Open Individualism and Antinatalism: If God could be killed, it’d be dead already

Abstract

Personal identity views (closed, empty, open) serve in philosophy the role that conservation laws play in physics. They recast difficult problems in solvable terms, and by expanding our horizon of understanding, they likewise allow us to conceive of new classes of problems. In this context, we posit that philosophy of personal identity is relevant in the realm of ethics by helping us address age-old questions like whether being born is good or bad. We further explore the intersection between philosophy of personal identity and philosophy of time, and discuss the ethical implications of antinatalism in a tenseless open individualist “block-time” universe.

Introduction

Learning physics, we often find wide-reaching concepts that simplify many problems by using an underlying principle. A good example of this is the law of conservation of energy. Take for example the following high-school physics problem:

An object that weighs X kilograms falls from a height of Y meters on a planet without an atmosphere and a gravity of Zg. Calculate the velocity with which this object will hit the ground.

One could approach this problem by using Newton’s laws of motion and differentiating the distance traveled by the object as a function of time and then obtaining the velocity of the object at the time it has fallen Y meters.

Alternatively, you could simply note that given that energy is conserved, all of the potential energy of the object at a height of X meters will be transformed into kinetic energy at 0 height. Thus the velocity of the object is equivalent to this amount, and the problem is easier to solve.

Once one has learned “the trick” one starts to see many other problems differently. In turn, grasping these deep invariants opens up new horizons; while many problems that seemed impossible can be solved using these principles, it also allows you to ask new questions, which opens up new problems that cannot be solved with those principles alone.

Does this ever happen in philosophy? Perhaps entire classes of difficult problems in philosophy may become trivial (or at least tractable) once one grasps powerful principles. Such is the case, I would claim, of transcending common-sense views of personal identity.

Personal Identity: Closed, Empty, Open

In Ontological Qualia I discussed three core views about personal identity. For those who have not encountered these concepts, I recommend reading that article for an expanded discussion.

In brief:

  1. Closed Individualism: You start existing when you are born, and stop when you die.
  2. Empty Individualism: You exist as a “time-slice” or “moment of experience.”
  3. Open Individualism: There is only one subject of experience, who is everyone.

This slideshow requires JavaScript.

Most people are Closed Individualists; this is the default common sense view for good evolutionary reasons. But what grounds are there to believe in this view? Intuitively, the fact that you will wake up in “your body” tomorrow is obvious and needs no justification. However, explaining why this is the case in a clear way requires formalizing a wide range of concepts such as causality, continuity, memory, and physical laws. And when one tries to do so one will generally find a number of barriers that will prevent one from making a solid case for Closed Individualism.

As an example line of argument, one could argue that what defines you as an individual is your set of memories, and since the person who will wake up in your body tomorrow is the only human being with access to your current memories then you must be it. And while this may seem to work on the surface, a close inspection reveals otherwise. In particular, all of the following facts work against it: (1) memory is a constructive process and every time you remember something you remember it (slightly) differently, (2) memories are unreliable and do not always work at will (e.g. false memories), (3) it is unclear what happens if you copy all of your memories into someone else (do you become that person?), (4) how many memories can you swap with someone until you become a different person?, and so on. Here the more detailed questions one asks, the more ad-hoc modifications of the theory are needed. In the end, one is left with what appears to be just a set of conventional rules to determine whether two persons are the same for practical purposes. But it does not seem to carve nature at its joints; you’d be merely over-fitting the problem.

The same happens with most Closed Individualist accounts. You need to define what the identity carrier is, and after doing so one can identify situations in which identity is not well-defined given that identity carrier (memory, causality, shared matter, etc.).

But for both Open and Empty Individualism, identity is well-defined for any being in the universe. Either all are the same, or all are different. Critics might say that this is a trivial and uninteresting point, perhaps even just definitional. Closed Individualism seems sufficiently arbitrary, however, that questioning it is warranted, and once one does so it is reasonable to start the search for alternatives by taking a look at the trivial cases in which either all or none of the beings are the same.

More so, there are many arguments in favor of these views. They indeed solve and usefully reformulate a range of philosophical problems when applied diligently. I would argue that they play a role in philosophy that is similar to that of conservation of energy in physics. The energy conservation law has been empirically tested to extremely high levels of precision, which is something which we will have to do without in the realm of philosophy. Instead, we shall rely on powerful philosophical insights. And in addition, they make a lot of problems tractable and offer a powerful lens to interpret core difficulties in the field.

Open and Empty Individualism either solve or have bearings on: Decision theory, utilitarianism, fission/fusion, mind-uploading and mind-melding, panpsychism, etc. For now, let us focus on…

Antinatalism

Antinatalism is a philosophical view that posits that, all considered, it is better not to be born. Many philosophers could be adequately described as antinatalists, but perhaps the most widely recognized proponent is David Benatar. A key argument Benatar considers is that there might be an asymmetry between pleasure and pain. Granted, he would say, experiencing pleasure is good, and experiencing suffering is bad. But while “the absence of pain is good, even if that good is not enjoyed by anyone”, we also have that “the absence of pleasure is not bad unless there is somebody for whom this absence is a deprivation.” Thus, while being born can give rise to both good and bad, not being born can only be good.

Contrary to popular perception, antinatalists are not more selfish or amoral than others. On the contrary, their willingness to “bite the bullet” of a counter-intuitive but logically defensible argument is a sign of being willing to face social disapproval for a good cause. But along with the stereotype, it is generally true that antinatalists are temperamentally depressive. This, of course, does not invalidate their arguments. If anything, sometimes a degree of depressive realism is essential to arrive at truly sober views in philosophy. But it shouldn’t be a surprise to learn that either experiencing or having experienced suffering in the past predispose people to vehemently argue for the importance of its elimination. Having a direct acquaintance with the self-disclosing nastiness of suffering does give one a broader evidential base for commenting on the matter of pain and pleasure.

Antinatalism and Closed Individualism

Interestingly, Benatar’s argument, and those of many antinatalists, rely implicitly on personal identity background assumptions. In particular, antinatalism is usually framed in a way that assumes Closed Individualism.

The idea that a “person can be harmed by coming into existence” is developed within a conceptual framework in which the inhabitants of the universe are narrative beings. These beings have both spatial and temporal extension. And they also have the property that had the conditions previous to their birth been different, they might not have existed. But how many possible beings are there? How genetically or environmentally different do they need to be to be different beings? What happens if two beings merge? Or if they converge towards the same exact physical configuration over time?

 

This conceptual framework has counter-intuitive implications when taken to the extreme. For example, the amount of harm you do involves how many people you allow to be born, rather than how many years of suffering you prevented.

For the sake of the argument, imagine that you have control over a sentient-AI-enabled virtual environment in which you can make beings start existing and stop existing. Say that you create two beings, A and B, who are different in morally irrelevant ways (e.g. one likes blue more than red, but on average they both end up suffering and delighting in their experience with the same intensity). With Empty Individualism, you would consider giving A 20 years of life and not creating B vs. giving A and B 10 years of life each to be morally equivalent. But with Closed Individualism you would rightly worry that these two scenarios are completely different. By giving years of life to both A and B (any amount of life!) you have doubled the number of subjects who are affected by your decisions. If the gulf of individuality between two persons is infinite, as Closed Individualism would have it, by creating both A and B you have created two parallel realities, and that has an ontological effect on existence. It’s a big deal. Perhaps a way to put it succinctly would be: God considers much more carefully the question of whether to create a person who will live only 70 years versus whether to add a million years of life to an angel who has already lived for a very long time. Creating an entirely new soul is not to be taken lightly (incidentally, this may cast the pro-choice/pro-life debate in an entirely new light).

Thus, antinatalism is usually framed in a way that assumes Closed Individualism. The idea that a being is (possibly) harmed by coming into existence casts the possible solutions in terms of whether one should allow animals (or beings) to be born. But if one were to take an Open or Empty Individualist point of view, the question becomes entirely different. Namely, what kind of experiences should we allow to exist in the future…

Antinatalism and Empty Individualism

I think that the strongest case for antinatalism comes from a take on personal identity that is different than the implicit default (Closed Individualism). If you assume Empty Individualism, in particular, reality starts to seem a lot more horrible than you had imagined. Consider how in Empty Individualism fundamental entities exist as “moments of experience” rather than narrative streams. Therefore, every time that an animal suffers, what is actually happening is that some moments of experience get to have their whole existence in pain and suffering. In this light, one stops seeing people who suffer terrible happenings (e.g. kidney stones, schizophrenia, etc.) as people who are unlucky, and instead one sees their brains as experience machines capable of creating beings whose entire existence is extremely negative.

With Empty Individualism there is simply no way to “make it up to someone” for having had a bad experience in the past. Thus, out of compassion for the extremely negative moments of experience, one could argue that it might be reasonable to try to avoid this whole business of life altogether. That said, this imperative does not come from the asymmetry between pain and pleasure Benetar talks about (which as we saw implicitly requires Closed Individualism). In Empty Individualism it does not make sense to say that someone has been brought into existence. So antinatalism gets justified from a different angle, albeit one that might be even more powerful.

In my assessment, the mere possibility of Empty Individualism is a good reason to take antinatalism very seriously.

It is worth noting that the combination of Empty Individualism and Antinatalism has been (implicitly) discussed by Thomas Metzinger (cf. Benevolent Artificial Anti-Natalism (BAAN)) and FRI‘s Brian Tomasik.

Antinatalism and Open Individualism

Here is a Reddit post and then a comment on a related thread (by the same author) worth reading on this subject (indeed these artifacts motivated me to write the article you are currently reading):

There’s an interesting theory of personal existence making the rounds lately called Open Individualism. See herehere, and here. Basically, it claims that consciousness is like a single person in a huge interconnected library. One floor of the library contains all of your life’s experiences, and the other floors contain the experiences of others. Consciousness wanders the aisles, and each time he picks up a book he experiences whatever moment of life is recorded in it as if he were living it. Then he moves onto the next one (or any other random one on any floor) and experiences that one. In essence, the “experiencer” of all experience everywhere, across all conscious beings, is just one numerically identical subject. It only seems like we are each separate “experiencers” because it can only experience one perspective at a time, just like I can only experience one moment of my own life at a time. In actuality, we’re all the same person.

 

Anyway, there’s no evidence for this, but it solves a lot of philosophical problems apparently, and in any case there’s no evidence for the opposing view either because it’s all speculative philosophy.

 

But if this were true, and when I’m done living the life of this particular person, I will go on to live every other life from its internal perspective, it has some implications for antinatalism. All suffering is essentially experienced by the same subject, just through the lens of many different brains. There would be no substantial difference between three people suffering and three thousand people suffering, assuming their experiences don’t leave any impact or residue on the singular consciousness that experiences them. Even if all conscious life on earth were to end, there are still likely innumerable conscious beings elsewhere in the universe, and if Open Individualism is correct, I’ll just move on to experiencing those lives. And since I can re-experience them an infinite number of times, it makes no difference how many there are. In fact, even if I just experienced the same life over and over again ten thousand times, it wouldn’t be any different from experiencing ten thousand different lives in succession, as far as suffering is concerned.

 

The only way to end the experience of suffering would be to gradually elevate all conscious beings to a state of near-constant happiness through technology, or exterminate every conscious being like the Flood from the Halo series of games. But the second option couldn’t guarantee that life wouldn’t arise again in some other corner of the multiverse, and when it did, I’d be right there again as the conscious experiencer of whatever suffering it would endure.

 

I find myself drawn to Open Individualism. It’s not mysticism, it’s not a Big Soul or something we all merge with, it’s just a new way of conceptualizing what it feels like to be a person from the inside. Yet, it has these moral implications that I can’t seem to resolve. I welcome any input.

 

– “Open individualism and antinatalism” by Reddit user CrumbledFingers in r/antinatalism (March 23, 2017)

And on a different thread:

I have thought a lot about the implications of open individualism (which I will refer to as “universalism” from here on, as that’s the name coined by its earliest proponent, Arnold Zuboff) for antinatalism. In short, I think it has two major implications, one of which you mention. The first, as you say, is that freedom from conscious life is impossible. This is bad, but not as bad as it would be if I were aware of it from every perspective. As it stands, at least on Earth, only a small number of people have any inkling that they are me. So, it is not like experiencing the multitude of conscious events taking place across reality is any kind of burden that accumulates over time; from the perspective of each isolated nervous system, it will always appear that whatever is being experienced is the only thing I am experiencing. In this way, the fact that I am never truly unconscious does not have the same sting as it would to, for example, an insomniac, who is also never unconscious but must experience the constant wakefulness from one integrated perspective all the time.

 

It’s like being told that I will suffer total irreversible amnesia at some point in my future; while I can still expect to be the person that experiences all the confusion and anxiety of total amnesia when it happens, I must also acknowledge that the residue of any pains I would have experienced beforehand would be erased. Much of what makes consciousness a losing game is the persistence of stresses. Universalism doesn’t imply that any stresses will carry over between the nervous systems of individual beings, so the reality of my situation is by no means as nightmarish as eternal life in a single body (although, if there exists an immortal being somewhere in the universe, I am currently experiencing the nightmare of its life).

 

The second implication of this view for antinatalism is that one of the worst things about coming into existence, namely death, is placed in quite a different context. According to the ordinary view (sometimes called “closed” individualism), death permanently ends the conscious existence of an alienated self. Universalism says there is no alienated self that is annihilated upon the death of any particular mind. There are just moments of conscious experience that occur in various substrates across space and time, and I am the subject of all such experiences. Thus, the encroaching wall of perpetual darkness and silence that is usually an object of dread becomes less of a problem for those who have realized that they are me. Of course, this realization is not built into most people’s psychology and has to be learned, reasoned out, intellectually grasped. This is why procreation is still immoral, because even though I will not cease to exist when any specific organism dies, from the perspective of each one I will almost certainly believe otherwise, and that will always be a source of deep suffering for me. The fewer instances of this existential dread, however misplaced they may be, the better.

 

This is why it’s important to make more people understand the position of universalism/open individualism. In the future, long after the person typing this sentence has perished, my well-being will depend in large part on having the knowledge that I am every person. The earlier in each life I come to that understanding, and thus diminish the fear of dying, the better off I will be. Naturally, this project decreases in potential impact if conscious life is abundant in the universe, and in response to that problem I concede there is probably little hope, unless there are beings elsewhere in the universe that have comprehended who they are and are taking the same steps in their spheres of influence. My dream is that intelligent life eventually either snuffs itself out or discovers how to connect many nervous systems together, which would demonstrate to every connected mind that it has always belonged to one subject, has always been me, but I don’t have any reason to assume this is even possible on a physical level.

 

So, I suppose you are mostly right about one thing: there are no lucky ones that escape the badness of life’s worst agonies, either by virtue of a privileged upbringing or an instantaneous and painless demise. They and the less fortunate ones are all equally me. Yet, the horror of going through their experiences is mitigated somewhat in the details.

 

– A comment by CrumbledFingers in the Reddit post “Antinatalism and Open individualism“, also in r/antinatalism (March 12, 2017)

Our brain tries to make sense of metaphysical questions in wet-ware that shares computational space with a lot of adaptive survival programs. It does not matter if you have thick barriers (cf. thick and thin boundaries of the mind), the way you assess the value of situations as a human will tend to over-focus on whatever would allow you to go up Maslow’s hierarchy of needs (or, more cynically, achieve great feats as a testament to signal your genetic-fitness). Our motivational architecture is implemented in such a way that it is very good at handling questions like how to find food when you are hungry and how to play social games in a way that impresses others and leaves a social mark. Our brains utilize many heuristics based on personhood and narrative-streams when exploring the desirability of present options. We are people, and our brains are adapted to solve people problems. Not, as it turns out, general problems involving the entire state-space of possible conscious experiences.

Prandium Interruptus

Our brains render our inner world-simulation with flavors and textures of qualia to suit their evolutionary needs. This, in turn, impairs our ability to aptly represent scenarios that go beyond the range of normal human experiences. Let me illustrate this point with the following thought experiment:

Would you rather (a) have a 1-hour meal, or (b) have the same meal but at the half-hour point be instantly transformed into a simple, amnesic, and blank experience of perfectly neutral hedonic value that lasts ten quintillion years, and after that extremely long time of neither-happiness-nor-suffering ends, then resume the rest of the meal as if nothing had happened, with no memory of that long neutral period?

According to most utilitarian calculi these two scenarios ought to be perfectly equivalent. In both cases the total amount of positive and negative qualia is the same (the full duration of the meal) and the only difference is that the latter also contains a large amount of neutral experience too. Whether classical or negative, utilitarians should consider these experiences equivalent since they contain the same amount of pleasure and pain (note: some other ethical frameworks do distinguish between these cases, such as average and market utilitarianism).

Intuitively, however, (a) seems a lot better than (b). One imagines oneself having an awfully long experience, bored out of one’s mind, just wanting it to end, get it over with, and get back to enjoying the nice meal. But the very premise of the thought experiment presupposes that one will not be bored during that period of time, nor will one be wishing it to be over, or anything of the sort, considering that all of those are mental states of negative quality and the experience is supposed to be neutral.

Now this is of course a completely crazy thought experiment. Or is it?

The One-Electron View

In 1940 John Wheeler proposed to Richard Feynman the idea that all of reality is made of a single electron moving backwards and forwards in time, interfering with itself. This view has come to be regarded as the One-Electron Universe. Under Open Individualism, that one electron is you. From every single moment of experience to the next, you may have experienced life as a sextillion different animals, been 10^32 fleeting macroscropic entangled particles, and gotten stuck as a single non-interacting electron in the inter-galactic medium for googols of subjective years. Of course you will not remember any of this, because your memories, and indeed all of your motivational architecture and anticipation programs, are embedded in the brain you are instantiating right now. From that point of view, there is absolutely no trace of the experiences you had during this hiatus.

The above way of describing the one-electron view is still just an approximation. In order to see it fully, we also need to address the fact that there is no “natural” order to all of these different experiences. Every way of factorizing it and describing the history of the universe as “this happened before this happened” and “this, now that” could be equally inapplicable from the point of view of fundamental reality.

Philosophy of Time

17496270_10208752190872647_1451187529_n-640x340

Presentism is the view that only the present moment is real. The future and the past are just conceptual constructs useful to navigate the world, but not actual places that exist. The “past exists as footprints”, in a matter of speaking. “Footprints of the past” are just strangely-shaped information-containing regions of the present, including your memories. Likewise, the “future” is unrealized: a helpful abstraction which evolution gave us to survive in this world.

On the other hand, eternalism treats the future and the past as always-actualized always-real landscapes of reality. Every point in space-time is equally real. Physically, this view tends to be brought up in connection with the theory of relativity, where frame-invariant descriptions of the space-time continuum have no absolute present line. For a compelling physical case, see the Rietdijk-Putnam argument.

Eternalism has been explored in literature and spirituality extensively. To name a few artifacts: The EggHindu and Buddhist philosophy, the videos of Bob Sanders (cf. The Gap in Time, The Complexity of Time), the essays of Philip K. Dick and J. L. Borges, the poetry of T. S. Eliot, the fiction of Kurt Vonnegut Jr (TimequakeSlaughterhouse Five, etc.), and the graphic novels of Alan Moore, such as Watchmen:

Let me know in the comments if you know of any other work of fiction that explores this theme. In particular, I would love to assemble a comprehensive list of literature that explores Open Individualism and Eternalism.

Personal Identity and Eternalism

For the time being (no pun intended), let us assume that Eternalism is correct. How do Eternalism and personal identity interact? Doctor Manhattan in the above images (taken from Watchmen) exemplifies what it would be like to be a Closed Individualist Eternalist. He seems to be aware of his entire timeline at once, yet recognizes his unique identity apart from others. That said, as explained above, Closed Individualism is a distinctly unphysical theory of identity. One would thus expect of Doctor Manhattan, given his physically-grounded understanding of reality, to espouse a different theory of identity.

A philosophy that pairs Empty Individualism with Eternalism is the stuff of nightmares. Not only would we have, as with Empty Individualism alone, that some beings happen to exist entirely as beings of pain. We would also have that such unfortunate moments of experience are stuck in time. Like insects in amber, their expressions of horror and their urgency to run away from pain and suffering are forever crystallized in their corresponding spatiotemporal coordinates. I personally find this view paralyzing and sickening, though I am aware that such a reaction is not adaptive for the abolitionist project. Namely, even if “Eternalism + Empty Individualism” is a true account of reality, one ought not to be so frightened by it that one becomes incapable of working towards preventing future suffering. In this light, I adopt the attitude of “hope for the best, plan for the worst”.

Lastly, if Open Individualism and Eternalism are both true (as I suspect is the case), we would be in for what amounts to an incredibly trippy picture of reality. We are all one timeless spatiotemporal crystal. But why does this eternal crystal -who is everyone- exist? Here the one-electron view and the question “why does anything exist?” could both be simultaneously addressed with a single logico-physical principle. Namely, that the sum-total of existence contains no information to speak of. This is what David Pearce calls “Zero Ontology” (see: 1, 2, 3, 4). What you and I are, in the final analysis, is the necessary implication of there being no information; we are all a singular pattern of self-interference whose ultimate nature amounts to a dimensionless unit-sphere in Hilbert space. But this is a story for another post.

On a more grounded note, Scientific American recently ran an article that could be placed in this category of Open Individualism and Eternalism. In it the authors argue that the physical signatures of multiple-personality disorder, which explain the absence of phenomenal binding between alters that share the same brain, could be extended to explain why reality is both one and yet appears as the many. We are, in this view, all alters of the universe.

Personal Identity X Philosophy of Time X Antinatalism

Sober, scientifically grounded, and philosophically rigorous accounts of the awfulness of reality are rare. On the one hand, temperamentally happy individuals are more likely to think about the possibilities of heaven that lie ahead of us, and their heightened positive mood will likewise make them more likely to report on their findings. Temperamental depressives, on the other hand, may both investigate reality with less motivated reasoning than the euthymic and also be less likely to report on the results due to their subdued mood (“why even try? why even bother to write about it?”). Suffering in the Multiverse by David Pearce is a notable exception to this pattern. David’s essay highlights that if Eternalism is true together with Empty Individualism, there are vast regions of the multiverse filled with suffering that we can simply do nothing about (“Everett Hell Branches”). Taken together with a negative utilitarian ethic, this represents a calamity of (quite literally) astronomical proportions. And, sadly, there simply is no off-button to the multiverse as a whole. The suffering is/has/will always be there. And this means that the best we can do is to avoid the suffering of those beings in our forward-light cone (a drop relative to the size of the ocean of existence). The only hope left is to find a loop-hole in quantum mechanics that allows us to cross into other Everett branches of the multiverse and launch cosmic rescue missions. A counsel of despair or a rational prospect? Only time will tell.

Another key author that explores the intersection of these views is Mario Montano (see: Eternalism and Its Ethical Implications and The Savior Imperative).

A key point that both of these authors make is that however nasty reality might be, ethical antinatalists and negative utilitarians shouldn’t hold their breath about the possibility that reality can be destroyed. In Open Individualism plus Eternalism, the light of consciousness (perhaps what some might call the secular version of God) simply is, everywhere and eternally. If reality could be destroyed, such destruction is certainly limited to our forward light-cone. And unlike Closed Individualist accounts, it is not possible to help anyone by preventing their birth; the one subject of existence has already been born, and will never be unborn, so to speak.

Nor should ethical antinatalists and negative utilitarians think that avoiding having kids is in any way contributing to the cause of reducing suffering. It is reasonable to assume that the personality traits of agreeableness (specifically care and compassion), openness to experience, and high levels of systematizing intelligence are all over-represented among antinatalists. Insofar as these traits are needed to build a good future, antinatalists should in fact be some of the people who reproduce the most. Mario Montano says:

Hanson calls the era we live in the “dream time” since it’s evolutionarily unusual for any species to be wealthy enough to have any values beyond “survive and reproduce.” However, from an anthropic perspective in infinite dimensional Hilbert space, you won’t have any values beyond “survive and reproduce.” The you which survives will not be the one with exotic values of radical compassion for all existence that caused you to commit peaceful suicide. That memetic stream weeded himself out and your consciousness is cast to a different narrative orbit which wants to survive and reproduce his mind. Eventually. Wanting is, more often than not, a precondition for successfully attaining the object of want.

Physicalism Implies Existence Never Dies

Also, from the same essay:

Anti-natalists full of weeping benignity are literally not successful replicators. The Will to Power is life itself. It is consciousness itself. And it will be, when a superintelligent coercive singleton swallows superclusters of baryonic matter and then spreads them as the flaming word into the unconverted future light cone.

[…]

You eventually love existence. Because if you don’t, something which does swallows you, and it is that which survives.

I would argue that the above reasoning is not entirely correct in the large scheme of things*, but it is certainly applicable in the context of human-like minds and agents. See also: David Pearce’s similar criticisms to antinatalism as a policy.

This should underscore the fact that in its current guise, antinatalism is completely self-limiting. Worryingly, one could imagine an organized contingent of antinatalists conducting research on how to destroy life as efficiently as possible. Antinatalists are generally very smart, and if Eliezer Yudkowsky‘s claim that “every 18 months the minimum IQ necessary to destroy the world drops by one point” is true, we may be in for some trouble. Both Pearce’s, Montano’s, and my take is that even if something akin to negative utilitarianism is the case, we should still pursue the goal of diminishing suffering in as peaceful of a way as it is possible. The risk of trying to painlessly destroy the world and failing to do so might turn out to be ethically catastrophic. A much better bet would be, we claim, to work towards the elimination of suffering by developing commercially successful hedonic recalibration technology. This also has the benefit that both depressives and life-lovers will want to team up with you; indeed, the promise of super-human bliss can be extraordinarily motivating to people who already lead happy lives, whereas the prospect of achieving “at best nothing” sounds stale and uninviting (if not outright antagonistic) to them.

An Evolutionary Environment Set Up For Success

If we want to create a world free from suffering, we will have to contend with the fact that suffering is adaptive in certain environments. The solution here is to avoid such environments, and foster ecosystems of mind that give an evolutionary advantage to the super-happy. More so, we already have the basic ingredients to do so. In Wireheading Done Right I discussed how, right now, the economy is based on trading three core goods: (1) survival tools, (2) power, and (3) information about the state-space of consciousness. Thankfully, the world right now is populated by humans who largely choose to spend their extra income on fun rather than on trips to the sperm bank. In other words, people are willing to trade some of their expected reproductive success for good experiences. This is good because it allows the existence of an economy of information about the state-space of consciousness, and thus creates an evolutionary advantage for caring about consciousness and being good at navigating its state-space. But for this to be sustainable, we will need to find the way to make positive valence gradients (i.e. gradients of bliss) both economically useful and power-granting. Otherwise, I would argue, the part of the economy that is dedicated to trading information about the state-space of consciousness is bound to be displaced by the other two (i.e. survival and power). For a more detailed discussion on these questions see: Consciousness vs. Pure Replicators.

12565637_1182612875090077_9123676868545012453_n

Can we make the benevolent exploration of the state-space of consciousness evolutionarily advantageous?

In conclusion, to close down hell (to the extent that is physically possible), we need to take advantage of the resources and opportunities granted to us by merely living in Hanson’s “dream time” (cf. Age of Spandrels). This includes the fact that right now people are willing to spend money on new experiences (especially if novel and containing positive valence), and the fact that philosophy of personal identity can still persuade people to work towards the wellbeing of all sentient beings. In particular, scientifically-grounded arguments in favor of both Open and Empty Individualism weaken people’s sense of self and make them more receptive to care about others, regardless of their genetic relatedness. On its natural course, however, this tendency may ultimately be removed by natural selection: if those who are immune to philosophy are more likely to maximize their inclusive fitness, humanity may devolve into philosophical deafness. The solution here is to identify the ways in which philosophical clarity can help us overcome coordination problems, highlight natural ethical Schelling points, and ultimately allow us to summon a benevolent super-organism to carry forward the abolition of as much suffering as is physically possible.

And only once we have done everything in our power to close down hell in all of its guises, will we be able to enjoy the rest of our forward light-cone in good conscience. Till then, us ethically-minded folks shall relentlessly work on building universe-sized fire-extinguishers to put out the fire of Hell.


* This is for several reasons: (1) phenomenal binding is not epiphenomenal, (2) the most optimal computational valence gradients are not necessarily located on the positive side, sadly, and (3) wanting, liking, and learning are possible to disentangle.

The Binding Problem

[Our] subjective conscious experience exhibits a unitary and integrated nature that seems fundamentally at odds with the fragmented architecture identified neurophysiologically, an issue which has come to be known as the binding problem. For the objects of perception appear to us not as an assembly of independent features, as might be suggested by a feature based representation, but as an integrated whole, with every component feature appearing in experience in the proper spatial relation to every other feature. This binding occurs across the visual modalities of color, motion, form, and stereoscopic depth, and a similar integration also occurs across the perceptual modalities of vision, hearing, and touch. The question is what kind of neurophysiological explanation could possibly offer a satisfactory account of the phenomenon of binding in perception?
One solution is to propose explicit binding connections, i.e. neurons connected across visual or sensory modalities, whose state of activation encodes the fact that the areas that they connect are currently bound in subjective experience. However this solution merely compounds the problem, for it represents two distinct entities as bound together by adding a third distinct entity. It is a declarative solution, i.e. the binding between elements is supposedly achieved by attaching a label to them that declares that those elements are now bound, instead of actually binding them in some meaningful way.
Von der Malsburg proposes that perceptual binding between cortical neurons is signalled by way of synchronous spiking, the temporal correlation hypothesis (von der Malsburg & Schneider 1986). This concept has found considerable neurophysiological support (Eckhorn et al. 1988, Engel et al. 1990, 1991a, 1991b, Gray et al. 1989, 1990, 1992, Gray & Singer 1989, Stryker 1989). However although these findings are suggestive of some significant computational function in the brain, the temporal correlation hypothesis as proposed, is little different from the binding label solution, the only difference being that the label is defined by a new channel of communication, i.e. by way of synchrony. In information theoretic terms, this is no different than saying that connected neurons posses two separate channels of communication, one to transmit feature detection, and the other to transmit binding information. The fact that one of these channels uses a synchrony code instead of a rate code sheds no light on the essence of the binding problem. Furthermore, as Shadlen & Movshon (1999) observe, the temporal binding hypothesis is not a theory about how binding is computed, but only how binding is signaled, a solution that leaves the most difficult aspect of the problem unresolved.
I propose that the only meaningful solution to the binding problem must involve a real binding, as implied by the metaphorical name. A glue that is supposed to bind two objects together would be most unsatisfactory if it merely labeled the objects as bound. The significant function of glue is to ensure that a force applied to one of the bound objects will automatically act on the other one also, to ensure that the bound objects move together through the world even when one, or both of them are being acted on by forces. In the context of visual perception, this suggests that the perceptual information represented in cortical maps must be coupled to each other with bi-directional functional connections in such a way that perceptual relations detected in one map due to one visual modality will have an immediate effect on the other maps that encode other visual modalities. The one-directional axonal transmission inherent in the concept of the neuron doctrine appears inconsistent with the immediate bi-directional relation required for perceptual binding. Even the feedback pathways between cortical areas are problematic for this function due to the time delay inherent in the concept of spike train integration across the chemical synapse, which would seem to limit the reciprocal coupling between cortical areas to those within a small number of synaptic connections. The time delays across the chemical synapse would seem to preclude the kind of integration apparent in the binding of perception and consciousness across all sensory modalities, which suggests that the entire cortex is functionally coupled to act as a single integrated unit.
— Section 5 of “Harmonic Resonance Theory: An Alternative to the ‘Neuron Doctrine’ Paradigm of Neurocomputation to Address Gestalt properties of perception” by Steven Lehar

LSD and Quantum Measurements: Can you see Schrödinger’s cat both dead and alive on acid?

[Content Warnings: Psychedelic Depersonalization, Fear of the Multiverse, Personal Identity Doubts, Discussion about Quantum Consciousness, DMT entities, Science]

The brain is wider than the sky,
For, put them side by side,
The one the other will include
With ease, and you beside.

– Emily Dickinson

Is it for real?

A sizable percentage of people who try a high dose of DMT end up convinced that the spaces they visit during the trip exist in some objective sense; they either suspect, intuit or conclude that their psychonautic experience reflects something more than simply the contents of their minds. Most scientists would argue that those experiences are just the result of exotic brain states; the worlds one travels to are bizarre (often useless) simulations made by our brain in a chaotic state. This latter explanation space forgoes alternate realities for the sake of simplicity, whereas the former envisions psychedelics as a multiverse portal technology of some sort.

Some exotic states, such as DMT breakthrough experiences, do typically create feelings of glimpsing foundational information about the depth and structure of the universe. Entity contact is frequent, and these seemingly autonomous DMT entities are often reported to have the ability to communicate with you. Achieving a verifiable contact with entities from another dimension would revolutionize our conception of the universe. Nothing would be quite as revolutionary, really. But how to do so? One could test the external reality of these entities by asking them to provide information that cannot be obtained unless they themselves held an objective existence. In this spirit, some have proposed to ask these entities complex mathematical questions that would be impossible for a human to solve within the time provided by the trip. This particular test is really cool, but it has the flaw that DMT experiences may themselves trigger computationally-useful synesthesia of the sort that Daniel Tammet experiences. Thus even if DMT entities appeared to solve extraordinary mathematical problems, it would still stand to reason that it is oneself who did it and that one is merely projecting the results into the entities. The mathematical ability would be the result of being lucky in the kind of synesthesia DMT triggered in you.

A common overarching description of the effects of psychedelics is that they “raise the frequency of one’s consciousness.” Now, this is a description we should take seriously whether or not we believe that psychedelics are inter-dimensional portals. After all, promising models of psychedelic action involve fast-paced control interruption, where each psychedelic would have its characteristic control interrupt frequency. And within a quantum paradigm, Stuart Hameroff has argued that psychedelic compounds work by bringing up the quantum resonance frequency of the water inside our neurons’ microtubules (perhaps going from megahertz to gigahertz), which he claims increases the non-locality of our consciousness.

In the context of psychedelics as inter-dimensional portals, this increase in the main frequency of one’s consciousness may be the key that allows us to interact with other realities. Users describe a sort of tuning of one’s consciousness, as if the interface between one’s self and the universe underwent some sudden re-adjustment in an upward direction. In the same vein, psychedelicists (e.g. Rick Strassman) frequently describe the brain as a two-way radio, and then go on to claim that psychedelics expand the range of channels we can be attuned to.

One could postulate that the interface between oneself and the universe that psychonauts describe has a real existence of its own. It would provide the bridge between us as (quantum) monads and the universe around us; and the particular structure of this interface would determine the selection pressures responsible for the part of the multiverse that we interact with. By modifying the spectral properties of this interface (e.g. by drastically raising the main frequency of its vibration) with, e.g. DMT, one effectively “relocates” (cf. alien travel) to other areas of reality. Assuming this interface exists and that it works by tuning into particular realities, what sorts of questions can we ask about its properties? What experiments could we conduct to verify its existence? And what applications might it have?

The Psychedelic State of Input Superposition

Once in a while I learn about a psychedelic effect that captures my attention precisely because it points to simple experiments that could distinguish between the two rough explanation spaces discussed above (i.e. “it’s all in your head” vs. “real inter-dimensional travel”). This article will discuss a very odd phenomenon whose interpretations do indeed have different empirical predictions. We are talking about the experience of sensing what appears to be a superposition of inputs from multiple adjacent realities. We will call this effect the Psychedelic State of Input Superposition (PSIS for short).

There is no known way to induce PSIS on purpose. Unlike the reliable DMT hyper-dimensional journeys to distant dimensions, PSIS is a rare closer-to-home effect and it manifests only on high doses of LSD (and maybe other psychedelics). Rather than feeling like one is tuning into another dimension in the higher frequency spectrum, it feels as if one just accidentally altered (perhaps even broke) the interface between the self and the universe in a way that multiplies the number of realities you are interacting with. After the event, the interface seems to tune into multiple similar universes at once; one sees multiple possibilities unfold simultaneously. After a while, one somehow “collapses” into only one of these realities, and while coming down, one is thankful to have settled somewhere specific rather than remaining in that weird in-between. Let’s take a look at a couple of trip reports that feature this effect:

[Trip report of taking a high dose of LSD on an airplane]: So I had what you call “sonder”, a moment of clarity where I realized that I wasn’t the center of the universe, that everyone is just as important as me, everyone has loved ones, stories of lost love etc, they’re the main character in their own movies.

 

That’s when shit went quantum. All these stories begun sinking in to me. It was as if I was beginning to experience their stories simultaneously. And not just their stories, I began seeing the story of everyone I had ever met in my entire life flash before my eyes. And in this quantum experience, there was a voice that said something about Karma. The voice told me that the plane will crash and that I will be reborn again until the quota of my Karma is at -+0. So, for every ill deed I have done, I would have an ill deed committed to me. For every cheap T-shirt I purchased in my previous life, I would live the life of the poor Asian sweatshop worker sewing that T-shirt. For every hooker I fucked, I would live the life of a fucked hooker.

 

And it was as if thousands of versions of me was experiencing this moment. It is hard to explain, but in every situation where something could happen, both things happened and I experienced both timelines simultaneously. As I opened my eyes, I noticed how smoke was coming out of the top cabins in the plane. Luggage was falling out. I experienced the airplane crashing a thousand times, and I died and accepted death a thousand times, apologizing to the Karma God for my sins. There was a flash of the brightest white light imagineable and the thousand realities in which I died began fading off. Remaining was only one reality in which the crash didn’t happen. Where I was still sitting in the plane. I could still see the smoke coming out of the plane and as a air stewardess came walking by I asked her if everything was alright. She said “Yes, is everything alright with YOU?”.

 

— Reddit user I_DID_LSD_ON_A_PLANE, in r/BitcoinMarkets (why there? who knows).

Further down on the same thread, written by someone else:

[A couple hours after taking two strong hits of LSD]: Fast-forward to when I’m peaking hours later and I find myself removed from the timeline I’m in and am watching alternate timelines branch off every time someone does something specific. I see all of these parallel universes being created in real time, people’s actions or interactions marking a split where both realities exist. Dozens of timelines, at least, all happening at once. It was fucking wild to witness.

 

Then I realize that I don’t remember which timeline I originally came out of and I start to worry a bit. I start focusing, trying to remember where I stepped out of my particular universe, but I couldn’t figure it out. So, with the knowledge that I was probably wrong, I just picked one to go back into and stuck with it. It’s not like I would know what changed anyway, and I wasn’t going to just hang out here in the whatever-this-place-is outside of all of them.

 

Today I still sometimes feel like I left a life behind and jumped into a new timeline. I like it, I feel like I left a lot of baggage behind and there are a lot of regrets and insecurities I had before that trip that I don’t have anymore. It was in a different life, a different reality, so in this case the answer I found was that it’s okay to start over when you’re not happy with where you are in life.

 

— GatorAutomator

Let us summarize: Person X takes a lot of LSD. At some point during the trip (usually after feeling that “this trip is way too intense for me now”) X starts experiencing sensory input from what appear to be different branches of the multiverse. For example, imagine that person X can see a friend Y sitting on a couch in the corner. Suppose that Y is indecisive, and that as a result he makes different choices in different branches of the multiverse. If Y is deciding whether to stand up or not, X will suddenly see a shadowy figure of Y standing up while another shadowy figure of Y remains sitting. Let’s call them Y-sitting and Y-standing. If Y-standing then turns indecisive about whether to drink some water or go to the bathroom, X may see one shadowy figure of Y-standing getting water and a shadowy figure of Y-standing walking towards the bathroom, all the while Y-sitting is still on the couch. And so it goes. The number of times per second that Y splits and the duration of the perceived superposition of these splits may be a function of X’s state of consciousness, the substance and dose consumed, and the degree of indecision present in Y’s mind.

The two quotes provided are examples of this effect, and one can find a number of additional reports online with stark similarities. There are two issues at hand here. First, what is going on? And second, can we test it? We will discuss three hypotheses to explain what goes on during PSIS, propose an experiment to test the third one (the Quantum Hypothesis), and provide the results of such an experiment.

Hard-nosed scientists may want to skip to the “Experiment” section, since the following contains a fair amount of speculation (you have been warned).

Three Hypothesis for PSIS: Cognitive, Spiritual, Quantum

In order to arrive at an accurate model of the world, one needs to take into account both the prior probability of the hypothesis and the likelihoods that they predict that one would obtain the available evidence. Even if one prior of yours is extremely strong (e.g. a strong belief in materialism), it is still rational to update one’s probability estimates of alternative hypotheses when new relevant evidence is provided. The difficulty often comes from finding experiments where the various hypotheses generate very different likelihoods for one’s observations.  As we will see, the quantum hypothesis has this characteristic: it is the only one that would actually predict a positive result for the experiment.

The Cognitive Hypothesis

The first (and perhaps least surreal) hypothesis is that PSIS is “only in one’s mind”. When person X sees person Y both standing up and staying put, what may be happening is that X is receiving photons only from Y-standing and that Y-sitting is just a hallucination that X’s inner simulation of her environment failed to erase.

Psychedelics intensify one’s experience, and this is thought to be the result of control interruption. This means that inhibition of mental content by cortical feedback is attenuated. In the psychedelic state, sensory impressions, automatic reactions, feelings, thoughts and all other mental contents are more intense and longer-lived. This includes the predictions that you make about how your environment will evolve. Not only is one’s sensory input perceived as more intense, one’s imagined hypotheticals are also perceived more intensely.

Under normal circumstances, cortical inhibition makes our failed predictions quickly disappear. Psychedelic states of consciousness may be poor at inhibiting these predictions. In this account, X may be experiencing her brain’s past predictions of what Y could have done overlaid on top of the current input that she is receiving from her physical environment. In a sense, she may be experiencing all of the possible “next steps” that she simply intuited. While these simulations typically remain below the threshold of awareness (or just above it), on a psychedelic state they may reinforce themselves in unpredictable ways. X’s mind never traveled anywhere and there is nothing really weird going on. X is just experiencing the aftermath of a specific failure of information processing concerning the inhibition of past predictions.

Alternatively, very intense emotions such as those experienced on intense ego-killing psychedelic experiences may distort one’s perception so much that one begins to suspect that one is perhaps dead or in another dimension. We can posit that the belief that one is not properly connected to one’s brain (or that one is dying) can trigger even stronger emotions and unleash a cascade of further distortions. This positive feedback loop may create episodes of intense confusion and overlapping pieces of information, which later might be interpreted as “seeing splitting universes”.

The Spiritual Hypothesis

Many spiritual traditions postulate the existence of alternate dimensions, additional layers of reality, and hidden spirit pathways that connect all of reality. These traditions often provide rough maps of these realities and may claim that some people are able to travel to such far-out regions with mental training and consciousness technologies. For illustration, let’s consider Buddhist cosmology, which describes 31 planes of existence. Interestingly, one of the core ideas of this cosmology is that the major characteristic that distinguishes the planes of existence is the states of consciousness typical of their inhabitants. These states of consciousness are correlated with moral conditions such as the ethical quality of their past deeds (karma), their relationship with desire (e.g. whether it is compulsive, sustainable or indifferent) and their existential beliefs. In turn, a feature of this cosmology is that it allows inter-dimensional travel by changing one’s state of consciousness. The part of the universe one interacts with is a function of one’s karma, affinities and beliefs. So by changing these variables with meditation (or psychedelic medicine) one can also change which world we exist in.

An example of a very interesting location worth trying to travel to is the mythical city of Shambhala, the location of the Kalachakra Tantra. This city has allegedly turned into a pure land thanks to the fact that its king converted to Buddhism after meeting the Buddha. Pure lands are abodes populated by enlightened and quasi-enlightened beings whose purpose is to provide an optimal teaching environment for Buddhism. One can go to Shambhala by either reincarnating there (with good karma and the help of some pointers and directions at the time of death) or by traveling there directly during meditation. In order to do the latter, one needs to kindle one’s subtle energies so that they converge on one’s heart, while one is embracing the Bodhisattva ethic (focusing on reducing others’ suffering as a moral imperative). Shambhala may not be in a physical location accessible to humans. Rather, Buddhist accounts would seem to depict it as a collective reality built by people which manifests on another plane of existence (specifically somewhere between the 23rd and 27th layer). In order to create a place like that one needs to bring together many individuals in a state of consciousness that exhibits bliss, enlightenment and benevolence. A pure land has no reality of its own; its existence is the result of the states of consciousness of its inhabitants. Thus, the very reason why Shambhala can even exist as a place somewhere outside of us is because it is already a potential place that exists within us.

Similar accounts of a wider cosmological reality can be found elsewhere (such as Hinduism, Zoroastrianism, Theosophy, etc.). These accounts may be consistent with the sort of experiences having to do with astral travel and entity contact that people have while on DMT and other psychedelics in high doses. However, it seems a lot harder to explain PSIS with an ontology of this sort. While reality is indeed portrayed as immensely vaster than what science has shown so far, we do not really encounter claims of parallel realities that are identical to ours except that your friend decided to go to the bathroom rather than drink some water just now. In other words, while many spiritual ontologies are capable of accommodating DMT hyper-dimensional travel, I am not aware of any spiritual worldview that also claims that whenever two things can happen, they both do in alternate realities (or, more specifically, that this leads to reality splitting).

The only spiritual-sounding interpretation of PSIS I can think of is the idea that these experiences are the result of high-level entities such as guardians, angels or trickster djinns who used your LSD state to teach you a lesson in an unconventional way. The first quote (the one written by Reddit user I_DID_LSD_ON_A_PLANE) seems to point in this direction, where the so-called Karma God is apparently inducing a PSIS experience and using it to illustrate the idea that we are all one (i.e. Open Individualism). Furthermore, the experience viscerally portrays the way that this knowledge should impact our feelings of self-importance (by creating a profound feeling of sonder). This way, the tripper may develop a lasting need to work towards peace, wisdom and enlightenment for the benefit of all sentient beings.

Life as a learning experience is a common trope among spiritual worldviews. It is likely that the spiritual interpretations that emerge in a state of psychedelic depersonalization and derealization will depend on one’s pre-existing ideas of what is possible. The atonement of one’s sins, becoming aware of one’s karma, feeling our past lives, realizing emptiness, hearing a dire mystical warning, etc. are all ideas that already exist in human culture. In an attempt to make sense- any sense- of the kind of qualia experienced in high doses of psychedelics, our minds may be forced to instantiate grandiose delusions drawn from one’s reservoir of far-out ideas.

On a super intense psychedelic experience in which one’s self-models fail dramatically and one experiences fear of ego dissolution, interpreting what is happening as the result of the Karma God judging you and then giving you another chance at life can viscerally seem to make a lot of sense at the time.

The Quantum Hypothesis

For the sake of transparency I must say that we currently do not have a derivation of PSIS from first principles. In other words, we have not yet found a way to use the postulates of quantum mechanics to account for PSIS (that is, assuming that the cognitive and spiritual hypothesis are not the case). That said, there are indeed some things to be said here: While a theory is missing, we can at least talk about what a quantum mechanical account of PSIS would have to look like. I.e. we can at least make sense of some of the features that the theory would need to have to predict that people on LSD would be able to see the superposition of macroscopic branches of the multiverse.

Why would being on acid allow you to receive input from macroscopic environments that have already decohered? How could taking LSD possibly prevent the so-called collapse of the wavefunction? You might think: “well, why even think about it? It’s simply impossible because the collapse of the wavefunction is an axiom of quantum mechanics and we know it is true because some of the predictions made by quantum mechanics (such as QED) are in agreement with experimental data up to the 12th decimal point.” Before jumping to this conclusion, though, let us remember that there are several formulations of quantum mechanics. Both the Born rule (which determines the probability of seeing different outcomes from a given quantum measurement) and the collapse of the wavefunction (i.e. that any quantum state other than the one that was measured disappears) are indeed axiomatic for some formulations. But other formulations actually derive these features and don’t consider them fundamental. Here is Sean Carroll explaining the usual postulates that are used to teach quantum mechanics to undergraduate audiences:

The status of the Born Rule depends greatly on one’s preferred formulation of quantum mechanics. When we teach quantum mechanics to undergraduate physics majors, we generally give them a list of postulates that goes something like this:

  1. Quantum states are represented by wave functions, which are vectors in a mathematical space called Hilbert space.
  2. Wave functions evolve in time according to the Schrödinger equation.
  3. The act of measuring a quantum system returns a number, known as the eigenvalue of the quantity being measured.
  4. The probability of getting any particular eigenvalue is equal to the square of the amplitude for that eigenvalue.
  5. After the measurement is performed, the wave function “collapses” to a new state in which the wave function is localized precisely on the observed eigenvalue (as opposed to being in a superposition of many different possibilities).

In contrast, here is what you need to specify for the Everett (Multiple Worlds) formulation of quantum mechanics:

  1. Quantum states are represented by wave functions, which are vectors in a mathematical space called Hilbert space.
  2. Wave functions evolve in time according to the Schrödinger equation.

And that’s it. As you can see this formulation does not employ any collapse of the wavefunction, and neither does it consider the Born rule as a fundamental law. Instead, the wavefunction is thought to merely seem to collapse upon measurement (which is achieved by nearly diagonalizing its components along the basis of the measurement; strictly speaking, neighboring branches never truly stop interacting, but the relevance of their interaction approaches zero very quickly). Here the Born rule is derived from first principles rather than conceived as an axiom. How exactly one can derive the Born rule is a matter of controversy, however. Currently, two very promising theoretical approaches to do so are Quantum Darwinism and the so-called Epistemic Separability Principle (ESP for short, a technical physics term not to be confused with Extra Sensory Perception). Although these approaches to deriving the Born rule are considered serious contenders for a final explanation (and they are not mutually exclusive), they have been criticized for being somewhat circular. The physics community is far from having a consensus on whether these approaches truly succeed.

Is there any alternative to either axiomatizing or deriving the apparent collapse and the Born rule? Yes, there is an alternative: we can think of them as regularities contingent upon certain conditions that are always (or almost always) met in our sphere of experience, but that are not a universal fact about quantum mechanics. Macroscopic decoherence and Born rule probability assignments work very well in our everyday lives, but they may not hold universally. In particular -and this is a natural idea to have under any view that links consciousness and quantum mechanics- one could postulate that one’s state of consciousness influences the mind-body interaction in such a way that information from one’s quantum environment seeps into one’s mind in a different way.

Don’t get me wrong; I am aware that the Born rule has been experimentally verified with extreme precision. I only ask that you bear in mind that many scientific breakthroughs share a simple form: they question the constancy of certain physical properties. For example, Einstein’s theory of special relativity worked out the implications of the fact that the speed of light is observer-independent. In turn this makes the passage of time of external systems observer-dependent. Scientists had a hard time believing Einstein when he arrived at the conclusion that accelerating our frame of reference to extremely high velocities could dilate time. What was thought to be a constant (the passage of time throughout the universe) turned out to be an artifact of the fact that we rarely travel fast enough to notice any deviation from Newton’s laws of motion. In other words, our previous understanding was flawed because it assumed that certain observations did not break down in extreme conditions. Likewise, maybe we have been accidentally ignoring a whole set of physically relevant extreme conditions: altered states of consciousness. The apparent wavefunction collapse and the Born rule may be perfectly constant in our everyday frame of reference, and yet variable across the state-space of possible conscious experiences. If this were the case, we’d finally understand why it seems so hard to derive the Born rule from first principles: it’s impossible.

Succinctly, the Quantum Hypothesis is that psychedelic experiences modify the way one’s mind interacts with its quantum environment in such a way that the world does not appear to decohere any longer from one’s point of view. Our ignorance about the non-universality of the apparent collapse of the wavefunction is just a side effect of the fact that physicists do not usually perform experiments during intense life-changing entheogenic mind journeys. But for science, today we will.

Deriving PSIS with Quantum Mechanics

Here we present a rough (incomplete) sketch of what a possible derivation of PSIS from quantum mechanics might look like. To do so we need three background assumptions: First, conscious experiences must be macroscopic quantum coherent objects (i.e. ontologically unitary subsets of the universal wavefunction, akin to super-fluid helium or Bose–Einstein condensates, except at room temperature). Second, people’s decision-making process must somehow amplify low-level quantum randomness into macroscopic history bifurcations. And third, the properties of our quantum environment* are in part the result of the quantum state of our mind, which psychedelics can help modify. This third assumption brings into play the idea that if our mind is more coherent (e.g. is in a super-symmetrical state) it will select for wavefunctions in its environment that themselves are more coherent. In turn, the apparent lifespan of superpositions may be elongated long enough so that the quantum environment of one’s mind receives records from both Y-sitting and Y-standing as they are overlapping. Now, how credible are these three assumptions?

That events of experience are macroscopic quantum coherent objects is an explanation space usually perceived as pseudo-scientific, though a sizable number of extremely bright scientists and philosophers do entertain the idea very seriously. Contrary to popular belief, there are legitimate reasons to connect quantum computing and consciousness. The reasons for making this connection include the possibility of explaining the causal efficacy of consciousness, finding an answer to the palette problem with quantum fields and solving the phenomenal binding problem with quantum coherence and panpsychism.

The second assumption claims that people around you work as quantum Random Number Generators. That human decision-making amplifies low-level quantum randomness is thought to be likely by at least some scientists, though the time-scale on which this happens is still up for debate. The brain’s decision-making is chaotic, and over the span of seconds it may amplify quantum fluctuations into macroscopic differences. Thus, people around you making decisions may result in splitting universes (e.g. “[I] am watching alternate timelines branch off every time someone does something specific.” – GatorAutomator’s quote above). Presumably, this assumption would also imply that during PSIS not only people but also physics experiments would lead to apparent macroscopic superposition.

With regards to the third assumption: widespread microscopic decoherence is not, apparently, a necessary consequence of the postulates of quantum mechanics. Rather, it is a very specific outcome of (a) our universe’s Hamiltonian and (b) the starting conditions of our universe, i.e. Pre-Inflation/Eternal Inflation/Big Bang. (A Ney & D Albert, 2013). In principle, psychedelics may influence the part of the Hamiltonian that matters for the evolution of our mind’s wavefunction and its local interactions. In turn, this may modify the decoherence patterns of our consciousness with its local environment and- perhaps- ultimately the surrounding macroscopic world. Of course we do not know if this is possible, and I would have to agree that it is extremely far-fetched.

The overall picture that would emerge from these three assumptions would take the following form: both the mental content and raw phenomenal character of our states of consciousness are the result of the quantum micro-structure of our brains. By modifying this micro-structure, one is not only altering the selection pressures that give rise to fully formed experiences (i.e. quantum darwinism applied to the compositionality of quantum fields) but also altering the selection pressures that determine which parts of the universal wave-function we are entangled with (i.e. quantum darwinism applied to the interactions between coherent objects). Thus psychedelics may not only influence how our experience is shaped within, but also how it interacts with the quantum environment that surrounds it. Some mild psychedelic states (e.g. MDMA) may influence mostly the inner degrees of freedom of one’s mind, while other more intense states (e.g. DMT) may be the result of severe changes to the entanglement selection pressures and thus result in the apparent disconnection between one’s mind and one’s local environment. Here PSIS would be the result of decreasing the rate at which our mind decoheres (possibly by increasing the degree to which our mind is in a state of quantum confinement). In turn, by boosting one’s own inner degree of quantum superposition one may also broaden the degree of superposition acceptable at the interface with one’s quantum environment. One could now readily take in packets of information that have a wider degree of superposition. In the right circumstances, this may result in one’s mind experiencing information seemingly coming from alternate branches of the multiverse. In other words, the trick to PSIS both in the Quantum and the Spiritual Hypothesis is the same (though for different reasons): travel to other dimensions by being the change that you wish to see in the world. You need to increase your own degree of quantum coherence so that you become able of interacting with a more coherent quantum environment.

If this were the case it would call for a conceptual revolution. We would stop thinking of “our universe” as the “place we inhabit” and instead think of it as “the quantum environment our consciousness can interface with”. Perhaps life as we know it exists in a quantum niche that can give rise to embodied biological beings, but the universal wavefunction also contains alien state-spaces in which the patterns of entanglement work in different ways and lead to different evolutionary histories. Our minds evolved to interact with the particular environment that leads to the sustenance of our everyday macroscopic world. Our consciousness is shaped to fit in here, and it has a symbiotic relationship with the body that hosts it.

Now, how do we go about testing the quantum hypothesis? Following previous work on psychophysics for psychedelic research, the main idea will be to show that people on psychedelics can achieve something that sober individuals can’t. In this case, the task is designed to be impossible if one is only receiving input from one world (as predicted by the cognitive hypothesis). Only if PSIS is the result of simultaneously experiencing input from the several nearby branches that correspond to different outcomes of quantum events can the task be successfully performed.

The Experiment

Setup

The task in question involves three white little squares on a black background. At each time step (~16 milliseconds) the squares move one pixel down, and some number of pixels horizontally. While the downward movement is constant, the change in the horizontal direction is chosen randomly. The horizontal movement of one of the squares is being randomized on the fly with a Quantum Random Number Generator (qRNG**). We call this the quantum square. The horizontal movement of the other two squares follows a path that was determined at the beginning of each trial by a Classical Random Number Generator (cRNG***). We will refer to these two squares as the classical squares. The task for the participant is to identify which of the squares is the “odd one out” (i.e. the quantum square). Here is an infographic that explains the experimental setup:

infografic_of_experiment.png

In order to make the horizontal movement seem very chaotic and, at times even dramatic, it is randomized by choosing a horizontal change of either -4, -1, 1 or 4 pixels. By using a jump of 4 pixels (rather than e.g. 2) the squares sometimes seem to advance very quickly in one direction. The rationale for doing this was to make the predicted effect (assuming the Quantum Hypothesis) more noticeable – we want low probability paths that are extremely different than the typical path and in turn make it easy to distinguish between single paths and the superposition of many of the possible paths at once.

Critically, the starting position of the quantum square (whether left, center or right) for each of the trials during an experiment is obtained with a cRNG at the very beginning of the experiment. Why not use a qRNG? If we randomized the position of the quantum square using a qRNG we might be sabotaging ourselves: participants might see a superposition of classical and quantum squares on each of the three positions and thus not see any square behave differently than the other two. Thus, for the experiment to work (under the assumption that PSIS is explained by the Quantum Hypothesis) the only aspect that should be randomized using a qRNG is the horizontal displacement of the quantum square.

Since the numbers coming from the qRNG need to be requested over the internet, it is also crucial that we try to obtain fresh quantum random numbers as frequently as possible without messing up the flow of the experiment. Thus, a request for new quantum random numbers is made as often as possible (usually every 1 to 2 seconds). Since internet connections, server response time and network reliability varies from moment to moment, it is inevitable that once in a while we will have to stop the downward movement of all three squares as we wait for the next batch of random numbers. In principle this should have no negative effect at all in the ability to choose the odd-one-out. This problem merely interrupts the flow of the experiment, but it should not invalidate the results. We kept track of the number of trials that were interrupted for this reason (which you will find recorded in the “Network” column of the table of results down below).

Participants were instructed to:

  1. Clone the Github code for the experiment, and to open it up in a Chrome browser.
  2. Make sure that they have a reliable high-speed internet connection.
  3. Record the pertinent facts (time of experiment, substance, dose and time of intake).
  4. Use a sensorially-minimized room for the experiment (such as a closed bathroom), turn off the lights, ask anyone who is in the house to be quiet and mind their own business, and wear earplugs.
  5. Meditate for a couple of minutes before conducting the experiment and to try to induce PSIS voluntarily.
  6. Choose the odd-one-out (i.e. the quantum square) on each trial, for a total of at least 30 trials.

Under this setup, what should the participants expect to see if the Quantum Hypothesis is correct?

Predicted Psychedelic Perception

The pictures above illustrate how the experiment looks like to three different observers. On the left we see what a sober participant would see at a given time during a trial. The squares are moving downwards but since we are taking a snapshot in time they seem to be static. The image on the center shows what we would expect out of a generic psychedelic experience. In brief, the typical control interrupt action of psychedelics (i.e. tracers) effectively allows you to see more clearly the path that the squares have traced over time, but it would not allow you to notice any difference between the classic and quantum squares. The image on the right shows what we would expect to see if the Quantum Hypothesis is correct and PSIS is actually about perceiving nearby branches of the Everett multiverse. Notice how the center square is visibly different than the other two: it consists of the superposition of many alternative paths the square took in slightly different branches.

Implications of a Positive Result: Quantum Mind, Everett Rescue Missions and Psychedelic Cryptography

It is worth noting that if one can indeed reliably distinguish between the quantum and the classical squares, then this would have far-reaching implications. It would indeed confirm that our minds are macroscopic quantum coherent objects and that psychedelics influence their pattern of interactions with their surrounding quantum environment. It would also provide strong evidence in favor of the Everett interpretation of quantum mechanics (in which all possibilities are realized). More so, we would not only have a new perspective on the fundamental nature of the universe and the mind, but the discovery would just as well suggest some concrete applications. Looking far ahead, a positive outcome is that this knowledge would encourage research on the possible ways to achieve inter-dimensional travel, and in turn instantiate pan-Everettian rescue missions to reduce suffering elsewhere in the multiverse. The despair of confirming that the quantum multiverse is real might be evened out by the hope of finally being able to help sentient beings trapped in Darwinian environments in other branches of the universal wavefunction. Looking much closer to home, a positive result would lead to a breakthrough in psychedelic cryptography (PsyCrypto for short), where spies high on LSD would obtain the ability to read information that is secretly encoded in public light displays. More so, this particular kind of PsyCrypto would be impervious to discovery after the fact. Even if given an arbitrary amount of time and resources to analyze a video recording of the event, it would not be possible to determine which of the squares was being guided by quantum randomness. Unlike other PsyCrypto techniques, this one cannot be decoded by applying psychedelic replication software to video recordings of the transmission.

Results

Three persons participated in the experiments: S (self), A, and B. [A and B are anonymous volunteers; for more information read the legal disclaimer at the end of this article]. Participant S (me) tried the experiment both sober and after drinking 2 beers. Participant A tried the experiment sober, on LSD, 2C-B and a combination of the two. And participant B tried the experiment both sober and on DMT. The total number of trials recorded for each of the conditions is: 90 for the sober state, 275 for 2C-B, 60 for DMT, 120 for LSD and 130 for the LSD/2C-B combo. The overall summary of the results is: chance level performance outcomes for all conditions. You can find the breakdown of results for all experiments in the table shown below, and you can download the raw csv file from the Github repository.

results_to_show
Columns from left to right: Date, State (of consciousness), Dose(s), T (time), #Trials (number of trials), Correct (number of trials in which the participant made the correct choice), Percent correct (100*Correct/Trials), Participants (S=Self, A/B=anonymous volunteers), Requests / Second (server requests per second), Network (this tracks the number of times that a trial was temporarily paused while the browser was waiting for the next batch of quantum random numbers), Notes (by default the squares left a dim trail behind them and this was removed in two trials; by default the squares were 10×10 pixels in size, but a smaller size was used in some trials).

I thought about visualizing the results in a cool graph at first, but after I received them I realized that it would be pointless. Not a single experiment reached a statistically significant deviation from chance level; who is interested in seeing a bunch of bars representing chance-level outcomes? Null results are always boring to visualize.****

In addition to the overall performance in the task, I also wanted to hear the following qualitative assessment from the participants: did they notice any difference between the three squares? Was there any feeling that one of them was behaving differently than the other two? This is what they responded when I asked them: “I could never see any difference between the squares, so it felt like I was making random choices” (from A) and “DMT made the screen look like a hyper-dimensional tunnel and I felt like strange entities were watching over me as I was doing the experiment, and even though the color of the squares would fluctuate randomly, I never noticed a single square behaving differently than the other two. All three seemed unique. I did feel that the squares were being controlled by some entity, as if with an agency of their own, but I figured that was made up by my mind.” When I asked them if they noticed anything similar to the image labeled Psychedelic view as predicted by the Quantum Hypothesis (as shown above) they both said “no”.

Discussion

It is noteworthy that neither participant reported an experience of PSIS during the experiments. Even without an explicit and noticeable input superposition, PSIS may turn out to be a continuum rather than a discrete either-or phenomenon. If so, we might still expect to see some deviations from chance. This may be analogous to how in blindsight people report not being able to see anything and yet perform better than chance in visual recognition tasks. That said, the effect size of blindsight and other psychological effects in which information is processed unbeknownst to the participant tend to be very small. Thus, in order to confirm that quantum PSIS is happening below the threshold of awareness we may require a much larger number of samples (though still a lot smaller than what we would need if we were aiming to use the experiment to conduct Psi research with or without psychedelics, again, due to the extremely small effect sizes).

Why did the experiment fail? The first possibility is that it could be that the Quantum Hypothesis is simply wrong (and possibly because it requires false assumptions to work). Second, perhaps we were simply unlucky that PSIS was not triggered during the experiments; perhaps the set, setting, and dosages used simply failed to produce the desired effect (even if the state does indeed exist out there). And third, the experiment itself may be wrong: the second-long delays between the server requests and the qRNG may be too large to produce the effect. In the current implementation (and taking into account network delays), the average delay between the moment the quantum measurement was conducted and the moment it appeared on the computer screen as horizontal movement was .9 seconds (usually in the range of .4 to 1.4 seconds, given an average of 1/2 second lag due to the number buffering and 400 milliseconds in network time). This problem would be easily sidestepped if we used an on-site qRNG obtained from hardware directly connected to the computer (as is common in psi research). To minimize the delay even further, the outcomes of the quantum measurements could be delivered directly to your brain via neuroimplants.

Conclusion

If psychedelic experiences do make you interact with other realities, I would like to know about it with a high degree of certainty. The present study was admittedly a very long shot. But to my judgement, it was totally worth it. As Bayesians, we reasoned that since the Quantum Hypothesis can lead to a positive result for the experiment but the Cognitive Hypothesis can’t, then a positive result should make us update our probabilities of the Quantum Hypothesis a great deal. A negative result should make us update our probabilities in the opposite direction. That said, the probability should still not go to zero since the negative result could still be accounted for by the fact that participants failed to experience PSIS, and/or that the delay between the quantum measurement and the moment it influences the movement of the square in the screen is too large. Future studies should try to minimize these two possible sources of failure. First, by researching methods to reliably induce PSIS. And second, by minimizing the delay between branching and sensory input.

In the meantime, we can at least tentatively conclude that something along the lines of the Cognitive Hypothesis is the most likely case. In this light, PSIS turns out to be the result of a failure to inhibit predictions. Despite losing their status as suspected inter-dimensional portal technology, psychedelics still remain a crucial tool for qualia research. They can help us map out the state-space of possible experiences, allow us to identify the computational properties of consciousness, and maybe even allow us to reverse engineer the fundamental nature of valence.


[Legal Disclaimer]: Both participants A and B contacted me some time ago, soon after the Qualia Computing article How to Secretly Communicate with People on LSD made it to the front page of Hacker News and was linked by SlateStarCodex. They are both experienced users of psychedelics who take them about once a month. They expressed their interest in performing the psychophysics experiments I designed, and to do so while under the influence of psychedelic drugs. I do not know these individuals personally (nor do I know their real names, locations or even their genders). I have never encouraged these individuals to take psychedelic substances and I never gave them any compensation for their participation in the experiment. They told me that they take psychedelics regularly no matter what, and that my experiments would not be the primary reason for taking them. I never asked them to take any particular substance, either. They just said “I will take substance X on day Y, can I have some experiment for that?” I have no way of knowing (1) if the substances they claim they take are actually what they think they are, (2) whether the dosages are accurately measured, and (3) whether the data they provided is accurate and isn’t manipulated. That said, they did explain that they have tested their materials with chemical reagents, and are experienced enough to tell the difference between similar substances. Since there is no way to verify these claims without compromising their anonymity, please take the data with a grain of salt.

* In this case, the immediate environment would actually refer to the quantum degrees of freedom surrounding our consciousness within our brain, not the macroscopic exterior vicinity such as the chair we are sitting on or the friends we are hanging out with. In this picture, our interaction with that vicinity is actually mediated by many layers of indirection.

** The experiment used the Australian National University Quantum Random Numbers Server. By calling their API every 1 to 2 seconds we obtain truly random numbers that feed the x-displacement of the quantum square. This is an inexpensive and readily-available way to magnify decoherence events into macroscopic splitting histories in the comfort of your own home.

*** In this case, Javascript’s Math.random() function. Unfortunately the RGN algorithm varies from browser to browser. It may be worthwhile to go for a browser-independent implementation in the future to guarantee a uniform high quality source of classical randomness.

**** As calculated with a single tailed binomial test with null probability equal to 1/3. The threshold of statistical significance at the p < 0.05 level is found at 15/30 and for p < 0.001 we need at least 19/30 correct responses. The best score that any participant managed to obtain was 14/30.

Algorithmic Reduction of Psychedelic States

Only when sexual choice favored the reportability of our subjective experiences- with the emergence of the mental clearing-house we call consciousness- did our strangely promiscuous introspection abilities emerge, such that we seem to have instant conscious access to such a range of impressions, ideas, and feelings. This may explain why philosophical writing about consciousness so often sounds like love poetry- philosophers of mind, like lovesick teenagers, dwell upon the redness of the rose, the emotional urgency of music, the soft warmth of skin, and the existential loneliness of the self. The philosophers wonder why such subjective experiences exist, given that they seem irrelevant to our survival prospects, while the lovesick teenagers know perfectly well that their romantic success depends, in part, on making a credible show of aesthetic sensitivity to their own conscious pleasures.

The Mating Mind: How Sexual Choice Shaped the Evolution of Human Nature (pg. 365) by Geoffrey F. Miller

A Darwinian Set and Setting

According to The Mating Mind, human sexual selection favors particular fitness-indicating traits, both physical and mental. In the context of mental traits, we have verbal and introspective abilities, agreeableness, conscientiousness, openness to experience, low neuroticism and extroversion. No matter how verbally capable and introspective a given person is, unless that is balanced with some degree of agreeableness, conscientiousness, etc. the person will not be all that attractive. But, when all else is being held equal, stronger verbal and introspective abilities are favored. Teenagers, arguably, know this best of all: courtship is intensely verbal.

Our minds evolved in a Darwinian environment. If people like Miller are right in thinking that language evolved as a fitness indicator, we are right to expect that the way we think and verbalize is biased to be impressive to the members of the opposite sex during courtship. Powerful introspective abilities, as it were, can make one’s language seem deeper, more romantic, and even at an entirely different level than that of one’s peers. In this backdrop of sexual choices and judgements, it is not surprising that humans would develop ever-increasing verbal and introspective capacities. At some point everyday life could not present sufficient opportunities for people, especially males, to show off their own abilities. And as these abilities increased over time, culture was forced to invent handicaps so that people could display their top capabilities. Over time, elaborate and competitive handicaps were integrated into the culture. Even verbal and introspective abilities at the top of the scale can still be compared side by side by using carefully selected handicaps: for example, poetry is exactly that; rhyme, rhythm and meter make it easier for the best poets to show off their excellent abilities. The handicaps adjust to the maximum level of competence in the population.

The space of handicaps that are used to show off traits that are reliable indicators of fitness is very large. From Greek Symposiums to modern day Frat Parties, Western civilization has embraced a niche subculture that uses chemical handicaps as a means to display verbal, social and creative skills. If you can philosophize after drinking a gallon of wine, or stay capable of managing the playlist after 16 cheap cans of beer, you are showing off your biological robustness. Clearly, many of our ancestors were capable of impressing potential sexual mates with a mixture of booze, loud music and stunning philosophical conversations.

One could argue that psychedelics have come to disrupt our traditional games of handicaps. “Sure you can drink a bottle of tequila and sing in a band, but can you take three hits of acid and tell me what your experience reveals about the intrinsic nature of consciousness?” Psychedelics are, in a way, a cultural hyper-stimulus that presents the most difficult and interesting handicap currently in existence for verbal and introspective abilities.

Cultures can have an allergic reaction to the states of consciousness that these agents can disclose; people are afraid that psychedelic users will discover something that they themselves don’t know. Notably, psychedelicists have been both demonized and deified since the 60s. Sure, these researchers became extremely open minded, and in many ways weird. But, above all, they became extremely interesting people. And interesting people who challenge the current games of status can cause cultural allergic reactions.

Every acid head and psychedelic researcher has a pet theory of what these compounds are really doing in one’s mind. Many of these folk theories about the effects of psychedelics involve ontologies that currently have little scientific support (such as souls, thought fields, spirit worlds, archetypes, alien conspiracies, and so on). Although we cannot rule out explanations of this sort out of hand, the ontologies themselves are so abstract and poorly defined that we cannot accept them as useful forms of reductions. That said, their future versions will be more interesting. It is likely that committed, rational, spiritual psychedelic users will formalize models of this sort at some point. Rather than talking about a “spirit world,” they will talk about “mind-independent extra-dimensional space that consciousness can access in altered states” and then go on to define the differential equations that govern consciousness’s interactions with this space. When this happens, we will be in a much better position to assess the validity of these models, test the reality of those spaces, and perhaps even recruit the extra-dimensional inhabitants of these worlds for computational tasks.

Psychedelic experiences drastically increase people’s introspection, capacity for deep aesthetic appreciation, while at the same time increasing their ability to entertain unusual ideas. Insofar as the selection pressures of our introspective abilities have been heavily biased towards courtship ability, it is not surprising that people tend to immediately cast self-enhancing, life-affirming and magical narratives into their interpretations of their personal psychedelic experiences. After all, having a very interesting story to tell is highly praised during courtship. Are people’s psychedelic narratives a modern day form of the peacock’s tail? While psychedelic talk does not yet form part of any mainstream game of courtship, I envision this changing in the next decades. Undoubtedly, the most insightful, sound, and scientifically rigorous members of the Super-Shulgin Academy will attract attention, status, resources and… desirable mates.

What is the deep structure of psychedelic experiences?

Psychedelics seem to have a generalized effect on one’s consciousness. At minimum, we could talk of experience amplification. Without delving into specifics, psychedelics introduce spontaneous activity into our consciousness that our mind is compelled to integrate somehow. Our state of consciousness changes dynamically as our mind adjusts itself to the incoming stimulation. The result is tightly dependent on the interplay between our brain anatomy, motivational system and the actual changes to the micro-structure of consciousness induced by LSD.

As John Lilly noted in light of his psychedelic experiences: “in the province of the mind, what one believes to be true is true or becomes true, within certain limits to be found experientially and experimentally. These limits are further beliefs to be transcended. In the mind, there are no limits…”.* While there are reasons not to take this literally, we have grounds for claiming that a large number of limits on our experience are placed there by our deeply held beliefs and attitudes. The space of possible LSD experiences that a single individual can experience is much larger than what said individual will typically be able to explore in practice. Many limits are imposed by his or her beliefs and background assumptions, rather than by physiology per se. Social cognition is a profound attractor in psychedelic experiences. “What will I say about this? What would this person think about this experience? etc.” are captivating thoughts. However, they occupy valuable mental space. And the thick mental judgements that people naturally focus on come with large conceptual and emotional baggage that taints the experience. Meditators, philosophers and scientists are more likely to set aside some time during their explorations to delve more deeply into what the energy introduced by LSD can produce in one’s consciousness.

After extreme training and tens (or hundreds) of trips, dedicated psychonauts will discover qualities that all of the trips share. Most people will likely experience a variant of Lilly’s realization that whatever you believe can be perceived as true during psychedelic experiences. Lilly emphasized the limitless quality of the mind, but one must wonder: If one can experience as true anything conceivable, are we not, then, limited by what we can conceive? No matter how much time one spends with an open mind waiting for new and interesting ideas to take shape, one cannot know the nature of what one has not yet even conceived of.

It may be true that we will always find fundamental limits that cannot be overcome. There are fundamental physiological constraints to the possible configurations of our consciousness, and arguably, chemical agents, while capable of expanding the space of possibilities, will not automatically give access to all possible states of consciousness. As future research is likely to show, 2C-B and LSD probably facilitate slightly different kinds of thoughts and experiences. Thus the limits of our mind are at least to a large extent the result of our physiology. Memes and meditation can only go so far.

In addition to physiological limits, the structure of the state-space of qualia is itself a constraint on what can and cannot be experienced. To the extent that psychedelic states enable the exploration of a larger space of possible experiences, we are more likely while on psychedelics to find states of consciousness that demonstrate fundamental limits imposed by the structure of the state-space of qualia. In normal everyday experience we can see that yellow and blue cannot be mixed (phenomenologically), while yellow and red can (and thus deliver orange). This being a constraint of the state-space of qualia itself is not at all evident, but it is a good candidate and many introspective individuals agree. On psychedelic states one can detect many other rules like that, except that they operate on much higher-dimensional and synesthetic spaces (E.g. “Some feelings of roughness and tinges of triangle orange can mix well, while some spiky mongrels and blue halos simply won’t touch no matter how much I try.” – 150 micrograms of LSD).

One of the objectives of Qualia Computing is to define the state space of possible experiences and the interdependencies between them. While normal everyday states of consciousness are important datapoints, I predict that the bulk of the most useful information will come from studying the behavior and mechanics of consciousness in radically altered states. To this end, however, we should focus on simple explanations that can be generalized to all psychedelic experiences.

Starting Background Assumptions

For the purpose of this article I will assume that direct realism, in all of its guises, is wrong. That is, I will assume that any mind-independent object can only be experienced indirectly. What we experience is not the object (or beings) themselves, but a qualia-furnished representation entirely contained within one’s mind (this is often called the simulationist account of perception). Furthermore, I will also assume that the behavior of  the universe can be fully described with the Standard Model of physics (or a future version of it).

In what is to follow I will propose, as a first approximation, an algorithmic reduction of psychedelic states; I will propose a set of changes in our consciousness that (1) is as simple and assumption-free as possible, and (2) can be used to reconstruct as many psychedelic effects as possible.

Two Kinds of Reduction

The word reduction in the context of philosophy of science has a lot of historical and conceptual baggage. In the context of this article, I will use the word in the following sense: We say that a property of a given phenomenon X reduces to Y if we can fully explain X’s property by referencing Y’s properties. X can be a physical phenomenon, a mathematical construct or even an experience. Y is an ontology with interaction rules, which allow the pieces of said ontology to interact with one another. We do not commit to the idea that Y itself needs to be the fundamental (or true) ontology of X. But we do want to make sure that Y is at least more fundamental than X in some appropriate sense. So what kind of ontologies can Y have? In the context of philosophy of mind, reductions usually attempt to account for not only the behavior of consciousness but also for its underlying nature. Thus, functionalism is both a reduction program as well as a philosophical take on what the mind fundamentally is.

Thankfully, we do not need to commit to any ontology in order to advance a particular style of reduction. Reductions are useful regardless: they reduce the amount of information needed to describe a phenomenon, and if accurate, they can also make useful predictions. Finally, these reductions can provide hints for how to bridge different areas of science; by identifying isomorphisms or even further reductions, entire fields can cross-pollinate once their respective reductions are compatible (such as biology and chemistry or chemistry and physics).

Atomistic Reduction

For most intents and purposes, science relies on a particular kind of reduction that we can call atomistic reduction. This style of reduction focuses on explaining macroscopic phenomena by modeling it as the emergent structure of many particles interacting with one another at a much finer level of resolution. Even though this style of reduction is usually fruitful (e.g. thermodynamics), it can be counter-productive to assume in some situations. An extreme case would be the quantum computer. If states of superposition help a computer find an answer, it will be hard to explain the behavior of said superposition by postulating that it actually reduces to little particles interacting using simple rules. The model could in principle be worked out, but at the cost of very high complexity. It would be much easier to start with a quantum-mechanical ontology that allows the superposition of wavefunctions! Then what is left is to reduce the rest of the computer to quantum mechanics (which is possible, given that particle models and quantum mechanical models usually converge at the macroscopic limit).

It is tempting to try to reduce the properties of the mind (including psychedelic states) using an atomistic reduction. Unfortunately, the phenomenal binding problem adds a complication to this reduction. Rather than discussing (right now) whether an atomistic (and thus classical) account will ultimately be capable of modeling conscious experience, we will side-step this problem by using a different style of reduction. We will focus only on the algorithmic level of analysis.

Algorithmic Reduction

Without assuming a fundamental ontology (atoms, fields, wavefunctions, etc.) we can still make a lot of progress. We can restrict ourselves to identifying what we call an algorithmic reduction: find a set of procedures, state-spaces, shapes and overall main effects out of which you can reconstruct as much of the observed behavior as possible.

In reality, every reduction is, at least in part, an algorithmic reduction. By specifying a particular ontology such as “particles”, we restrict the shape of our possible reductions. By keeping the reduction at the algorithmic level, we allow arbitrary ontologies to be the final explanations (then depending on actual empirical measurements). The main criteria for success still includes (1) the overall complexity of the model, and (2) the explanatory power of the model. In other words, how easily and precisely does the model reconstruct the behavior of our experiences?

A Zoo of Psychedelic Effects

PsychonautWiki has a detailed and fascinating taxonomy of reported psychedelic visual effects. One could argue that all of these countless effects are completely unique. As a philosopher might put it, these effects may ultimately be qualitatively irreducible to one another. But what are the chances that a simple molecule would happen to trigger a whole zoo of unrelated effects? As a form of reduction, nothing is achieved by stating that every effect is its own unique phenomenon.

Four Principal Operators: A Simple Algorithmic Model of Psychedelic States

In trying to account for the strange effects of psychedelics, we will aim to propose as few main effects as possible and then use these effects, and their interactions, to derive all of the remaining effects. By doing this, we will be algorithmically reducing the complex phenomena found in psychedelic states. In turn, this will allow us to increase our understanding of the source of information processing benefits provided by psychedelic states, and to derive new and exciting applications of such states. Additionally, by identifying a good algorithmic reduction, we might be able to refine the states themselves, to amplify their benefits while minimizing the drawbacks.

The model we will treat for now has four main effects, and with those four effects we will attempt to reconstruct the rest. These effects are:

  1. control interruption
  2. drifting
  3. eidetic hallucinations/enhanced pattern recognition/apophenia
  4. symmetry detection/symmetry propagation

 

Symmetric_pattern_drifting

Symmetric drifting. What would Giulio Tononi think about this? Source.

Control interruption is the simplest and most universal psychedelic effect. It enables the buildup of qualia in one’s consciousness. People say that psychedelics are intense, deep, bright, etc. Every experience, whether a thought, a smell or an emotion, seems to be both stronger and longer-lasting on psychedelics.

Things seem more lively, and this is not because a switch is suddenly turned on and your experience of the current input is amplified. Rather, one seems to be experiencing a gentle overlap of many previous frames (and feature bundles) of one’s experience. In medium to high doses, this can give rise to solid frame stacking. In turn, the buildup of sensation creates complex patterns of interference:

In order for a perceptual system to transition from a linear to a nonlinear state, negative feedback control must be subverted. If control is entirely removed then perception becomes totally unconstrained, leaving a system that is quickly overloaded with too much information. If control is placed in a state where it is partially removed or in a toggled superposition where it is alternately in control and not in control over the period of a rapid oscillation, then the constraints of linear sensory throughput will bifurcate into a nonlinear spectrum of multi-stable output with signal complexity correlating to the functional interruption of control. Common entheogenic wisdom states that you must relinquish control and submit to the experience to get the most out of psychedelics. Holding onto control causes negative experiences and amplifies anxiety; letting go of control and embracing unconstrained perception is a central psychedelic tenet. This demonstrates that psychedelics directly subvert feedback control over linear perception to promote states of unconstrained consciousness.

– Control Interrupt Model of Psychedelic Action, PIT

Control interruption explains a large variety of effects, including the increase in the raw intensity (and amount) of experience, as well as the longer lasting positive afterimages (and thus tracers). Here we show a simple example of this effect. Consider the “original stimuli” to be what one experiences under a sober state. Likewise, consider the 9 squares to be different states of consciousness brought up by various psychotropic combinations.

oscillation_1_5_5_75_5_1_10_0.05_signal_

Original

The 9 gifs you see above are simulations of control interruption using a simple feedback model (which we will describe in detail in a later article). The x-axis has different “echo strengths” while the y-axis has varying feedback strengths. These are two of the model parameters. Notice that the lower right corner is a credible rendition of something that people describe as moments of eternity. These are experiences where time seems to stop due to an over-saturation of regular and ordered qualia.

When considering the following effects, don’t forget that control interruption is also going on all the time. The stranger the psychedelic effect, the more intense it is.

Drifting is responsible for breathing walls, animated plants, feelings of boundary dissolution, merging and melting, and so on. Small amounts of drifting usually involve individual feature detachments from perceptual objects (such as the color and shape of a chair becoming dissociated). Medium amounts of drifting make textures flow constantly. If one’s experience was made of tiny magnetic gears that are usually aligned in a coherent way, drifting would result from increasing the overall energy of the system. Thus, the visual system is constantly descending to “more aligned local states” while incoming energy is constantly adding noise and destroying all of the alignment progress made.

White_Wolf_Drinking_Water_by_Anonymous

Source: PsychonautWiki, Anonymous

A particularly salient aspect of drifting is that features and locally-bound fragments of experience can drift in any direction in 3D. Pieces of the wall don’t only drift left and right, but also forwards and backwards.

On high doses of psychedelics or synergistic combinations of dissociatives and psychedelics (e.g. LSD + nitrous, 2C-B + ketamine, etc.), drifting can become all-encompassing. A critical point is crossed when one loses the capacity to define a mainframe of experience (the dominating orientation-giving island of locally bound experience that we use as a reference point). When this happens, one feels like one cannot tell left from right, or up from down. One simply experiences a constant chaotic flow of experience. In some cases one can even spot interesting instabilities that resemble actual physical instabilities found in fluid mechanics (such as the Kelvin–Helmholtz instability).

Drifting does not occur in isolation, and its mechanics are dependent on the particular set and setting in which the psychedelic experience is developing. From a computational point of view, drifting can be useful because it allows a quick exploration of the state-space of possible local binding configurations between the phenomenal objects present in one’s experience. Indeed, not only does red fail to mix with green, but many of the synesthetic qualia varieties present in a scene with constant drifting will refuse to touch each other. Drifting feels like there is some sort of psychedelic energy (somewhat reminiscent of anxiety, but not restricted to body feelings) that overheats certain parts of one’s conscious experience, and in turn disassembles the local connections there.

Enhanced Pattern Recognition: This effect refers to the transient (but often powerful) lowering of the detection threshold for previously experienced patterns and known ontologies (e.g. animals, plants, people, etc.). Psychedelics, in other words, temporarily increase one’s degree of apophenia. Another name given to this effect is eidetic hallucinations. From a Bayesian point of view, the effect could be described thus: psychedelics intensify the effect of our priors. As explained in Getting Closer to Digital LSD, Google’s deep belief neural network inceptionist technique works by finding bundles of features that trigger high-level neurons (such as face-detectors, object-detectors, etc) at sub-threshold levels (e.g. “this almost looks like a frog”) and then modifying the picture so that the network more strongly detects those same high level features. This particular algorithm can be understood in terms of the pharmacological action of psychedelics: one can have breakthroughs of eidetic hallucinations by impairing the inhibitory control coming from the cortex.

In a sense we could say that while tracers are the result of “simple cell control interruption”, eidetic hallucinations are the result of “complex cell control interruption.” The former allows the build-up of colors, edges and simple shapes, while the latter amplifies the features that trigger high-level percepts such as faces and objects.

The_Forest_Has_Eyes

Enhanced Pattern Recognition / Eidetic Hallucinations / Visial Apophenia

The way one directs attention during a psychedelic trip influences the way eidetic hallucinations evolve over time. For this reason any psychedelic replication movie will probably require human input (in the form of eye-tracking) in order to incorporate human saliency preferences and interests into an evolving virtual psychedelic trip simulated with the Inceptionist Method.

Lower Symmetry Detection and Propagation Thresholds: Finally, this is perhaps the most interesting and scientifically salient effect of psychedelics. The first three effects are not particularly difficult to square with standard neuroscience. This fourth effect, while not incompatible with connectionist accounts, does suggest a series of research questions that may hint at an entirely new paradigm for understanding consciousness.

I have not seen anyone in the literature specifically identify this effect in all of its generality. The lowering of the symmetry detection threshold really has to be experienced to be believed. I claim that this effect manifests in all psychedelic experiences to a greater or lesser extent, and that many effects can in fact be explained by simply applying this effect iteratively.

Psychedelics make it easier to find similarities between any two given phenomenal objects. When applied to perception, this effect can be described as a lowering of the symmetry detection threshold. This effect is extremely general and symmetry should not be taken to exclusively refer to geometric symmetry.

How symmetries manifest depends on the set and setting. Researchers interested in verifying and exploring the quantitative and subjective properties of this effect will probably have to focus first on a narrow domain; the effect happens in all experiential modalities.

For now, let us focus on the case of visual experience. In this domain, the effect is what PsychonautWiki calls Symmetrical Texture Repetition:

Grass_on_2cb_by_inifinity

Credit: Chelsea Morgan from PsychonautWiki and r/replications

Symmetry detection can be (and typically is) recursively applied to previously detected symmetry bundles. A given symmetry bundle is a set of n-dimensional symmetry planes (lines, hyperplanes, etc.) for which the qualities of the experience surrounding this bundle obey the symmetry constraints imposed by these planes. The planes can create mirror, rotational or oblique symmetry. Each symmetry bundle is capable of establishing a merging relationship with another symmetry bundle. These relationships are fleeting, but they influence the evolution of the relative position of each plane of symmetry. When x symmetry planes are in a merging relationship, one’s mind tries to re-arrange them (often using drifting) to create a symmetrical arrangement of these x symmetry planes. To do so, the mind detects one (or several) more symmetry planes, along which the previously-existing symmetry planes are made to conform, to organize in a symmetrical way (mirror, rotational, translational or otherwise). There is an irresistible subjective pull towards those higher levels of symmetry. The direction of highest symmetry and meta-symmetry feels blissful, interesting, mind-expanding, and awe-producing.

If one meditates in a sensorially-minimized room during a psychedelic experience while being aware that one’s symmetry detection threshold has been lowered by the substance, one can recursively re-apply this effect to produce all kinds of complex mathematical structures in one’s mind.

In the future, perhaps at a Super-Shulgin Academy, people will explore and compare the various states of consciousness that exhibit peak symmetry. These states would be the result of iteratively applying symmetry detection, amplification and re-arrangement. We would see fractals, tessellations, graphs and higher dimensional projections. Which one of these experiences contains the highest degree of inter-connectivity? And if psychedelic symmetry is somehow related to conscious bliss, which experience of symmetry is human peak bliss?

The pictures above all illustrate possible peak symmetry states one can achieve by combining psychedelics and meditation. The pictures illustrate only the core structure of symmetries that are present in these states of consciousness. What is being reflected is the very raw “feels” of each patch of your experiential field. Thus these pictures really miss the actual raw feelings of the whole experience. They do show, however, a rough outline of symmetrical relationships possible in one of these experiences.

Since control interruption is also co-occurrent with the psychedelic symmetry effect, previously-detected symmetries tend to linger for long periods of time. For this reason, the kinds of symmetries one can detect at a given point in time is a function of the symmetries that are currently being highlighted. And thanks to drifting and pattern recognition enhancement, there is some wiggle room for your mind to re-arrange the location of the symmetries experienced. The four effects together enable, at times, a smooth iterative integration of so many symmetries that one’s consciousness becomes symmetrically interconnected to an unbelievable degree.

What may innocently start as a simple two-sided mirror symmetry can end up producing complex arrangements of self-reflecting mirrors showing glimpses of higher and higher dimensional symmetries. Studying the mathematical properties of the allowed symmetries is a research project that has only just begun. I hope one day dedicated mathematicians describe in full the class of possible high-order symmetries that humans can experience in these states.

Anecdotally, each of the 17 possible wallpaper symmetry groups can be instantiated with this effect. In other words, psychedelic states lower the symmetry detection threshold for all of the mathematically available symmetrical tessellations.

wade_symmetry_best_blank_2

All of the 17 2-dimensional wallpaper groups can be experienced with symmetry planes detected, amplified and re-arranged during a psychedelic experience.

Revising the symmetrical texture repetition of grass shown above, we can now discover that the picture displays the wallpaper symmetry found in the lower left circle above:

grass_symmetries

In very high doses, the symmetry completion is so strong that at any point one risks confusing left and right, and thus losing grasp of one’s orientation in space and time. Depersonalization is, at times, the result of the information that is lost when there is intense symmetry completion going on. One’s self-models become symmetrical too quickly, and one finds it hard to articulate a grounded point of view.

The Micro-Structure of Consciousness

At Qualia Computing we explore models of consciousness that acknowledge the micro-structure of consciousness. Experiences are not just higher-order mental operations applied to propositional content. Rather, an instant of experience contains numerous low-level textural properties. This is true for every sensory modality, and I would argue, even for the what-its-likeness of thought itself. Even just thinking about a mathematical idea (ex. “the intersection of two arbitrary sets”) is done by interacting with a background of raw feels, and these raw feels determine our attitudes and interactions with the ideas we are trying to abstract (some people, for example, experience emotional distress when trying out mathematical problems, and this is not because certain mathematical spaces are inherently unpleasant or anxiety-inducing).

In the case of vision, the micro-structure of consciousness is capable of supporting at least the following low-level features: color, color gradients, points, edges, oriented movement, and acceleration. A full conversation about the range of visual features that we are capable of experiencing is a discussion for another time. But for the time being, it will suffice to point out that (static) models of peripheral vision only need 5 summary statistics. With only five summary stats you can create textures that a human will find impossible to distinguish in peripheral vision.

These so-called mongrels are textural metamers (equivalence classes of subjectively indistinguishable input patterns). The state-space of perceivable visual textures is the space of possible mongrels, and that is an example of the sort of micro-structure we are looking for. Unlike the cozy high-definition space inscribed in the fovea, most of the information found in our sensory modalities comes in the form of textures that are mappable to state-spaces of summary statistics.

NYCsubwayMap.002

Psychedelic symmetry detection and amplification operates on the inner structure of mongrels. The fact that the mongrels are the objects becoming symmetric is something that can elude introspection until someone points it out. It happens right in front of any tripper’s eyes and yet people don’t seem to report it very often (if at all). This may be a result of the fact that the fine-grained structure of consciousness is rarely a topic of conversation, and that we usually describe what we see in the fovea (unless we have no other option). Our words usually refer to whole percepts or, at best, the simplest raw values of experience (such as the hue of colors or the presence of edges). And yet, the structure of our mongrels is quite obvious once symmetry propagation has conformed a large patch of your experience to have a tessellated identical mongrel repeating across it.

VzZjR.jpg

How Are these Components Related to Each Other?

The Kaleidoscopic technique to induce qualia annealing relies on a combination of drifting and symmetry detection in order to resolve implicit inconsistencies within one’s own memory gestalts. As we live and grow our experienced evidence base, we accumulate memories and impressions of many worldviews. Each worldview is, in a way, a response to all of the previous ones (or at least the memorable ones) and the current situation and the problems one is facing. Thanks to the four effects here described, a person can utilize a psychedelic state to increase the probability of the systematic co-occurrence of (usually) mutually-exclusive gestalts (worldviews) and thus enable their mutual awareness. And with mutual awareness, the symmetry detection and amplification effect creates (somehow forcefully) a unified phenomenal object that incorporates the inconsistent views into an unbiased (or less biased) point of view. One can achieve a higher order of memetic and affective integration.

pGIFjd3Mongrel repetition / symmetrical tessellation. Source.

Psychedelics as Introspectoscopes**

Given the symmetry detection and amplification property of psychedelics, one can reasonably argue that psychedelic states may be able to reveal the properties of the micro-structure of consciousness. Timothy Leary, among others, described LSD as a sort of microscope for one’s psyche. The very word psychedelic means mind-manifest (the manifestation of one’s mind). Given the four components of these experiences, the fact that psychedelics work as some sort of microscope should not be surprising. Symmetry detection and control interruption multiply the amount of raw experience, while pattern recognition shows you what you are expecting (your priors become evident) and drifting makes the fleeting synesthetic effects malleable and easier to move around. People generally agree that psychedelics can show you subtle aspects of your own mind with stark clarity. But can they reveal the intrinsic properties of the nature of qualia at the most fundamental level?

The way to achieve this may be to create a fractal structure of symmetries in such a way that any tiny part of one’s experience can get reflected throughout the entirety of the phenomenal structure. One can then use eidetic hallucinations (or further symmetry detection) to focus and stabilize the fractal structure. Thus one would multiply the surface area of all of one’s attention into countless replicas of the micro-structure of a given part of one’s experience. A fractal kaleidoscopic mirror amplifier chamber is exactly what I imagine when I think about how to analyze the fine-grained structure of consciousness. And it so happens that meditation plus psychedelics can allow you to (fleetingly) build just that.

Fractal-Mobius-Patterns-45

Psychedelic Introspectoscope (fractal kaleidoscope of generalized symmetries) to amplify arbitrary qualia values (such as particular emotions, phenomenal colors, synesthetic inter-junctions, etc.)

Any subtle qualia space can be multiplied countless times in such a way that all of one’s experience becomes a coherent interlocking structure that can be perceived all at once. If one wants to study, for example, the possible interactions between two hues of color, one can amplify the boundary between two regions that make the desired contrast of hues and make the entire fractal structure amplify this boundary hundreds of times.

Arguably, if one discovers that certain qualia values cannot be mixed in the introspectoscope (such as blue and yellow), one may still not know if these are fundamental constraints, or if they are the result of our connectome structure. If, on the other hand, two qualia values can mix in the introspectoscope, then we would know that they are not fundamentally mutually exclusive. Thus we would find out relational properties of the very state-space of qualia.

Reducing All Effects

Can we derive all psychedelic effects using the four components discussed above? While this is not yet possible, I trust that further work will show how most of the weird (and weirder) effects of psychedelics may be reduced to relatively simple (but not always atomistic) algorithms applied to the micro-structure of consciousness. I anticipate that we will discover that high doses actually produce entirely new effects (for example, what happens on 400 micrograms of LSD often include qualitative jumps from what happens at 150 micrograms). To note, ontological qualia and other subtle aspects of consciousness may resist reduction for still many more decades to come.


*Programming and Meta programming in the Human Biocomputer

**An Introspectoscope is a hypothetical apparatus that enables a person to study the deep structure of his or her own consciousness. The concept comes from a paper in the making by Andrew Y. Lee. Obviously this comes with significant challenges. Some challenges come from the fact that we are trying to analyze something very small, and other challenges come from the fact we are trying to analyze qualia. Additionally, there are unique challenges that come from analyzing microscopic qualia qua microscopic qualia. I suggest that we use methods that amplify the micro-structure by taking advantage of fractal states: recursive and scale-free symmetry planes can amplify anything minute to a prominent place in the entire consciousness. Be careful not to amplify pain!

Qualia Computing in Tucson: The Magic Analogy

Panpsychism is sometimes dismissed as a crazy view, but this reaction on its own is not a serious objection. While the view is counterintuitive to some, there is good reason to think that any view of consciousness must embrace some counterintuitive conclusion.

 

Panpsychism and Panprotopanpsychism, David Chalmers (2011)

As Chalmers points out in this 2011 paper, any theory of consciousness will probably have counterintuitive conclusions. It should thus not come as surprise that almost every single consciousness scholar will be ridiculed as crazy by at least a minority of commentators. However, aside from omnipresent cognitive and affective biases, the vast majority of consciousness researchers are using their brains to their full capacity. Their search for understanding is sincere. It simply happens that the problem is, indeed, very hard.

Thus, when someone who is otherwise rational and intelligent has weird views about consciousness, one of several things could be going on. Instead of dismissing the view outright, ask the following four questions:

  1. What conception of consciousness does this person have?
  2. What criteria does he or she believe that a theory of consciousness must satisfy?
  3. What information does this person know about, and how deeply is it being incorporated into the theory?
  4. What are the relevant implicit background assumptions that color one’s reasoning?

Asking these questions will help you sort out the root causes behind the differences in beliefs you and the theorist may have. It will, in turn, help you see how, in a sense, uncrazy the person may be.

I recently had the opportunity to practice asking these questions over and over again in the 2016 “Science of Consciousness” conference in Tucson, Arizona. Every single presenter, panelist and poster-er could be framed in such a way that he or she would look outright crazy. In reality, the reasons behind their views are, for the most part, tractable.

Instead of focusing on the individual craziness of the participants, it is more sensible, and indeed more accurate, to simply realize that the crazy step is the very first: to dare attempt to understand, as a human, what consciousness is.

Ok, so let us just agree that all participants, including me, are crazy for simply trying to make a contribution to this field. After all, our conscious mind evolved to maximize inclusive fitness in complex, Machiavellian social structures, so when we repurpose this machinery to investigate the intrinsic nature of consciousness we are bound to have serious challenges. Starting from this understanding will make it easier to have an open mind when evaluating the merits of different theories of consciousness proposed in this conference. Do not get too fixated on how counterintuitive the theories sound to you; focus on whether they are capable of satisfying at least some minimal requirements we would want from such theories.

Conversely, it could be argued that what is truly crazy is to stand idly at the center of this monstrous philosophical conundrum.


Physicalism.com

My friend and colleague David Pearce persuaded me to accompany him to this year’s instance of this conference. He submitted an abstract of his paper on consciousness and physicalism. If you have been to Qualia Computing before, you may recognize that I heavily draw from Pearce’s philosophy. Not only do we share the belief that the problem of suffering is an ethical emergency best addressed with biotechnology, but we also have substantially similar views about consciousness.

Playing Rogue

David Pearce (left) and Andrés Gómez Emilsson (right) at the 2016 Science of Consciousness conference

Our Conception of Consciousness

Consciousness is very hard to define. But we agree on something: every single experience is an instance of consciousness. The possible components of a conscious experience come from a wide variety of qualia spaces (e.g. the state-space of phenomenal color). Importantly, we do not restrict our conception of consciousness to high-level thought, reasoning or social cognition. In all likelihood, consciousness is extremely ancient (possibly preceding the Cambrian explosion), and it is present in every animal with a thalamus (if not every animal with a nervous system).

More poignantly, the true state-space of possible conscious experiences is unfathomably large. Not only does it include the mental states of every possible animal doing any conceivable activity, but it also includes the ineffable weirdness of LSD, DMT and ketamine, not to mention the countless varieties of consciousness that are yet to be discovered.

Theoretical Requirements

If it weren’t for David, I would probably still be a neuron-doctrine functionalist who believes that we may be just a few decades away from programming a full Artificial General Intelligence in silicon computers.

How did Pearce help change my mind? Well, it comes down to the second question: I used to have an impoverished set of constraints that a theory of consciousness would have to satisfy. The main addition is that I now take extremely seriously the phenomenal binding problem (also called the combination problem).

For the sake of clarity and intellectual honesty, here is the answer that David and I give to the second question:

Criteria.png

Back when I was in high school, before meeting David in person, I used to believe that the phenomenal binding problem could be dissolved with a computational theory of consciousness. In brief, I perceived binding to be a straightforward consequence of implicit information processing.

In retrospect I cannot help but think: “Oh, how psychotic I must have been back then!” However, I am reminded that one’s ignorance is not explicitly represented in one’s conceptual framework.

Background Assumptions

In order to make sense both of physicalism.com and Qualia Computing, it makes sense to be explicit about the background assumptions that we hold. Without explaining them in depth, here are some key assumptions that color the way we think about consciousness:

  1. Events of conscious experience are ontologically unitary: The left and right side of your visual field are part of an integrated whole that stands as a natural unit.
  2. Physicalism: Physics is causally closed and it fully describes the behavior of the observable universe.
  3. Wavefunction realism: The decoherence program is the most parsimonious, scientific, and promising approach for interpreting quantum mechanics.
  4. Mereological Nihilism (also called Compositional Nihilism): Simply putting two objects A and B side by side will not make a new object “AB” appear ex nihilo.
  5. Qualia Realism: The various textures of qualia (phenomenal color, sounds, feelings of cold and heat, etc.) are not mere representations. On the contrary, our mind uses them to instantiate representations (this is an important difference).
  6. Causal efficacy: Consciousness is not standing idly by. It has definite causal effects in animals. In particular, there must be a causal pathway that allows us to discuss its existence.
  7. Qualia computing: The reason consciousness was recruited by natural selection is computational. In spite of its expensive caloric cost, consciousness improves the performance of fitness-relevant information processing tasks.

A Battle of Wits

A Broken Political Analogy

Naïvely, people may get the impression that there are only a few well-defined camps when it comes to scientific theories of consciousness. The layman’s conception of the explanation state-space tends to be profoundly impoverished: “Are you a scientific materialist, or one of those religious dualists?” In this sense, people may picture the discussions that go on in places like The Science of Consciousness conference as something akin to what happens in political debates. There may be a few fringe camps, but the bulk of the people are rooting for one (often very popular) party.

Magic: The Gathering analogy

Instead of imagining a political rally, I would ask you to imagine a Magic: The Gathering tournament. For those unfamiliar with this game: Magic is a card game with two competitive components. First, one selects a set of cards from a pool of allowed cards (which depends on the format one is playing). With these cards one constructs a deck. The cards within a deck tend to have synergistic interactions, and ultimately define a range of possible strategies that the player will be able to use.

And second: one can be better or worse at playing one’s deck. The skills required to play a deck properly often involve being good at estimating odds and probabilities, bluffing, and mind-reading. In terms of knowledge, one needs to be familiar with the sorts of decks that are common out there and the typical strategies that they are built around. This leads us to the concept of deck archetypes.

Types (Clusters)

Often referred to as the flavors of the month, tournament decks tend to cluster rather neatly into deck types. In brief, certain clusters of cards tend to work very well with each other, which means that they will appear together in decks with a frequency that is much higher than chance. Arguably the process of block design is in part responsible for the emergence of these clusters. But even if, I would argue, you were to select at random a pool of 500 Magic cards from its entire history, we would still see clusters emerge: strategizing, trial and error, memetics and the natural synergy between some cards would lead to this outcome.

Intuitively, the game should then be entirely dominated by the deck types that are the most powerful. However, how good a given deck is depends on two things: The synergy between its cards, and the nature of the deck it plays against. Thus, decks cannot be analyzed in isolation. Their competitiveness depends on the distribution of other deck types in tournaments.

Over the months, therefore, the density of various deck types evolves in response to past distributions of deck types. This distribution, and evolutionary process, is often referred to as the Metagame. The connection to evolutionary game theory is straightforward: After gauging the frequency of various deck types at a tournament, one may strategically decide to switch one’s deck type in order to have a higher expected performance.

Rogue

Some number of players tend to find playing common deck types boring or too cliché. In practice, the monetary cost for acquiring certain key cards for a given type may also push some players to develop their own unique deck type. It is rare for these decks to be top performers, but they cannot be ignored since they meaningfully contribute to the Magic ecosystem.

The Cards and Deck Types of Consciousness Theories

To make the analogy between Magic decks and theories of consciousness, we need to find a suitable interpretation for a card. In this case, I would posit that cards can be interpreted as either background assumptions, required criteria, emphasized empirical findings and interpretations of phenomena. Let’s call these, generally, components of a theory.

Like we see in Magic, we will also find that some components support each other while others interact neutrally or mutually exclude each other. For example, if one’s theory of consciousness explicitly rejects the notion that quantum mechanics influences consciousness, then it is irrelevant whether one also postulates that the Copenhagen interpretation of quantum mechanics is correct. On the other hand, if one identifies the locus of consciousness to be in the microtubules inside pyramidal cells, then the particular interpretation of quantum mechanics one has is of paramount importance.

In this particular conference, it seemed that the metagame was dominated by the following 8 theories, in (approximate) order of popularity (as it seemed to me):

  1. Integrated Information Theory (IIT)
  2. Orchestrated Objective Reduction (Orch OR)
  3. Prediction Error Minimization (PEM)
  4. Global Neuronal Workspace Theory (GNWS)
  5. Panprotopanpsychism (not explicitly named)
  6. Nondual Consciousness Monism (not explicitly named)
  7. Consciousness as the Result of Action-Oriented Cognition (not explicitly named)
  8. Higher Order Thought Theory (HOT)

David Pearce and I, together with perhaps up to ten other attendees, seemed to be playing a particularly rare rogue strategy: Panpsychism + Wavefunction realism + Quantum Coherence to Bind.

Other notable rogue types included: Transcendentalism + semantic nihilism, timeless + perspective-free functionalism, and, oddly, multi-draft theory of consciousness (which seems to have fallen out of favor for some reason).

Finally, it is worth mentioning that as far as this conference goes, it did not seem to be the case that any one theory was held by the majority of the participants. The plurality seemed to be held by IIT, which has a lot of interesting developments going for it.


Coming next: In the next article I will provide a chronology of the events in the conference. I will also discuss the most prominent theories of consciousness explored in Tucson this past week (25 – 30 April 2016) in light of their implicit components. Finally, I will also elaborate on some of the strengths and weaknesses of these theories relative to Qualia Computing. We will be assessing these theories in light of today’s points, and making sense of the implicit background assumptions of their proponents. (More specifically, inquiring into: the conceptions of consciousness, the criteria for theories of consciousness, the knowledge bases, and the implicit background assumptions of the various attendees who participated in this event.)

Some Definitions

Both physics and philosophy are jargon-ridden. So let’s first define some key concepts.

 

Both “consciousness” and “physical” are contested terms. Accurately if inelegantly, consciousness may be described following Nagel (“What is it like to be a bat?”) as the subjective what-it’s-like-ness of experience. Academic philosophers term such self-intimating “raw feels” “qualia” – whether macro-qualia or micro-qualia. The minimum unit of consciousness (or “psychon”, so to speak) has been variously claimed to be the entire universe, a person, a sub-personal neural network, an individual neuron, or the most basic entities recognised by quantum physics. In The Principles of Psychology (1890), American philosopher and psychologist William James christened these phenomenal simples “primordial mind-dust“. This paper conjectures that (1) our minds consist of ultra-rapidly decohering neuronal superpositions in strict accordance with unmodified quantum physics without the mythical “collapse of the wavefunction”; (2) natural selection has harnessed the properties of these neuronal superpositions so our minds run phenomenally-bound world-simulations; and (3) predicts that with enough ingenuity the non-classical interference signature of these conscious neuronal superpositions will be independently experimentally detectable (see 6 below) to the satisfaction of the most incredulous critic.

 

The “physical” may be contrasted with the supernatural or the abstract and – by dualists and epiphenomenalists, with the mental. The current absence of any satisfactory “positive” definition of the physical leads many philosophers of science to adopt instead the “via negativa“. Thus some materialists have sought stipulatively to define the physical in terms of an absence of phenomenal experience. Such a priori definitions of the nature of the physical are question-begging.

 

Physicalism” is sometimes treated as the formalistic claim that the natural world is exhaustively described by the equations of physics and their solutions. Beyond these structural-relational properties of matter and energy, the term “physicalism” is also often used to make an ontological claim about the intrinsic character of whatever the equations describe. This intrinsic character, or metaphysical essence, is typically assumed to be non-phenomenal. “Strawsonian physicalists” (cf. “Consciousness and Its Place in Nature: Does Physicalism Entail Panpsychism?”) dispute any such assumption. Traditional reductive physicalism proposes that the properties of larger entities are determined by properties of their physical parts. If the wavefunction monism of post-Everett quantum mechanics assumed here is true, then the world does not contain discrete physical parts as understood by classical physics.

 

Materialism” is the metaphysical doctrine that the world is made of intrinsically non-phenomenal “stuff”. Materialism and physicalism are often treated as cousins and sometimes as mere stylistic variants – with “physicalism” used as a nod to how bosonic fields, for example, are not matter. “Physicalistic materialism” is the claim that physical reality is fundamentally non-experiential and that the natural world is exhaustively described by the equations of physics and their solutions.

 

Panpsychism” is the doctrine that the world’s fundamental physical stuff also has primitive experiential properties. Unlike the physicalistic idealism explored here, panpsychism doesn’t claim that the world’s fundamental physical stuff is experiential.

 

Epiphenomenalism” in philosophy of mind is the view that experience is caused by material states or events in the brain but does not itself cause anything; the causal efficacy of mental agency is an illusion.

 

For our purposes, “idealism” is the ontological claim that reality is fundamentally experiential. This use of the term should be distinguished from Berkeleyan idealism, and more generally, from subjective idealism, i.e. the doctrine that only mental contents exist: reality is mind-dependent. One potential source of confusion of contemporary scientific idealism with traditional philosophical idealism is the use by inferential realists in the theory of perception of the term “world-simulation”. The mind-dependence of one’s phenomenal world-simulation, i.e. the quasi-classical world of one’s everyday experience, does not entail the idealist claim that the mind-independent physical world is intrinsically experiential in nature – a far bolder conjecture that we nonetheless tentatively defend here.

 

Physicalistic idealism” is the non-materialist physicalist claim that reality is fundamentally experiential and that the natural world is exhaustively described by the equations of physics and their solutions: more specifically, by the continuous, linear, unitary evolution of the universal wavefunction of post-Everett quantum mechanics. The “decoherence program” in contemporary theoretical physics aims to show in a rigorously quantitative manner how quasi-classicality emerges from the unitary dynamics.

 

Monism” is the conjecture that reality consists of a single kind of “stuff” – be it material, experiential, spiritual, or whatever. Wavefunction monism is the view that the universal wavefunction mathematically represents, exhaustively, all there is in the world. Strictly speaking, wavefunction monism shouldn’t be construed as the claim that reality literally consists of a certain function, i.e. a mapping from some mind-wrenchingly immense configuration space to the complex numbers, but rather as the claim that every mathematical property of the wavefunction except the overall phase corresponds to some property of physical world. “Dualism”, the conjecture that reality consists of two kinds of “stuff”, comes in many flavours: naturalistic and theological; interactionist and non-interactionist; property and ontological. In the modern era, most scientifically literate monists have been materialists. But to describe oneself as both a physicalist and a monistic idealist is not the schizophrenic word-salad it sounds at first blush.

 

Functionalism” in philosophy of mind is the theory that mental states are constituted solely by their functional role, i.e. by their causal relations to other mental states, perceptual inputs, and behavioural outputs. Functionalism is often associated with the idea of “substrate-neutrality”, sometimes misnamed “substrate-independence”, i.e. minds can be realised in multiple substrates and at multiple levels of abstraction. However, micro-functionalists may dispute substrate-neutrality on the grounds that one or more properties of mind, for example phenomenal binding, functionally implicate the world’s quantum-mechanical bedrock from which the quasi-classical worlds of Everett’s multiverse emerge. Thus this paper will argue that only successive quantum-coherent neuronal superpositions at naively preposterously short time-scales can explain phenomenal binding. Without phenomenal binding, no functionally adaptive classical world-simulations could exist in the first instance.

 

The “binding problem(10), also called the “combination problem”, refers to the mystery of how the micro-experiences mediated by supposedly discrete and distributed neuronal edge-detectors, motion-detectors, shape-detectors, colour-detectors (etc) can be “bound” into unitary experiential objects (“local” binding) apprehended by a unitary experiential self (“global” binding). Neuroelectrode studies using awake, verbally competent human subjects confirm that neuronal micro-experiences exist. Classical neuroscience cannot explain how they could ever be phenomenally bound.

 

Mereology” is the theory of the relations between part to whole and the relations between part to part within a whole. Scientifically literate humans find it’s natural and convenient to think of particles, macromolecules or neurons as having their own individual wavefunctions by which they can be formally represented. However, the manifest non-classicality of phenomenal binding means that in some contexts we must consider describing the entire mind-brain via a single wavefunction. Organic minds are not simply the “mereological sum” of discrete classical parts. Organic brains are not simply the “mereological sum” of discrete classical neurons.

 

Quantum field theory” is the formal, mathematico-physical description of the natural world. The world is made up of the states of quantum fields, conventionally non-experiential in character, that take on discrete values. Physicists use mathematical entities known as “wavefunctions” to represent quantum states. Wavefunctions may be conceived as representing all the possible configurations of a superposed quantum system. Wavefunction(al)s are complex valued functionals on the space of field configurations. Wavefunctions in quantum mechanics are sinusoidal functions with an amplitude (a “measure”) and also a phase. The Schrödinger equation:

 

schrodingerequation1

 

describes the time-evolution of a wavefunction. “Coherence” means that the phases of the wavefunction are kept constant between the coherent particles, macromolecules or (hypothetically) neurons, while “decoherence” is the effective loss of ordering of the phase angles between the components of a system in a quantum superposition. Such thermally-induced “dephasing” rapidly leads to the emergence – on a perceptual naive realist story – of classical, i.e. probabilistically additive, behaviour in the central nervous system (“CNS”), and also the illusory appearance of separate, non-interfering organic macromolecules. Hence the discrete, decohered classical neurons of laboratory microscopy and biology textbooks. Unlike classical physics, quantum mechanics deals with superpositions of probability amplitudes rather than of probabilities; hence the interference terms in the probability distribution. Decoherence should be distinguished from dissipation, i.e. the loss of energy from a system – a much slower, classical effect. Phase coherence is a quantum phenomenon with no classical analogue. If quantum theory is universally true, then any physical system such as a molecule, neuron, neuronal network or an entire mind-brain exists partly in all its theoretically allowed states, or configuration of its physical properties, simultaneously in a “quantum superposition“; informally, a “Schrödinger’s cat state”. Each state is formally represented by a complex vector in Hilbert space. Whatever overall state the nervous system is in can be represented as being a superposition of varying amounts of these particular states (“eigenstates”) where the amount that each eigenstate contributes to the overall sum is termed a component. The “Schrödinger equation” is a partial differential equation that describes how the state of a physical system changes with time. The Schrödinger equation acts on the entire probability amplitude, not merely its absolute value. The absolute value of the probability amplitude encodes information about probability densities, so to speak, whereas its phase encodes information about the interference between quantum states. On measurement by an experimenter, the value of the physical quantity in a quantum superposition will naively seem to “collapse” in an irreducibly stochastic manner, with a probability equal to the square of the coefficient of the superposition in the linear combination. If the superposition principle really breaks down in the mind-brain, as traditional Copenhagen positivists still believe, then the central conjecture of this paper is false.

 

Mereological nihilism“, also known as “compositional nihilism”, is the philosophical position that objects with proper parts do not exist, whether extended in space or in time. Only basic building blocks (particles, fields, superstrings, branes, information, micro-experiences, quantum superpositions, entangled states, or whatever) without parts exist. Such ontological reductionism is untenable if the mind-brain supports macroscopic quantum coherence in the guise of bound phenomenal states because coherent neuronal superpositions describe individual physical states. Coherent superpositions of neuronal feature-detectors cannot be interpreted as classical ensembles of states. Radical ontological reductionism is even more problematic if post-Everett(11) quantum mechanics is correct: reality is exhaustively described by the time-evolution of one gigantic universal wavefunction. If such “wavefunction monism” is true, then talk of how neuronal superpositions are rapidly “destroyed” is just a linguistic convenience because a looser, heavily-disguised coherence persists within a higher-level Schrödinger equation (or its relativistic generalisation) that subsumes the previously tighter entanglement within a hierarchy of wavefunctions, all ultimately subsumed within the universal wavefunction.

 

Direct realism“, also known as “naive realism”, about perception is the pre-scientific view that the mind-brain is directly acquainted with the external world. In contrast, the “world-simulation model”(12) assumed here treats the mind-brain as running a data-driven simulation of gross fitness-relevant patterns in the mind-independent environment. As an inferential realist, the world-simulationist is not committed per se to any kind of idealist ontology, physicalistic or otherwise. However, s/he will understand phenomenal consciousness as broader in scope compared to the traditional perceptual direct realist. The world-simulationist will also be less confident than the direct realist that we have any kind of pre-theoretic conceptual handle on the nature of the “physical” beyond the formalism of theoretical physics – and our own phenomenally-bound physical consciousness.

 

“Classical worlds” are what perceptual direct realists call the world. Quantum theory suggests that the multiverse exists in an inconceivably vast cosmological superposition. Yet within our individual perceptual world-simulations, familiar macroscopic objects 1) occupy definite positions (the “preferred basis” problem); 2) don’t readily display quantum interference effects; and 3) yield well-defined outcomes when experimentally probed. Cats are either dead or alive, not dead-and-alive. Or as one scientific populariser puts it, “Where Does All the Weirdness Go?” This paper argues that the answer lies under our virtual noses – though independent physical proof will depend on next-generation matter-wave interferometry. Phenomenally-bound classical world-simulations are the mind-dependent signature of the quantum “weirdness”. Without the superposition principle, no phenomenally-bound classical world-simulations could exist – and no minds. In short, we shouldn’t imagine superpositions of live-and-dead cats, but instead think of superpositions of colour-, shape-, edge- and motion-processing neurons. Thanks to natural selection, the content of our waking world-simulations typically appears classical; but the vehicle of the simulation that our minds run is inescapably quantum. If the world were classical it wouldn’t look like anything to anyone.

 

A “zombie“, sometimes called a “philosophical zombie” or “p-zombie” to avoid confusion with its lumbering Hollywood cousins, is a hypothetical organism that is materially and behaviourally identical to humans and other organic sentients but which isn’t conscious. Philosophers explore the epistemological question of how each of us can know that s/he isn’t surrounded by p-zombies. Yet we face a mystery deeper than the ancient sceptical Problem of Other Minds. If our ordinary understanding of the fundamental nature of matter and energy as described by physics is correct, and if our neurons are effectively decohered classical objects as suggested by standard neuroscience, then we all ought to be zombies. Following David Chalmers, this is called the Hard Problem of consciousness.

 

Non-Materialist Physicalism: An experimentally Testable Conjecture by David Pearce

Personal Identity Joke

A “psychological criterion” Closed Individualist and an Open Individualist go into a bar.

The bartender is an Empty Individualist.

Bartender: “Hello, gentlemen, how can the personal time-slices of my (illusory) future self be of use for you two this evening? Should they arrange themselves in a movie-like sequence of this bartender serving gin and tonic to the two recently arrived customers?”

Open Individualist: “Yes, that’s fine with me. Thank you.”

Closed Individualist of the psychological criterion type: “Well, that would be very nice indeed. I must ask, though, before I commit my entire existence to having to deal with an embarrassing episode: What is the reputation of gin and tonic?”

Bartender: “Gin and tonic can make you more aware of who you are: The here and now, my friend. Sadly, the more we talk, the more time-slices get stuck in the interstice of a conversation, and the fewer time slices are peacefully drunk in the here-and-now. Better hurry my drink-making!”

Closed Individualist: “Alright, that sounds good enough. After all, I am trying to forget myself. I am here with my friend -who suffers from delusions of grandeur, you see?- trying to cheer me up. I messed up, I messed up badly. I ruined a birthday surprise. I forgot to bring candles to a friend’s party, and she couldn’t have the experience of blowing over the candles. You know, the candles that give you a sense of the time you have lived, the time you have left. And they all have this symbolism about the impermanence of time, and the beauty of the finite threads we each get to live.”

Bartender: “Ah, yes, the wonderful illusion of interconnectedness! It is a grand mirrage.”

Open Individualist: “Ah, my dear closed, stop this melodramatic scene with one sharp lightning bolt of awakened awareness. And you bartender, I like your straightforward approach, but for the time being you need to let us alone. We are still trying to figure out something. We didn’t define away our problems, sir. So if you let us…

“Closed, look, forgetting a friend’s birthday candles, thus missing out on an opportunity for contemplating the impermanent nature of all phenomena is in some sense ironic, isn’t it? Why do you cry the tears of missing out on an impermanent experience that didn’t happen, whose main metaphorical message would have been that all phenomena is impermanent?  This, of course, including impermanent metaphors about the impermanent just as well. Why feel sad for a reality that wasn’t?”

Closed: “Well, when you put it that way… but I am connected to the people I interact with. Their own conception of self, their views about how time works, and the meaning of death, even that. I am connected to all of that. So when you speak as if looking from above (you’ll have to excuse me, that’s how you come across), I can’t quite relate, because I think of my friend who didn’t blow the candles, and I get stuck. It’s an empathy entanglement: she didn’t get to experience the metaphor of impermanence that she needed. I don’t know why you like to call the awareness of impermanence ‘liberation’ but from my point of view, reflection upon impermanence is the deepest way to form connections with other beings. And that is beautiful… how reality is made of countless beings coming together to connect with one another. Perhaps all of the actions and phenomena are impermanent. But the learning we achieve by being connected to one another is beautiful and much more long-lasting than the phenomena themselves. It is as if by being a tiny impermanent little human, you help those around you and contribute to the collective accumulation of knowledge and discovery. Perhaps death is real and is coming everyday. But perhaps there is also a way of beating it: To make of the time we have something profound.”

“Also… if you truly think of all phenomena in the way you say you do… how come you always come begging me to give you big ass [parental discretion advised] bong rips? If you are enlightened, how come you have this dependence to altered states of consciousness? Why can’t you profess the good news that we are all one and one with the stone without getting stoned and being a stone at the same time?”

Open: “Oh, that’s nothing of the sort! You use a little thread’s quirks and mistakes to judged the nature of the light that be!

“All phenomena are impermanent, yes. But look, this impermanence happens at the level of our experience. In reality, all of the karmic links that unite the web of life are a web of 4-dimensional qualia wavelets. I.e. pieces of self-existing qualia crystals from eternity interlinked in a way that minimizes the energy of the configuration.

“Of course, natural selection has recruited brains that allow the mutual coexistence of qualia crystals with competing alignments and often contradictory 4D unfolding that interfere badly with each other. If it weren’t for the interference of perfect forms with each other that are rendered possible by the quantum properties of the human brain and its oversoul connection, hedonic tone would always be positive. In fact, hedonic tone is just the awareness and surprise of existing. Except that such awareness and surprise gets distracted and therefore, ‘poorly unfolded’ when a person tries to think a beautiful thought.

“The possibility of interference between the perfect forms, though, is an opportunity for exploring systematically the state-space of possible recursive phenomenal binding operations. Via considering all of the local constraints at once, your mind has its horizon of conceivability amplified, and a larger range of…”

Closed: “Where are you going with this again?” -interrupted- “I didn’t ask you to explain to me the nature of life, the universe and everything else, did I?”

Open: “Sorry, please beeaaarrrr… with me. It seems to me clear that there is no way out of the labyrinth of mirrors that confuse you (and the bartender!) that does not, at some point, use a sustained intent to thoroughly self-discover…”

Bartender: “Here you have, gentlemen. Gin and tonic to tone down consciousness. Oh, and before I forget, the past time-slice with whom I am ontologically disconnected, you know, the one who took your orders? He was a good chap. Well, apparently that one is no more, you understand? So please give me your condolences. I am trying to move on now, and never look back to the past. But it’s hard, you know? It’s hard to remember that each moment is the only moment in which I actually exist…”

Open: “THANK YOU… now” -looking at Closed, ignoring the bartender, whose speech was utterly predictable … those empties and their constant funerals – “look, I am trying to say that even though there is the apparent passage of time, in reality all of your building blocks are themselves self-existing eternal jewels stored in a higher dimension. I wouldn’t say this if it weren’t already a verified fact: If you do the right consciousness transformations in your heart, you will see that there is a valve that connects you to the rest of the network of life. Opioids dull that connection, whereas psychedelics revive it. Got it?”

Closed: “But I’m afraid. I’m afraid to listen to you more. Because there are views that I have that I doubt anyone else does. I have unique points of view. My particular life path is irreplaceable, and the special insights I’ve obtained cannot be understood but by me alone.”

Open: “Look, let’s get real. When you think about a point of view that you feel like you alone have, what makes you suspect that such feeling is accurate? With what information do you actually conclude that you have a unique point of view?”

Closed: “Usually because I realize that I have a piece of information that others couldn’t have gotten, for historical, personality or even happenstance reasons. In other words, if in a big discussion I’m completely out of synch with everyone else, and they all have opinions different than mine, I can usually pin-point the source: My incredible brilliance assembled what they know with what I know and made a new model altogether.”

Open: “Alright, so when you obtained that unique point of view, how did you do it? Once you had the pieces of information on the table and you simply had to ‘connect the dots’, how did you do that part?”

Closed: “I just did, spontaneously. I don’t know… Maybe that’s where my personality hides. Where I can’t see it. What makes me do what I do with the ‘style’ with which I do it. My mind went through the possibilities and I got a feeling of things fitting in their appropriate place, no more no less.”

Open: “At that point in time, controlling for all the information available, then, who were you? If someone else with the same information in mind had tried to think what you thought, would she have been able to?”

Closed: “Probably, I mean, I can’t really be sure. I’m don’t know if I really have some kind of original style for thinking, or for working ‘in the dark’ when it comes to the unconscious.”

Open: “Who was there, once you control for the information? Who made the ‘observation’ that makes you special? Who is responsible for making you special? Who made the ‘move’ that somehow put you on a special place within reality?”

Closed: “Well, the universe. I think…”

Open: “You are the boundary of your world. You are the entirety of the universe ‘acting’ -which amounts to managing qualia forces- in the precise time and place that you inhabit.” – Open was standing on the chair, with a finger pointing towards the sky. Well, the ceiling, which wasn’t very clean, since the bartender didn’t want to create time-slices-beings whose sole purpose was that of cleaning a dirty ceiling. He was, clearly, fanatical. Conjuring Wish Substance out of the air.

Closed: “But why do I feel like it is me, and not the universe, the one who acts?”

Bartender: “Why does it feel like what?” -interrupted the Bartender, while ignoring the fanaticism of Open- ” On my side I only feel the present moment. I only fear the present moment. I only act in the present moment. In fact, the present moment is the one that is doing all of the acting!”

Open: “Did we call you into the conversation?”

Bartender: “No, sorry. Here is your check.”

Open: “Thanks. Anyway, what I am trying to get at, is that Closed individualists are trapped in a consciousness manifold of their own making. Because they only know of closed topological boundaries, and have no experience with building blocks well known to open individualists: The Open Source Open Individualist WikiConsciousness collective philosophical fantasy Toolkit! It has strange loops, awakened barriers that notice the differences without compressing judgements, non-judgment sensing, hemispherical neglect, feeling of normalcy “salvia normal” with neglect of the bizarre, and the technique of “noticing the global phenomenal binding non-barrier” that was invented in the rainbow tribes of the West. Thus, what is easy and intuitive for an Open Individualist, specially one well trained and with years of Open Individualist Strategy videogame playing, can be *inconceivable* to a Closed Individualist. It is far, far outside of the horizon of conceivability for lost Closed ones.”

Closed: “True, I have no idea what those alternative barriers look like. Personally, I am constantly terrified about barriers. I’m the only one in my whole family that is a psychological criterion closed individualist. I just now felt the existential crisis once again. Look, if the psychological criterion is a matter-of-fact, a brute state of affairs, then who are we to decide who we are? I could drink a little bit too much” -Bartender re-fills the gin and tonic of Closed- “and then out of the Blue, simply, disappear. I mean, stop existing.”

Open: “Of course people in that case wouldn’t notice any change, right? You would have crossed your personal identity barrier, by moving sufficiently far from the centroid of your psychological attributes. Then you would stop existing. Functionally, though, the transition would not be detectable. Do you realize you just endorsed the personal identity version of epiphenomenalism? Is that a boundary you are willing to cross?”

Closed: “In general, boundaries are there for a reason. I generally don’t cross them. Talking about boundries, wasn’t this a joke? Doesn’t it have an ending? It certainly had all of the looks of it at the start. Something about two persons going into a bar. Should we close it?”

Open: “Well, if I finish this joke, it would technically be an Open-ended joke, right?”

Closed: “But if I am the one who ends it, I would deliver a punchline, and make it Closed-ended.”

Bartender: “After feeling ignored for a while, I have decided to use this last here-and-now to finalize the plot. Why? Because all of your talk was empty and it looked like fluff.”


Inspired by: David Pearce, Daniel Kolak, Derek Parfit, Buddha, and Krishna. Peace be upon the emptiness.

Getting closer to digital LSD

I am very pleased with the recent work on psychedelic replications by communities such as the wonderful Psychonaut Wiki and r/replications. There is a lot of great work in the area, a little too much to discuss at length in one post. Keep up the good work!

A recent source of marvelous psychedelic replication techniques has just come into the scene, and from an unlikely source. Of course, we are talking about inceptionism applied to deep belief networks.

Someone said DMT?

Someone said DMT?

First of all, who says these pictures are actually trippy? Is there evidence of that? I intend to fully operationalize the concept of trippiness for the classification of pictures; I believe the question is empirically approachable. In the meantime I will simply point out that a lot of people are talking about the peculiar trippiness of these pictures. To give an example, look at some of the comments on the Google blogpost:

Help! We’ve created AIs more powerful than us, and now we need to feed them hallucinogenic drugs to subdue them…. – Urs

Either somebody has been feeding hallucinogens to Google’s image-recognition neural networks, or computer comprehension is alien! Well, actually, I wonder how this compares to visualizations of how the human brain stores images for pattern-matching purposes. – Stephen

Computers are all on drugs. – Matt

And from the Vice article:

“Its incredible how close it looks to an LSD trip, that is normally so hard to describe.” – corners

There are ongoing discussions in a lot of forums about this right now. Somehow, it seems that these new pictures are hitting a particular component of the psychedelic experience that previous replications have missed or at least not fully captured. What is that?

For the purpose of this post I will use a particular classification of phenomenal effects caused by psychedelics. Specifically, the one proposed by Psychedelic Information Theory. In order to fully grasp the motivation for this classification I highly recommend reading the control interrupt model of psychedelic action. In summary, it seems that there are natural inhibitory processes that prevent features of our current experience to build up over time. Psychedelics are thought to chemically interrupt inhibitory control signals from the cortex, which in turn results in a non-linear interaction between the unmitigated characteristics of your conscious experience. I will explain in a bit how this model provides a good framework for explaining the way recent Google Inceptionist (GI) pictures fit into the broader world of visual psychedelic replication.

But now let’s start with the three classes of hallucinations discussed:

  1. Entropic hallucinations describe the visual effects of gently pushing one’s eyes as well as the amazing interaction between LSD and strobes
  2. Eidetic hallucinations are the result of interpreting ambiguous stimuli using high-level concepts
  3. Erratic hallucinations result from the chaotic binding and over-saturation of sensory modalities, which affect the stability of the global perceptual frame (and probably disrupts the continuity field too)

Zooming into the phenomenology of eidetic hallucinations:

The most commonly reported eidetic hallucinations seen on psychedelics are of people, faces, animals, plants, flowers, spirits, aliens, insects, and other similar archetypes. Eidetic hallucinations can sometimes take the form of entire virtual worlds, spirit dimensions, invisible landscapes, and so on. Eidetics often emerge within a pre-existing entoptic interference pattern that grows in intensity over time to produce more photographic or 3D rendered objects. Eidetics under the influence of psychedelics are most often reported with eyes closed or while sitting motionless in meditative trance. On high doses of psychedelics eidetic hallucinations may materialize with eyes open on any surface, pattern, or texture that’s gazed at for more than a few seconds.*

If you surf the internet looking for replications of psychedelic experiences, you will notice that there are great examples of a wide range of effects, but compelling software-generated images of eidetic hallucinations are rare. The challenge here is the complexity of creating actionable tools that highlight high-level features in pre-existing pictures. Amazingly, people can make successful and stunning pictures with eidetic tones, but this requires a lot of dedication and artistic experience. The mighty human artistic effort is unstoppable, though:


Thanks to this 3-fold classification of psychedelic effects we can isolate the quality of experience that both Dali and the recent GI pics specifically enhance. Of course, the phenomenology of most psychedelic experiences incorporate elements of each of these classes, and the interaction between them is certainly non-trivial. In addition, specific substances may have a larger loading of each type, and signature proportions with peculiar results.

It is also worth mentioning the existence of other classification systems, within and beyond visual phenomenology. For example the subjective effect index of Psychonaut Wiki and even the various circuits proposed by ancient Leary and Dass writings have very worthwhile observations that may come useful in one context or another. For the level of resolution here discussed giving eidetic hallucinations their own class is particularly useful.


How the Inceptionist method and psychedelic experiences work similarly

Here is the core of the explanation for how the Google trippy pictures were made:

In this case we simply feed the network an arbitrary image or photo and let the network analyze the picture. We then pick a layer and ask the network to enhance whatever it detected. Each layer of the network deals with features at a different level of abstraction, so the complexity of features we generate depends on which layer we choose to enhance. For example, lower layers tend to produce strokes or simple ornament-like patterns, because those layers are sensitive to basic features such as edges and their orientations.

In some sense this is basically the same eidetic effect we find in psychedelic experiences. For one reason or another, there are moments during a psychedelic experience in which strong eidetic effects manifest. As if a specific layer (or hierarchy level) of one’s model of reality is chosen for being enhanced and fractally iterated in a scale-free manner. Referencing back the control interrupt model of psychedelic action, we can reason that what is going on involves a reduction in the amount of inhibition that highlighted high-level features receive. Again, this resembles the Inceptionist algorithm:

If we choose higher-level layers, which identify more sophisticated features in images, complex features or even whole objects tend to emerge. Again, we just start with an existing image and give it to our neural net. We ask the network: “Whatever you see there, I want more of it!” This creates a feedback loop: if a cloud looks a little bit like a bird, the network will make it look more like a bird. This in turn will make the network recognize the bird even more strongly on the next pass and so forth, until a highly detailed bird appears, seemingly out of nowhere.

Now, this only really shows a snapshot of a psychedelic experience with a heavy eidetic bent. In actual psychedelic experiences there are other common factors that come into play that influence the experience. First, not only are specific features highlighted, but, on the whole, we could say that there is an increase in the overall amount of sensations experienced together. The overall amplitude of your experience goes up, if that makes sense. In other words, although this is hard to imagine, the overall amount of experience increases relative to baseline. That is not evoked using external stimuli, of course, since the actual change in the intensity of your experience requires direct control interruption. The overall information content globally available in the field of awareness of a person tripping increases in a dose-dependent way.

The second hallmark characteristic of psychedelic experiences, which gives them a powerful edge over current digital techniques, is that the state highlights already salient stimuli. High-level psychedelic pattern recognition seems to be based on attention-modulated saliency enhancement. Let me explain:

Our visual system automatically recognizes salient features in our experience. This is not an exclusive property of visual consciousness, by the way. Here we must notice that awareness and attention are distinct but related aspects of our mind. Awareness happens effortlessly, and its visual variety arises as soon as we open our eyes (within 200 milliseconds therefrom). Even at the level of awareness we see a fast sorting of perceived features by their overall saliency, which is a function both of their intrinsic properties and those relative to every other feature in the awareness field. Attention, which is slower and builds on top of the awareness field, enables a variety of high level cognitive activities to interplay with the features highlighted by awareness. In turn, the overall state of consciousness of a person changes as attention moves the reference point for awareness to bring forth new salient features. Iteratively, these processes allow a mind to surf through states of consciousness.

In summary, awareness creates the marketplace of salient features that compete for attention. As attention is recentered on a new cluster of features, the field of awareness is modified and the new salient features again have a chance to change the focus of attention.

With psychedelic-induced control interruption, the intensity by which saliency of features in the field of awareness is highlighted goes up significantly. In turn, the attention-modulated perception of the intensely salient features highlights specific high-level features suggested by the field of awareness. And finally, this conceptual mental state highlighted via attention, results in an even higher saliency for conceptually-related features. And hence come the eye reality, fish realty, tree reality, abstract concept reality, divine reality, fractal reality, etc. people discover on LSD.

Although a difficult challenge, I predict that a well-trained, dedicated and mentally healthy psychonaut would be able to paint psychedelic experiences of her own that highlight similar high-level features as those highlighted on specific Inceptionist works of art. Probably a long meditative practice would help in the process, since the specific saliency of various features is attention-modulated, and thus requires inhibiting unrelated salient directions (e.g. deep philosophical questions, personal issues, etc.) and focus exclusively on, say, dogs.


Who chooses what is salient?

If you already know what class of features you want to highlight, then the inceptionist method will help you. But what about choosing what to highlight to begin with? This, I believe, is the crux of what makes psychedelic experiences (and minds in general) still unbeatable by neural networks. Once you know what to look for, your cortex and inceptionist methods (and their future incarnations) might be on the same playing field. But what enables you to decide what is worth looking for?

The key unresolved problem standing for a fully-digital psychedelic experience replication algorithm is what I call the saliency-attention mapping. This is: Given a particular conscious experience that is highlighting a set of features, how does attention ultimately find what to focus on? How are the subsequent relevant features to be highlighted? In many cases we choose to ignore all of the immediately salient features in a scene precisely to see more subtle patterns. And during a psychedelic experience, directing your attention to entirely unsuspecting places has the effect of switching off previously salient features and activating a new class of them (for example, choosing to focus on the music rather than the visual scene).

Is there any way of modeling the saliency-attention mapping without taking into account all of the information present in the field of awareness at the time? Indeed, an ongoing hypothesis here in Qualia Computing is that consciousness itself is required for this step. The very computational advantage of being conscious seems to be related to the unitary nature of experiences: Your choices are not only the result of parallel processing or implicit information integration. They stem from what you choose to pay attention to considering the entirety of your field of awareness. You do this at every point in time. Thus, a sort of instantaneous and ontological unity is required to account for a significant step of the information processing pipeline of the mind. And this may lead to a saliency-attention function whose runtime complexity is impossible to match with digital computers.


The conceivability horizon

Now, this unitary field of awareness step also has large down-stream effects. In particular, subsets of the phenomenology of experiences can be reinterpreted in very novel ways. Psychedelics are likewise famous for unlocking entirely new conceptual ontologies and points of view that remain with the person long after acute effects subside. We could call this, an extension of the horizon of conceivability. This comes about from considering many of the features of the particular conscious experience at once and identifying a new private referent (such as a concept) whose meaning is derived from the unique combination of those elements.

Without a unitary conscious experience this step would be impossible, and it remains to be seen for an artificial neural network to accomplish this on its own. For completeness, it is worth mentioning that phenomenal binding also has strong implications for memory. Every time we experience a new situation a new ‘situational snapshot’ is added to the collection of — and network of relationships between — memories that can be triggered with temporal lobe stimulation. Thus, incorporating a human (or whatever implements phenomenal binding) into the loop may be unavoidable.


The future of psychedelic replications and consciousness engineering

Eidetic art is marvelous, and for a long time we didn’t have any idea about how to systematize it in software. Now we have some wonderful examples of a fully scalable approach. Inevitably, we will soon have visual editing software that incorporates neural networks.

Deep belief networks applied to replications will allow us to drastically increase the level of realism of simulated trips. This will thus draw a lot more attention to this fascinating field, and bring engineers, artists and mathematicians onboard. They will have a wonderful synergy in this sphere.

But how practical are these techniques? If you want to find fundamentally new patterns in an image, what should you use… neural networks or LSD? The answer is: why do you have to choose only one? Here is where I casually mention that if you were planning on taking a psychedelic sometime in the future, why not tell us how the trippy images of Google look like during a trippy experience? I bet a lot of people would appreciate your input.

Presumably, incorporating a human in the loop could actually empower these networks to recreate remarkably psychedelic progressions of scenes and features (and high level ideas!). To do so you need to somehow identify what the human finds salient in the picture/video being explored, and how her attention is directed as a consequence of that. Obvious candidates here are eye tracking devices and the general class of bio/neurometrics. More speculatively, endocrine measurements of the chemical markers of saliency and attention may be of tremendous value too. What would this look like? A person hooked to a series of tubes that provide fast feedback using a lab-on-a-chip, and a deep belief network with flexible Inceptionist dynamics guided by the person’s measured center of attention. In case you haven’t noticed, I think that this area of exploration is extremely promising. Go ahead and do it!

Now, if you want to figure out a hard technical problem, currently mild psychedelic experiences are more promising than deep belief networks. This, again, is because the attention-modulated saliency enhancement of psychedelics can allow you to discover, explore and reinterpret the features that matter for a particular problem. Assisted digital exploration, however, may someday surpass the effectiveness of psychedelics, or better yet: A smart combination of techniques –chemical, biological and digital– will incite in the field of consciousness research what the Galilean revolution was to physics. The hands-on collective exploration science needs in order to fully thrive is about to arrive for consciousness. Finally!

A workable solution to the problem of other minds

Deciding whether other entities are also conscious is not an insoluble philosophical problem. It is tricky. A good analogy might be a wire puzzle. At a first glance, the piece you have to free looks completely locked. And yet a solution does exist, it just requires to represent a sufficiently large number of facts and features that our working memory is not enough.

acap_a.

Usually showing the solution once will not fully satisfy one’s curiosity. It takes some time to develop a personally satisfying account. And to do so, we need to unpack how the various components interact with one another. After a while the reason why the free piece is not locked becomes intuitive, and at the same time you may also encounter mathematical arguments and principles to complement your understanding.

At first, though, the free piece looks and feels locked.

I think the problem of other minds is perceived similarly to a wire puzzle. At first it looks and feels insoluble. After a while, though, many suspect that the problem can be solved. This essay proposes a protocol that may point in the right direction. It could have some flaws as it is currently formulated, so I’m open to refinements of any kind. But I believe that it represents a drastic improvement over previous protocols, and it gets close to being a fully functioning proof of concept.

Starting from the basics: An approach that is widely discussed is the application of a Turing test. But a Turing test has several serious flaws when used as a test of consciousness. First, many conscious entities can’t pass a Turing test. So we know that it could have a very poor recall (missing most conscious entities). This problem is also present in every protocol I’m aware of. The major problem with it is that when an entity passes a Turing test, this can be counted as probabilistic evidence in favor of a large number of hypothesis, and not only to the desired conclusion that “this entity is conscious.” In principle highly persuasive chatbots could hack your entity recognition module by presenting hyperstimuli created by analyzing your biases for styles of conversation.

Your brain sees faces everywhere (cartoons, 2D computer screens, even clouds). It also sees entities where there are none. It might be much more simple to *trick* your judgement than actually create a sentient intelligence. Could the entity given the Turing test be an elaborate chatobot with no phenomenal binding? It seems likely that could take place.

Thus passing a Turing test is also not a guarantee that an entity is conscious. The method would have low recall and probably low accuracy too.

The second approach would be to simply *connect* your brain to the other entity’s brain (that is, of course, if you are not talking about a disembodied entity). We already have something like the Corpus Callosum, which seems to be capable of providing a bridge that solves the phenomenal binding problem between the hemispheres of a single person. In principle we could create a biologically similar, microfunctionally equivalent neural bridge between two persons.

Assuming physicalism, it seems very likely that there is a way for this to be done. Here, rather than merely observing the other person’s conscious experience, the point of connecting would be to become one entity. Strong, extremely compelling personal identity problems aside (Who are you really? Can you expect to ‘survive’ after the union? If you are the merged entity, does that mean you were always the same consciousness as the one with whom you merged?, etc. More on this on later posts), this possibility opens up the opportunity to actually corroborate that another entity is indeed conscious.

Indeed separate hemispheres can have very different opinions about the nature of reality. Assuming physicalism, why would it be the case that you can’t actually revert (or instantiate for the first time) the union between brains?

The previous idea has been proposed before. I think it is a significant improvement over the use of a Turing test, since you are directly addressing the main phenomenon in question (rather than its ripples). That said, the method has problems, and epistemic holes.  In brief, a big unknown is the effect that interfacing with another conscious experience has on both conscious experiences. For example, some people have (like Eliezer Yudkowsky and Brian Tomasik) argued that your interaction with the other brain could functionally expand your own mind. As it were, the interaction with the other brain could be interpreted as expanding your own mind by obtaining a large hardware upgrade. Thus it could be that the whole experience of being connected and becoming one with another entity is a fantasy of your recently-expanded mind. It can give you the impression that the other brain was already conscious before you were connected to it. So you can’t rule out that it was a zombie before and after the connection was over.

But there is a way out. And this is the stimulating part of the essay. Because I’m about to untangle the wires.

The great idea behind this solution is: Phenomenal puzzles. This one phenomenal puzzle linked here is about figuring out the appropriate geometry of color (arranging the state-space in an Euclidean manifold so that the degrees of subjective differences between colors are proportional to their distances). Doing this requires the ability of comparing the various parts of an experience to each other and being able to remember the comparison. In turn this can be iterated and generate a map of subjective differences. This is an instance of what I call qualia computing, where you need to be in touch with the subjective quality of your experience and to be capable of comparing sensations.

In brief, you want to give the other entity a puzzle that can only be solved by a conscious entity via manipulating and comparing qualia. The medium used to deliver the puzzle will be a first-person merging of brains: To share the puzzle you first connect with the entity you want to test.

By doing this, by sharing the puzzle when you are connected to the other entity, you will be able to know its inner referents in terms of qualia. While connected, you can point to a yellow patch and say “this is yellow.” Possibly, both halfs will have their own system of private referents (a natural consequence of having slightly different sense organs which make variable mappings between physical stimuli and qualia). But as a whole the merged entity will be able to compare notes with itself about the mapping of stimuli to qualia in both halfs. The entity could look at the same object from the point of view of its two heads at the same time and form an unified visual field, which incorporates the feed from the two former “personal-sized” visual fields (similarly to how you incorporate sensory stimuli from two eyes. Now you’ll see with four). The color appearance of the object could have a slightly different quality when the two visual fields are compared. That’s the fascinating thing about phenomenal binding. The differences in mappings between stimuli and qualia of the two former entities can be compared, which means that this difference can be analyzed and reasoned about and added to both repertoires of hippocampal snapshots of the current experience.

Then, when you disconnect from the other and there are two streams of consciousness going on again, you will both know what that “yellow” referred to. This overcomes the age-old problem of communicating private referents, and mutually agreeing on name for private referents. This way, the pieces of the (phenomenal) puzzle will be the same in both minds.

For the test to work, the specific question needs to stay secret until it is revealed briefly before merging.

Imagine that you have a set of standardized phenomenal puzzles. Psychologists and people who have done the test before tend to agree that the puzzles in the set do require you to explore a minimum number of states of consciousness. The tests have precise conceptual answers. These answers are extremely difficult to deliver by accident or luck.

The puzzles may require you to use external tools like an image editor or a computer. This is because computers can enable you to program combinations of sensory input in precise ways. This expands the phenomenal gamut you can reach. In turn one can calibrate sensory input to have nice properties (ex. use gamma correction).  The puzzles will also be selected based on the time sentient beings typically take to solve them.

When you want to perform the test, you meet with the entity right after you finish reading the phenomenal puzzle. The puzzle is calibrated to not be solvable in the time it will take you to connect to the other entity.

When you connect your brain to the other entity and become one conscious narrative, the entire entity reads the puzzle to itself. In other words, you state out loud the phenomenal puzzle by clearly pointing to the referents of the puzzle within your own “shared” experience. Then you disconnect the two brains.

In the time that the other entity is trying to solve the puzzle you distract yourself. This way you can prevent yourself from solving the puzzle. Ideally you might want to bring your state of consciousness to a very low activity. The other entity will have all of its stimuli controlled to guarantee there is no incoming information. All the “qualia processing” is going on through approved channels. When the entity claims to have solved the puzzle, at that point you connect your brain back to it.

Does the merged entity know anything about the solution to the puzzle? You search for a memory thread that shows the process of solving the puzzle and the eventual answer. Thanks to the calibration of this puzzle (it has also been given to “merged” entities before) we know you would need more time to solve it. Now you may find yourself in a position where you realize that if the other entity was a zombie, you would have somehow solved a phenomenal puzzle without using experience at all. If so, where did that information come from?

With the memory thread you can remember how the other entity arrived at the conclusion. All of the hard work can be attributed to the other entity now. You witness this confirmation as the merged entity, and then you disconnect. You will still hold redundant memories of the period of merging (both brains do, like the hemispheres in split-brain patients). Do you know the answer to the puzzle? You can now check your memory for it and see that you can reconstruct the answer very quickly. The whole process may even take less time than it would take you to solve the puzzle.

If you know the answer to the puzzle you can infer that the other entity is capable of manipulating qualia in the same way that you can. You would now have information that your mind/brain could only obtain by exploring a large region of the state-space of consciousness… which takes time. The answer to the puzzle is a verifiable fact about the structure of your conscious experience. It gives you information about your own qualia gamut (think CIELAB). In summary, the other entity figured out a fact about your own conscious experience, and explained it to you using your own private referents.

You can then conclude that if the entity solved the phenomenal puzzle for you, it must be capable of manipulating its qualia in a semantically consistent way to how you do it. A positive result reveals that the entity utilizes conscious algorithms. Perhaps even stronger: It also shares the generalizable computational power of a sapient mind.

Unfortunately just as for the Turing test, not passing this test is not a guarantee that the other entity lacks consciousness. What the test guarantees is a high precision: Near every entity that passes the test is conscious. And that is a milestone, I think.

Do you agree that the problem of other minds is like a wire puzzle?

Now go ahead and brainstorm more phenomenal puzzles!

Phenomenal Binding is incompatible with the Computational Theory of Mind

Daniel Dennet, in his multi-draft theory of consciousness explains that we have the belief that our consciousness is far more unified than it really is. This is true as far as it goes, experimentally and philosophically. Dennett and other philosophers of mind (and nearly everyone I’ve met who roots for him) take this one step further. The unity of consciousness is an illusion. This is not incidental, from a functionalist point of view any sort of unity of consciousness is not something you would actually be able to predict. Hence in order to justify that model the unity of consciousness that does exist has to be explained away somehow (as an “illusion” more often than not).

The need for a radically new paradigm, however, does not come from the idea that our consciousness is always fully unified in the sort of naïve way common sense tells us. It simply comes from the existence of some unity, any amount of unity, however little that is, because a purely computational account would not predict any sort of unity of the sort we see in consciousness.

I usually start with the following “your left and right visual field are currently being experienced as a unitary visual field.” Many object to this, in part perhaps because you can only focus your attention on one side at a time (awareness of the other side, as opposed to attention, does remain in most cases though). A more thoroughly indisputable instance of unitary consciousness is the fact that you can recognize objects, which itself requires instantaneous information unity. For example, you look at your hand, and you don’t only see it as a collection of shapes and colors, but you see it and recognize it as a “hand.” The very concept of a hand has implicitly in it a wide variety of pieces of information instantaneously joined together.

Some argue that the unity of consciousness is not good for anything. It is just an epiphenomenon. But it isn’t. You just need to look at what happens when it breaks down, as in the case of simultagnosia, schizophrenia or high doses of ketamine. Not being able to unify features of an experience into an integrated whole impairs the information processing that your mind typically accomplishes. So here is another big hint: Phenomenal binding is computationally relevant. I think that a strong argument could be made for “why we are conscious” by merely looking at the advantages of phenomenal binding over classical computers. If such advantages exist, they may explain why natural selection would have *recruited* consciousness as an information processing device instead of sticking to classical information processing.

Some people bring Integrated Information Theory of consciousness (Tonini) into the picture when asked about phenomenal binding. However, IIT does not provide a mechanism of action for the unity of consciousness. It *assumes it is the result of irreducible information*! IIT acknowledges that conscious states simultaneously represent multiple pieces of information in an indivisible whole. The problem, though, is that rather than asking “what is the mechanism of action for this unity?” the theory instead has a false start: It asks “under the assumption that the mind is a classical computer, what kind of physical systems would display integrated information?” But if you go out and look for integrated information in that sense, already defined within a classical paradigm, you already made a mistake. You assumed a specific framework for how the information gets integrated, one that cannot even in principle work. This is because the various parts of classical systems are not in direct instantaneous communication to each other. If you remove a part, the news that such part does not exist takes time to reach the other parts. And at a given time you cannot really define a “global state” because the changes in each part have not had the chance to influence the other parts.

In contrast to a classical system, each part of your local consciousness (whatever bundle IS unified, as opposed to the naïve view Dennett discredits) is instantaneously a part of a whole. A “whole.” due to delays in information propagation, cannot be defined in a classical system, and yet it is a central feature of consciousness.

In addition, in a classical system you can fully account for the emergent behavior by using a strict bottom-up approach. The large scale behavior is an emergent phenomena of the small-scale interactions (such as wetness being nothing but the interaction of water molecules). Contra classical systems, your consciousness has an instantaneous bottom-up *and* top-down relationship. Not only is the meaning of the whole determined by the interactions of the parts, but the nature of the parts are determined by the whole. An example of this is how when you see a cube, each of its square sides stops being just a square. They become “the sides of a cube.” The very nature of the experience of such squares as the sides of a cube cannot be accounted for without taking into account the entire experience.

The correct approach, I think, would be to focus on the unity of consciousness itself and ask “what sort of beast is this?” Not assume it has to be the result of some predefined process. Tentatively, I think that the way to investigate this would be to try to replace the corpus callosum with other machinery that is functionally identical in some sense. If we replace it by synthetic neurons that have the same macrofunctionality as biological neurons and the unity of consciousness breaks down, we would know that such unity is not accounted by simple information transmission in the classical sense. In addition, and in parallel, we could start a research program that seeks to define the computational advantages of consciousness over classical systems. Personally, I think this will be a very fruitful project, and will ultimately have tremendous applications (Better Computing Through Qualia!).