for being down to Earth, and I wouldn’t want to spoil it. Flying with ravens, dear me. Privately it is quite fun right now, though. That cycling of mental maps, could it be compatible with the Integrated Information Theory? I don’t think Tononi’s people have gone into how an intelligent system would search qualia state-space and how it would find the task-specific ground states via successive approximations. Rapidly iterated cycling would bring in a dynamic aspect they haven’t gotten to, perhaps. I realize I haven’t read the latest from them. Was always a bit skeptical of the unwieldy mathematics they use. Back of the envelope here… if you replace the clunky “integration” with resonance, maybe there’s a continuum of amplitudes of consciousness intensity? Possibly with a threshold corresponding to IIT’s nonconscious feed-forward causation chains. The only thing straight from physics which would allow this, as far as I can tell from the basic mathematics of it, would be wave interference dynamics. If so, what property might valence correspond to? Indeed, be mappable to? For conscious minds, experiential valence is the closest one gets to updating on a utility function. Waves can interfere constructively and destructively. That gives us frequency-variable amplitude combinations, likely isomorphic with the experienced phenomenology and intensity of conscious states. Such as the enormous “realness” and “fantastic truth” I am now immersed in. Not sure if it’s even “I”. There is ego dissolution. It’s more like a free-floating cosmic revelation. Spectacular must be the mental task for which this state is the ground state!

Wave pattern variability is clearly not a bottleneck. Plotting graphs of frequencies and amplitudes for even simple interference patterns shows there’s a near-infinite space of distinct potential patterns to pick from. The operative system, that is evolution and development of nervous systems, must have been slow going to optimize by evolution via genetic selection early on in the history of life, but then it could go faster and faster. Let me see, humans acquired a huge redundancy of neocortex of the same type as animals use for avigation in spacetime locations. Hmmm…, that which the birds are so good at. Wonder if the same functionality in ravens also got increased in volume beyond what is needed for navigation? Opening up the possibility of using the brain to also “navigate” in social relational space or tool function space. Literally, these are “spaces” in the brain’s mental models.2000px-Migrationroutes.svg

Natural selection of genetics cannot have found the ground states for all the multiple tasks a human with our general intelligence is able to take on. Extra brain tissue is one thing it could produce, but the way that tissue gets efficiently used must be trained during life. Since the computational efficiency of the human brain is assessed to be near the theoretical maximum for the raw processing power it has available, inefficient information-encoding states really aren’t very likely to make up any major portion of our mental activity. Now, that’s a really strong constraint on mechanisms of consciousness there. If you don’t believe it was all magically designed by God, you’d have to find a plausible parsimonious mechanism for how the optimization takes place.

If valence is in the system as a basic property, then what can it be if it’s not amplitude? For things to work optimally, valence should in fact be orthogonal to amplitude. Let me see… What has a natural tendency to persist in evolving systems of wave interference? Playing around with some programs on my computer now… well, appears it’s consonance which continues and dissonance which dissipates. And noise which neutralizes. Hey, that’s even simple to remember: consonance continues, dissonance dissipates, noise neutralizes. Goodness, I feel like a hippie. Beads and Roman sandals won’t be seen. In Muskogee, Oklahoma, USA. Soon I’ll become convinced love’s got some cosmic ground state function, and that the multiverse is mind-like. Maybe it’s all in the vibes, actually. Spaghetti Monster, how silly that sounds. And at the same time, how true!

matthew_smith_65036312_10158707068303858_8051960337261395968_o

Artist: Matthew Smith

I’m now considering the brain to produce self-organizing ground state qualia selection via activity wave interference with dissonance gradient descent and consonance gradient ascent with ongoing information compression-expansion cycling and normalization via buildup of system fatigue. Wonder if it’s just me tripping, or if someone else might seriously be thinking along these lines. If so, what could make a catchy name for their model?

Maybe “Resonant State Selection Theory”? I only wish this could be true, for then it would be possible to unify empty individualism with open individualism in a framework of full empathic transparency. The major ground states for human intelligence could presumably be mapped pretty well with an impressive statistical analyzer like GPT-3. Mapping the universal ground truth of conscious intelligence, what a vision!

But, alas, the acid is beginning to wear off. Back to the good old opaque arbitrariness I’ve built my career on. No turning back now. I think it’s time for a cup of tea, and maybe a cracker to go with that.

raven-99568_960_720