Buddhist Annealing: Wireheading Done Right with the Seven Factors of Awakening

Hi everyone!

I recently went on a two-week meditation retreat. I’m on the grid again, slowly catching up with things (please be patient if you sent me messages – I will get to them eventually).

Seven Factors of Awakening

I had a great retreat. There is a lot that clicked into place, and in time I will share it in posts, articles, and videos. For now I just wanted to share an interesting insight I got. In brief, I found that there is a seamless way to blend the Buddhist “Seven Factors of Awakening” and QRI paradigms, in particular those of Wireheading Done Right and Neural Annealing:

Seven Factors of Awakening and Wireheading Done Right

The overall idea here is that in order to sustain a state of consciousness where meditation has benefits one needs to have a state of mind that has a lot of control over itself. In particular, there is a zone in the valence / arousal space that is ideal for meditation, namely, the region that is positive valence and middle-of-the-road arousal. In this light, when your mind is too excited and restless you should put emphasis on the tranquilizing factors (concentration, equanimity, and tranquility). When your mind is too sluggish or sleepy, you put extra emphasis on the exciting factors (investigation, energy, and joy). And the balancing factor (mindfulness) is what allows you to keep track of this process without getting distracted by the hindrances. This allows you to cybernetically stay in the zone most conducive to meditative development.

Importantly, I think that the factors themselves are best developed in that zone. So it may be futile to ask someone who is panicking to focus on tranquility IF they have not focused on tranquility before when they were in the optimal zone. So for a lot of people developing the seven factors is going to be a bootstrapping process. Pragmatically, I expect that e.g. people with chronic pain might benefit from actual painkillers in order to reduce the pain enough to then be close to the zone where they can actually practice and develop the seven factors effectively. When the painkillers wear off at least they will have gotten some practice time, and then applying equanimity to the pain will be easier (I think that it is both ineffective and cruel to ask someone in pain to “just have equanimity about it” if they haven’t already developed equanimity when they were in the zone).

In addition to valence and arousal, the seven factors also allow you to cybernetically stay in the zone for two additional key dimensions. Namely the dimension of “clinging vs. letting go” and the dimension of “noise vs. purity”. In this light, we have that energy increases fast euphoria (positive valence and positive arousal), joy increases valence, investigation identifies trends that take you out of the zone and maintains purity, concentration increases purity, equanimity increases valence a little and “letting go” a lot, tranquility induces slow euphoria (positive valence and negative arousal), and mindfulness oversees the whole process while also increasing “letting go”. Together they can help you stay in the optimal zone along these four dimensions! They are, in effect, a “natural way” to do Wireheading Done Right. 

Seven Factors of Awakening and Neural Annealing

In addition to the lens of Wireheading Done Right, Neural Annealing also interfaces with the Seven Factors of Awakening quite well. Namely, you can think of them as “welding tools” for wholesome annealing!

In brief, you first need to use “flow” which “melts” the structures of your world-simulation and makes them flexible and amenable to modifications. Then you use the seven factors in order to direct the evolution of the flow into healing and harmonious dynamics. Doing this over and over will, over time, allow you to create a very wholesome and healing flow. More specifically, here are the seven factors as seen through the lens of Neural Annealing:

Balancing Factor

  1. Mindfulness
    1. Maintain flow in the foreground
    2. Focus on the texture rather than the content of flow
    3. Monitor for the arising of hindrances and inclining the mind away from them

Energizing Factors

  1. Energy
    1. This is what happens when you “pluck” the flow. Naturally, this energizes the eigenmodes of the flow! It is like the light that gets trapped between two parallel mirrors. Energy illuminates the harmonics of the flow you are cultivating.
  2. Joy
    1. The judicious selection of sets of eigenmodes that are consonant together
    2. Given joyous flow, deepening the joy entails energization, blending, and annealing of the consonant gestalt (cf. Focus on Positive)
  3. Investigation
    1. Examining the texture of flow. Testing it to determine the presence of hindrances.
    2. It is listening for the ring of the flow (with its objects) and diagnosing what is in it

Tranquilizing Factors

  1. Tranquility
    1. Cultivating tranquility entails developing highly-efficient cooling structures that channel flow and dissipate energy quickly (cf. Focus on Rest)
  2. Equanimity
    1. Not interfering with energy transit and dissipation by letting it recruit as large of a piece of flow as possible for its diffusion
    2. At a high-enough concentration (in my experience), equanimity undergoes a phase change. It becomes very fluid which balances out the forces inside you. I can see how in large enough amounts this would significantly reduce the suffering associated with intense pain.
  3. Concentration
    1. It is hard to tell “what you do” to increase concentration. As far as I can tell it requires a lot of skillful rhythmicity that guides awareness in a way that prevents its falling away.
    2. A rough metric for concentration might be: amount of energy of flow that is in phase, in harmonic relationship, and synchronized. Thus, for any level of concentration there are many possible “solutions”. Only on the very high-levels of concentration do experiences become constrained to only a few types. The combinatorial space becomes smaller as concentration increases.

The holy grail here would be the creation of a high-entropy alloy that blends together all seven factors. It’s a bootstrapping process. As you start developing some of the factors, you can use them to weld the flow in such a way that developing the other factors becomes easier. Then you can start developing two or more factors simultaneously (e.g. “tranquil equanimity” or “joyous concentration”). In time, one climbs the gradient that fortifies the presence of the factors in the mind, making it a home for wholesome qualia computing.

Wishing you all a wonderful Sunday!

The Goal: To Anneal a Wholesome Annealing Toolkit
(the Holy High-Entropy Alloy of the Seven Factors of Awakening)


Collecting Qualia Souvenirs

The Tracer Tool is available here.

Andrew Zuckerman (Zuck) recently presented at IPN’s[1] PsychedelX[2] conference about QRI’s Tracer Tool:

Video description: How can we bring back information from conscious states, especially from exotic and altered states of consciousness? This talk covers Qualia Research Institute’s tracer replication tool and how we can turn what until now has been qualitative descriptions and informal approximations of the psychedelic tracer phenomenon into concrete quantitative replications.

I think that Zuck does a great job at walking you through the features of the tool. If you watch the video you will understand the difference between trails, replays, and strobes. You will get an intuitive feel for what color pulsing means. It will teach you how ADSR envelopes affect tracer effects. And it will give you a sense of how we can use the Tracer Tool to quantify how high you are, how synergistic drugs are, and how valenced a given tracer pattern is. Of course this is explained in the original writeup (linked above), but Zuck’s presentation might be more appropriate if you don’t have the time to read 10,000 words. I recommend it highly.

Qualia Souvenirs

One of the concepts that Zuck introduces in his presentation is that of a qualia souvenir. Just like how it is very nice to bring back a keychain with a picture of the place of your vacation as a souvenir, perhaps we could generalize this notion to include experiences as a whole. That is, how do we create a souvenir for an experience? As Zuck points out, taking a picture while on a psychedelic simply won’t do. You need to capture the quality of your experience, rather than merely the content of the inputs at the time.

With the Tracer Tool (and tools we will be sharing in the future) you can do just that. Well, you can at least replicate a component of your experience. And little by little, as we develop the tools to replicate more and more such components, we will slowly get to the point where you can genuinely recreate a snapshot of your psychedelic experience (or at least to the extent that images and sounds can evoke its nature).

Make It Social

One of the features of the Tracer Tool that I failed to emphasize in the original writeup was that we put a lot of effort into making the submissions shareable. There are several ways you could do this, in fact. The simplest is to fiddle with the parameters until you get an accurate tracer replication and then click on “Start Recording Video” and then click “Stop Recording Video” when you have captured what you want. Then it’s as simple as clicking on “View/Download Video” and then on “Download”. You’ll get a .webm file, which is supported by most large image-sharing sites (e.g gfycat.com). And if you want or need it in a .gif format (e.g. to share it on Facebook), you can use a free online converter.

Alternatively, you can click “Share Parameters” and copy the JSON that is displayed. You can then share it with your friends, who will click on “Import Parameters” and paste the JSON you gave them. The advantage of this method versus the previous one is that you can edit others’ qualia souvenirs and work together to create specific effects. It is also a way for you to “save” your work if you are not quite done and want to continue fiddling with the parameters later on, but don’t want to lose the work you have already put into it.

This is all to say: Make it social! It’s easy! Add tracer replications to your trip reports. Share them in social media. Use them to help your doctor understand the severity of your HPPD. Share them with friends and family (well, maybe not family, lest you want Grandma to know intimate phenomenological details of your LSD trip – there’s every kind of family, you know?). And so on. Let’s normalize psychedelic tracers!


A recent improvement to the tool that Zuck mentions in the video is the fact that we now display two bouncing balls rather than just one. This is in order to mitigate the problem that when you are tripping, the simulated tracers will get in the way of the actual tracers. And while this is still a bit of a problem, having one bouncing ball without simulated tracers can be really helpful when fiddling with the parameters on psychedelics:

Side-by-side: left side with tracers, right side without tracers.

We got a trip report from someone who took 100μg LSD who used the tool once we had added the second ball. This person said that the second ball was extremely helpful and that it allowed them to confidently estimate the replay frequency (14.5Hz):

100μg LSD 4 hours after dosing

It’s satisfying to see someone being confident about the replay frequency. The 14.5Hz in this case is not too far off from the 15-20Hz range previously estimated for LSD. And the best part is that this was done during the trip and in real time. The person who submitted this datapoint specifically said that it was very clear that the effect was one of replay rather than strobe, and that they were able to accurately estimate the replay frequency by adjusting the spacing so that there would be a match between the simulated trail effects on the left with the real trail effects on the right. We expect this to be a skill very amenable to training and we hope the psychonautic community starts paying attention to it.

Tracer Tool on Psychedelic YouTube

I recently found a really interesting YouTube channel: Junk Bond Trader (JBT for short). I found it by looking for quality 5-MeO-DMT trip reports and I thought that his video about it was good enough for me to look deeper into his work.

One of the things I really enjoy about his style is that he describes the quality of his altered states in a very matter-of-fact way without taking the experience at face value. He also has a chill demeanor, epistemologically optimistic and curious rather than stuck in a wall of confusion or vibing in mysterianism. This is quite rare in Psychedelic YouTube. Exaggerating a little, I find that psychedelic-adjacent personalities tend to undergo changes that end up being difficult to square with the sort of slow and humble attention to detail needed for science and serious phenomenology. Perhaps we can think of this in terms of archetypes. When someone starts to explore psychedelics they often begin by embodying the archetype of the explorer. Namely, being driven by curiosity about what’s out there in the state-space of consciousness. After a number of powerful experiences, the driving archetype often shifts. The direct exposure to high-energy high-integration states of mind tends to anneal a new self-concept. The archetype they embody tends to drift to things like the psychedelic mystic, priest, educator, messiah, warrior, evangelist, shaman, prophet, counselor, or healer. It is rare to see someone who after many such exposures remains in the explorer wavelength; undoubtedly one of the most useful archetypes for science. In addition to an explorer, JBT is also a synthesizer in that he makes detailed analyses pointing out the common features across many experiences. For instance, I loved his retrospective analysis of about 40 DMT trips (see: part 1, 2, 3, & 4).

Steven Lehar is right, psychedelic experiences are harder to dissect when one is young and impressionable. It is quite likely that the best phenomenological reports will come from people who are at least 30 years old and who have a wealth of crystallized knowledge to use in order to describe their experiences. Speaking of which, I would say that Steven is also someone who successfully maintained the archetype of explorer throughout his psychedelic explorations without lapsing into any other less helpful archetype. But more than that, Lehar is also a synthesizer, and above all a scientist. At QRI we very much value his contributions and, contra modern academia, take seriously the sort of epistemology he employed. Namely, investigating the phenomenal character of (exotic) experiences in order to probe the principles by which perception operates. More generally, the psychedelic archetypes we consider to be priceless for qualia research are those of the explorer, synthesizer, philosopher, scientist, and engineer. Let’s get more of those and less shamans, evangelists, prophets, etc.

Back to JBT, I would highly recommend his Coffee Trip Report video on the basis that… it is really funny. But perhaps most relevant for our purposes at the moment, he recorded a video while on 200μg + 36mg 2C-B (warning: for most people this would be a very strong combined dose) and at 45:40 he started talking about the nature of the tracer effects of this combo:

“These trails are no fucking joke you guys. Some of the coolest visuals I’ve ever had in my life. […] Can I see through my eyelids? I can see around me, what the fuck? Dude, that’s freaking me out. [Waves hand in front of face with eyes closed]. There it is again! Wow. How does that work? […] These visuals are awesome, you’ll have to take my word for it. […] Everything looks alive, you know? It is not so much morphy as with mushrooms, but everything is jumpy, it’s got an energy to it. It’s all pulsing at the same frequency. These trails are… they honestly last two or three seconds. It’s not even funny at this point. It’s ridiculous. I thought I knew trails… I thought I knew trails! I didn’t know fucking trails. I’m afraid to do this again. I was seeing through my eyelids earlier… I’ve gotta look back at that footage. I mean, I obviously wasn’t looking through my eyelids, I know that. But I thought I was, I thought I was, I was that convinced. It’s weird, you go in and out of confusion, and it coincides with the intensity of the hallucinations. It’s like the more confused I get, the more intense the visuals get. So just when things start going good I can’t articulate it. I’m very conscious and lucid during all of this experience, and I’ll be able to recall it all. […] These trails are so over the top. Every little movement stains the air forever. […] Really weird, really strong visuals. Everything looks alive. Which is really cool. I feel like my ceiling is wet. That popcorn ceiling looks wet. It has this weird gloss over it. It looks cool. What can I say, it looks awesome. I could sit here all night staring at my fucking ceiling.”

Given these comments about the trail effects he was experiencing I decided to reach out to him to congratulate him for the quality psychedelic content and also ask him if he would be kind enough to try to replicate the tracers he saw using the Tracer Tool. And he did! He can now share with us a qualia souvenir from his trip! Here is what the tracers looked like:

He left this comment on the submission: “Though it was 5 weeks later, I made a specific note of the tracers in a live trip report video, and committed it to memory at that point because they were so unusually vivid. I chose black because the trail was specifically dark black.” – Junk Bond Trader (see the parameters[3]).

Just a few days ago, JBT gave a shoutout to QRI, my channel, and the Tracer Tool in a video (between 2:35 and 5:20). Thank you JBT! I particularly liked that he remarks on the fact that we use Shia LaBeouf’s “Just Do It!” green screen as the default animation for our custom tracer editor.[4]

Just Do It! Make Your Dreams Come True! (Remix) – with JBT’s Qualia Souvenir Tracers

An important note is that in his shoutout JBT makes it sound like this is all just me, but in reality what is going on at QRI is a huge team effort. In the psychophysics front in particular I would like to mention that Lawrence Wu and Zuck are the main people pushing the envelope and I am immensely grateful for all the hard work they are doing for this project. This also wouldn’t be possible without the many discussions with people at QRI and the broader community of friends of the organization.

I believe that Adeptus Psychonautica, whom I also like and respect, will give the Tracer Tool a try and discuss it in his channel soon! He interviewed me over a year ago and I think that he is also very much of an explorer. A particularly nice thing about his channel is that he reviews psychedelic retreat and healing centers. This is unusual; most people find it psychologically difficult to say anything bad about the place or the people who facilitated an e.g. ayahuasca ceremony for them. The perceived sacredness of the ritual makes any review other than a glowing recommendation feel sacrilegious. Adeptus Psychonautica has been around the psychedelic retreat block enough that he can really map out all the ways in which specific psychedelic retreat centers fail to meet their full potential. This is highly appreciated. I personally would take my sweet time in selecting the right place to experience something as valenced as an ayahuasca trip, so his reviews add a lot of value on that front. Thank you Adeptus!

Akin to these two YouTubers, if you have the ability to promote the Tracer Tool to audiences that are likely to try it, please be our guest! We would love to get more data so we can share the results with the world.

From Psychedelic Renaissance to Psychedelic Enlightenment

One of the things that I love about the fact that JBT tried the tool and talked about it on his channel is that it shows that research feedback loops can be closed online and in places as distracted and unfocused as YouTube. It hints at a new possible model for decentralized scientific research of exotic states of consciousness. Even if small in percentage, a dedicated group of online rational psychonauts able and willing to try each other’s experiments and discuss them openly might very well accelerate our understanding of these states at a pace that is faster than academia or the R&D departments of relevant industries (such as pharma). How many potential Steven Lehars are out there just waiting for the right legal landscape to share their experiences and analyses with others alike? I am excited to see how the online rational psychonautic community evolves in the coming years. I anticipate substantial paradigmatic developments, and we hope that QRI contributes to this process. In the long term, it is still unclear where most of the discoveries in this field will take place. On one extreme a hyper-centralized Manhattan Project of Consciousness could leapfrog all current research, and on the other extreme we have anonymous and decentralized Psychedelic Turk scenarios where access to exotic states of mind (both from the inside and the outside) is a sort of utility at the mercy of market forces. In the middle, perhaps we have semi-decentralized conglomerates of researchers building on each other’s work. If so, I look forward to an emergent science-oriented psychedelic intelligentsia of excellent trip reporters on YouTube in the next few years.

What Data Are We Most Interested In?

The combinatorial space of possible drug cocktails is really large and poorly mapped out. Of particular note, however, is the exotic effects caused by mixing psychedelics and dissociatives. Given the reports that there is a profound synergy between psychedelics and dissociatives (and that this combination is not generally particularly unsafe), we expect there to be really interesting tracers to report and we have no submissions of the sort so far. In particular, we expect to find synergy (rather than orthogonality or suppression) between these classes of drugs, and we would love to quantify the extent of this synergy (anecdotally it is really strong). If you are the sort of person who does not get noticeable tracers on LSD, perhaps try adding a little ketamine and see if that helps. Chances are, you will be like JBT, saying something along the lines of “I thought I knew tracers… I didn’t know **** tracers!”.

It would also be really good to see tracer data for candy-flipping (and MDMA combinations more broadly). We suspect that MDMA will generally have interesting ADSR envelopes. So if you have candy-flipped in the past or you intend do to so in the future please consider donating a couple minutes of your time to submit a datapoint! Remember, you can share it with your friends as a qualia souvenir!

Finally, we would love to have more DMT and 5-MeO-DMT submissions. We are interested in checking if the differences we have found between them can be replicated. In particular, we are told that 5-MeO-DMT produces monochromatic tracers whereas DMT produces richly-colored tracers that flicker between positive and negative after-images. If this turns out to be true, it would be really significant from a scientific point of view:

Apropos Psychedelic YouTube

With over a quarter million views as of March of 2021, The Hyperbolic Geometry of DMT Experiences (@Harvard Science of Psychedelics Club) is perhaps the most viewed piece of QRI content. Thus, the comment section perhaps gives us a snapshot of how the existing (pre-Galilean!) memes surrounding the psychedelic community make sense of this work. Doing a cursory semantic clustering analysis, I would say that most of the comments tend to fit into one of the following groups:

  1. Comments from people who admit to having tried DMT tend to say that “this is the best description of DMT phenomenology I have ever seen”.
  2. Comments complaining about the poor audio quality.
  3. Comments saying I should go on Joe Rogan (e.g. “Very captivating and well formulated. We need to have jamie pull this up.” is the most upvoted comment, with 1.7K upvotes).
  4. Comments stating that the DMT entities are real and that I should take higher doses to confirm that.
  5. Comments complaining that “visuals are not what matters about the experience” and that I’m “missing the point” for paying attention to them.
  6. Weird miscellaneous comments like claiming that the video is a proof that there is a conspiracy from Harvard trying to convince the world that DMT is not a true spiritual molecule.
  7. Fun one-liners (my favorite is “Massachusetts Institute of Tryptamines”).

Let me briefly comment on each of these clusters:

For (1): I am always happy to hear from psychonauts that our work at QRI is clarifying and illuminating. I get a lot of emails and messages saying this, and it honestly makes me happy and keeps me motivated to go on. An example of this would be one of the most upvoted comments:

This video combined with the article probably explained more of the dmt trip than all the trip reports I’ve read which is a lot. The levels, with the doses! Now I know I landed squarely in the Magic Eye. The symmetry hotel is a great explanation too. I find it interesting that I had an experience of divine consciousness on level three rather than level six; perhaps it was just a foretaste? Truly informative, this is what psychonauts need to hear.

YouTube user johnnysandiegoable

For (2): Yes, we know, sorry! We did what we could to stitch together the audio from my phone and the audio from the camera (which was way in the back). The wireless mic we had planned to use malfunctioned at the last minute and I wasn’t very mindful about the fact that the phone would produce the best audio. I know I should have stayed closer to the podium for most of the talk. That said, if you hear the presentation with headphones and are willing to increase the volume for the quiet parts, you can still make out every word. So, admittedly, the comments are exaggerating a bit just how unlistenable it is. ^_^

For (3): Joe, if you are reading this, I’m game! Bring it on! I think that it is entirely possible that we will have a great conversation.

For (4): I have indeed said before that we think it is unlikely that one makes true contact with mind-independent entities while tripping on DMT. Of course we welcome evidence to the contrary, and we have even suggested novel methods by which this could be tested. But I do want to say that unlike other accounts of the DMT phenomenology, the way we argue for the likely internal (“fully in your head”) interpretation does not in any way dismiss the specific reasons why such experiences are so compelling. It is not only that the experience feels very real (indeed, what does that even mean?) but that it has a series of properties that makes the hallucinations stand out as uniquely believable relative to other psychedelics. In the Harvard presentation I mention the idea that the dimensionality of the experience is so high that in a way one does experience a sort of superintelligence while on DMT. In such states, we genuinely get to experience much more information at once and render intricate connections in ways that would make connoisseurs of complex thoughts extremely jealous. Alas, this has yet to be fine-tuned for any kind of useful computational purpose. Yet, in terms of raw information bandwidth, the state has tremendous potential. So we could say, that on DMT you do get to experience a sort of higher intelligence; it is just that it is a higher intelligence of your own making, and we lack an adequate narrative within sober states of mind to make sense of what this experience means. Hence we tend to converge on easy-to-explain and relatable metaphors. Saying that one met with an advanced alien intelligence is somehow easier to convey than describing in detail the sequence of point-of-view fragmentation operations that bootstrapped the multi-perspectival state of mind you experienced. More so, in a recent video, I explained that DMT has some additional properties that make the hallucinations it induces extremely believable. Of particular note I point out that on DMT one experiences:

  • Multi-modal coherence where touch, sight, and sound hallucinations are synchronized,
  • An extremely high temperature parameter leading to the melting of the phenomenal self, and
  • Tactile hallucinations, which add a layer of “reality” to the experience.

These and other features are the reason why DMT experiences feel so “real” and hard to dismiss as mere hallucinations. Rational psychonauts are advised to pay close attention to this in order to avoid developing delusions with repeated administrations.

For (5): Look, we understand. It is obviously the case that the visual effects are a tiny component of the experience, but consider just how difficult it is going to be to describe every single aspect of the experience. I am sure you have heard the expression “learn to walk before you learn to run” (or in this case, learn to walk before you learn to fly, or perhaps more appropriately, to learn to walk before you learn how to operate an alien spaceship with sixteen thousand levers interlinked in unknown ways). In brief, the path that will take us to the point where we can fully characterize a DMT trip will start with developing an extremely crisp and precise vocabulary and research methodology to describe the simplest low-level effects. It is surprising how much we can in fact say about a DMT trip by allusions to attractors in feedback systems and hyperbolic symmetry groups even if this turns out to only get at a small fraction of what makes such experiences interesting. We have to start with the basics; that is what we are doing here.

For (6): This is at least somewhat expected. Recall that DMT tends to make you overfit data. Conspiratorial thinking is a classic form of overfitting. Without a rational framework and grounding exercises, DMT users will generally develop increasingly overfit models of reality.

For (7): Well, keep them coming!

Future Developments

I want to conclude by mentioning that we have ambitious plans for QRI’s Psychophysics Toolkit (of which the Tracer Tool is but the first of many tools to come). We are in the process of developing many more experimental tools and paradigms specifically designed to rigorously quantify and characterize the information-processing features of exotic states of mind. Fancifully, imagine an “experience editor” where you can recreate arbitrary experiences from first principles. To name one possibility here, consider Distill’s Self-Organizing Textures: visual textures are hard to put into words, but easy to tell apart. Hence, odd-one-out paradigms in conjunction with generative methods (i.e. texture synthesis) can allow us to pin-point exactly how psychedelics affect our perception of mongrels. In the long run, we want to characterize the circuit motifs emergent out of the neural architecture of the human brain, and we expect this work to be extremely useful for that pursuit. Stay tuned!

[1] From their website: The Intercollegiate Psychedelics Network (IPN) is a youth-led garden organization dedicated to the development of students into the next generation of diverse and interdisciplinary leaders in the field of psychedelics. We envision a future where safe, legal, and equitable access to psychedelic healing creates a more just, peaceful and connected world. [e.g. see PennPsychedelics].

[2] From their website: PsychedelX is a student talk program featuring 20 minute talks from students around the globe with novel, impactful, and interdisciplinary ideas that will shake up the psychedelic discourse. From February 22nd – 27th [2021], watch their presentations on YouTube to expand your understanding of psychedelics and their role in our world today.

[3] If you want to see Junk Bond Trader’s tracer go to the Tracer Tool, click “Import Paramters”, and then paste: {“animation”:”unlitBallGravity”,”speed”:”1.65″,”trailOn”:true,”trailIntensity”:”70″,”trailTimeFactor”:”78″,”trailExponential”:true,”strobeOn”:true,”strobeFrequency”:”14.7″,”strobeIntensity”:”83″,”strobeTimeFactor”:”76″,”strobeExponential”:true,”strobeAdsr”:false,”replayOn”:false,”replayFrequency”:”11″,”replayIntensity”:”68″,”replayTimeFactor”:”75″,”replayExponential”:true,”replayAdsr”:false,”pulseOn”:false,”pulseFrequency”:”1.6″,”pulseAmplitude”:”50″,”pulseColor”:false,”pulseColorAmplitude”:”100″,”maxTracers”:”154″,”color”:”#000000″}

[4] Thanks to Lawrence Wu for that.

Guide to Writing Rigorous Reports of Exotic States of Consciousness

Cross-Posted in QRI’s Blog

[Context: This is a guide to writing useful trip reports. If you read the trip report archives of Erowid, Bluelight, and PsychonautWiki, you notice a wide range of styles, interpretative lenses, and focus. We believe that a few relatively simple considerations can drastically improve the usefulness of written reports in ways that can open up novel research directions. This document is meant to extend and complement the Subjective Effect Index of PsychonautWiki in order to maximize the scientific utility of the written reports. If unconvinced of the importance of writing high quality reports, we recommend first reading David Pearce’s “Their Scientific Significance is Hard to Overstate.]

The first few trip reports you write may not be very detailed, but you will improve over time. It is best to adopt a growth mindset when it comes to translating exotic forms of thinking into sober thinking others can understand. If learning to speak takes years and mastering a new human language in adulthood takes just as long, why would competence in translating psychedelic patterns of thought be something you acquire on the first trip? Thus, it is no surprise that practice and patience are essential ingredients to becoming a psychonaut that is capable of sharing scientifically useful information to the world at large.

So how do you write a useful trip report? Let us start with perhaps the single most important instruction.

Focusing on the Phenomenal Character, Rather than on the Intentional Content of the Experience

The first and most important instruction is to focus on the phenomenal character as opposed to the intentional content of the experience. The intentional content of an experience is what the experience is about, whereas its phenomenal character is what it feels like. While it is worthwhile to discuss the content of your thoughts at a narrative level (e.g. you hallucinated being in an art museum where giant ladybugs were performing in a jazz quartet), the narrative alone will not be very useful to anyone. This is because a narrative description of what your trip was about drastically underdetermines what the experience felt like.

Hence, it is critical to enrich any narrative description with an account of the texture and structure of your experience. People often say things such as: “I went to DMT hell” or “I experienced an LSD paradise”. But what if you probe these statements further? What made the “DMT hell” so unpleasant? What made the “LSD paradise” so blissful? Most people, when asked, tend to be overly focused on saying things along the lines of: “Well, I was meeting angels and strange creatures” or “there were people sobbing”, and they think that this explains why the experience was unpleasant or blissful. You have to understand that when explaining why a certain narrative felt a certain way, you cannot ultimately rely on more narrative. At some point, the explanation should be grounded by the texture of the experience rather than the experience’s narrative[1]. Instead of those previous stories, we think a more useful description would be: “There’s this 3D matrix of resonance that created a lot of green-magenta Moiré patterns, and the sense of harmony and bliss seems to have come from that texture of my experience, and that texture is what made me interpret where I was as a kind of Heaven Realm.” The reason why the angels you saw felt so loving and benevolent comes down to the particular texture of your experience expressing that emotional palette. In other words, the angel is an expression of that sense of harmony and not the other way around.

An analogy is that if you’re listening to pleasurable music, you may hear guitar or piano sounds. The specific instruments definitely matter, but the bulk of what’s making the sound so pleasant and comforting may actually be the reverb quality of the music. Think of the angel like the sound of a guitar. The angel, like the guitar sound, has its own specific qualities (a certain vibe). But in addition to seeing an angel, your entire subjective experience contains this reverb pattern of reverberating (phenomenal) space-time. A phenomenal space-time that feels really wonderful will make you feel like you are in heaven.

Image made by Matthew Smith

Thus, we recommend that you pay attention to the nature of the phenomenal space and time you experienced and do two things:

  1. Try to describe it in as much detail as possible in the language of frequency, dimensionality, fractality, reverb, etc.
  2. Explain how the texture of the phenomenal space you inhabited influenced your emotions and semantic interpretations of what was going on.

Numbers and images taken from: List of fractals by Hausdorff dimension

Try to reverse-engineer the generators of your experience.

A very simple example would be if you were experiencing some kind of strobing effect, like seeing flickering lights. If so, it would be ideal to figure out the frequency of those lights. QRI developed a psychophysics tool to help people quantitatively measure the visual effects of psychoactive substances. Ideally, you can use this tool while experiencing exotic state of consciousness (such as DMT or the states induced by a Fire Kasina retreat), so that you can confidently report (for example) that you experienced a 20 Hz strobing effect.

Left: 10hz replay. Right: 7hz strobe.

Likewise, if you are experiencing replay effects and you enter a thought loop (cf. short-term memory tracers), it’s very helpful if you can tell how big the loop is instead of saying “I was stuck in a loop”. Was the loop a fraction of a second or was it an elaborate narrative that you were circling around over the course of minutes? Those feel very different even though they are both technically thought loops.

Here is a very concrete example: imagine that your DMT trip looked like this lightshow from 2:27 to 5:12[2].

What would you say about it? A lot of people would become overly focused on explaining that at around 4:20, amazing lights felt like an angel, or that it was “richly colored and bright”. But the sort of information we believe is more helpful comes when you can point out simple and plausible ways the experience might have been constructed out of elementary building blocks. In this case, we refer you to one of the Youtube comments: “It is unbelievable that such a magnificent show could be made with just 5 lasers!”. Indeed! Most people would be mesmerized by the light show, come up with some elaborate narrative for “what happened” and go about their day without ever realizing that the entirety of the visual content was generated by just five sources of light fixed in place the whole time! Now that is the sort of obvious-in-retrospect observation that can help us make tangible progress. For instance, it only took one clever math student to notice “oh dear, the walls of the DMT palace I’m in are tessellated by heptagons” to kick-start the explanation space where DMT’s odd effects involve an alteration to the curvature of phenomenal space and time (see: The Hyperbolic Geometry of DMT Experiences). A lot of big insights start with seemingly innocent observations that are obvious in retrospect.

Examples of Statements That Do a Good Job Describing Phenomenal Character

The tracer effects clearly had replays equally spaced apart, calculated around 14hz with the tracer tool. I could make out three replays with precision, but there might have been four or five counting faint ones I couldn’t always see.
Whenever I would focus on my breath my visual field seemed to express a Kelvin–Helmholtz instability: thanks to tactile-visual synesthesia, the sensation of each breath would manifest as disturbances in my visual field, which in turn seemed to have a higher density than their surroundings, and this would give rise to turbulent flow very similar to the Kelvin–Helmholtz instability simulations I’ve seen online.
The left part of my visual field had a vertical wall I was attending to with peripheral vision. The wall felt like it was about 1 meter to my left and at a right angle. This hallucinated wall was vibrating at around 8hz and it had two alternating layers that looked about 1cm apart[3], one blue and one yellow. Their colors were alternating at about half the speed at which the wall was vibrating.
The ceiling was tessellated with a highly detailed texture organized along the 632 wallpaper symmetry group. More so, this tessellation was dynamic, in that all of the shapes were shifting and morphing. In sequence, a symmetry element type would be selected by attention (such as all of the copies of the 6-rotational symmetry element) and each repeating region of the texture in the entire ceiling would change by the rotation around the copy of the symmetry element that corresponds to it (example). Then another symmetry element would be selected and the pattern would morph by rotation around that new symmetry element, and so on. This lasted for about 1 minute and it faded as soon as I turned on some music.
By selecting features of my hallucinatory environment and attending to them, I could make them grow and in a way “reify them”, meaning that they would feel more and more real and vibrant the more I paid attention to them. I noticed that I could transform the walls of the hallucinated environment into glass walls with a peculiar property: when light goes through the wall in one direction it becomes lighter and when it goes in the other direction it becomes darker. This resulted in the room being filled with what I later recognized to be cohomology fractals
I was able to more easily separate the various “facets” of essential oils. In particular, rather than experiencing lemongrass as just a “unified block” (a single feeling of “herbal citrus scent”), I could break it down into three independent facets: a sharp citrus scent with peaks of sensation (probably citral or d-limonene), a soft and smooth alcoholic character impact background (probably neral and linalool), and an earthy almost clove-like spice facet (probably centered around myrcene). It was noteworthy that these facets were far more cleanly separate than normal yet by focusing on any two of them at once I could blend them independently in a sort of “qualia chemistry”. It felt like each perfume in turn could be used to experience 5 or 6 different compositions depending on how I would attend and try to merge its different facets all inside of my mind!
My sense of time passing seemed to be constructed out of three distinct elements interacting with one another. One was based on the rate at which the color scheme evolved. The other two were based on the pulsing of visual sensations, which constructed the scene in a manner consistent with a temporal raster plot. The “vertical time” would take about two seconds to complete a cycle, whereas the “horizontal time” would be incredibly fast, doing perhaps a hundred cycles per second. The raster plot had adjustable height and width and this allowed me to visualize (much akin to an actual raster plot) how rhythms in my mind were coupled despite having frequencies at different orders of magnitude: the vertical direction would represent changes across hundreds of milliseconds whereas the horizontal direction would visualize rhythms going on at just a few milliseconds as long as they repeated for long enough.
The auralization of the sound loops I hallucinated would continuously and coherently transform in tandem with the 3-dimensional space group I found myself in. This led me to interpret the auditory reverb effects as being consistent with the aggregate echo reflections inside a polygon in 3D hyperbolic spaces.

Personal Matters

Of course, psychedelic trips are intensely personal experiences. It is in the nature of psychedelic states to connect intellectual content with deep personal emotional processing. Nonetheless, when it comes to contributing to the commons with high-quality trip reports, you can lessen the impact of personal matters. Without ever mentioning that “it was about your grandmother”, you can just focus instead on the phenomenal character of your trip and provide the bulk of information to the scientific community. Of course, if there was something about the texture of the experience that made your emotional processing easier or harder, you should ideally point that out. But at no point do you need to delve into the specifics of your social circumstance.

Write It Like a Book Report

Think about the task of writing a trip report in the same way you would write a book report in middle school[4]. The teacher assigns a book to read and then they provide a guide for writing your book report with the help of some basic questions everyone needs to answer. This is so that you do not forget to provide some of the critical information needed to interpret your report. We recommend reflecting on these questions and writing their answers before the trip so that your report of the set and setting that gave rise to the trip is not influenced post-hoc by the contents of the trip. Let’s apply this “write it like a book report” framing to reporting exotic experiences. Please provide:

Demographic Information[5]

At the bare minimum, start by including basic demographic information: approximate age, gender, height, weight, genetics (national origin might be a good approximation, e.g. half-Mexican half-Icelandic), and health conditions.

Set and Setting Information

In addition to demographic information, make sure to include set and setting information: drug, dose, when it was taken, what method of intake was used (ingestion, smoking, etc.), social context, sleep deprivation status (well rested, just had a 20 minute nap after an all-nighter, etc.) how many times you have taken this drug and at what doses, time of the year, indoors/outdoors, and what the weather was like at the time.

After that, here are six basic questions that should ideally be addressed in every trip report:

1. Background Philosophical Assumptions

The most important thing is to start with clarity about what you believe. Most people have background beliefs that govern the way they think about reality even though they don’t really notice them most of the time. These assumptions will heavily influence what happens on a psychedelic trip. What are your background philosophical assumptions? What do you believe? Why do you believe what you believe? In particular, we suggest that you mention:

Recent Media Consumption

What people and media have influenced you the most? For example, recently reading a lot of Alan Watts books versus Richard Feynman’s Lectures on Physics may lead to very different experiences on LSD. Your recent media exposure cannot be neglected. And this is less about volume than about influence: you may have read a single quote a year ago that you still think about when showering while the daily consumption of your favorite television show is barely noticed by your subconscious. Therefore, share, most of all, how the media you’ve been consuming is influencing how you think about life, the universe, and everything else.

Direct vs Indirect Realism 

Probably the most important belief to address is your stance on direct versus indirect realism about perception. If you read a lot of trip reports, many seem to be implicitly assuming direct realism about perception. This means that people believe they can access the world directly. When they see a flower breathe in and out, they may interpret this experience as the result of being given access to another set of frequencies of light or aspects of reality that we usually ignore. For example, Albert Hoffman seems to have thought about LSD in this way: in the last chapter of LSD: My Problem Child, Hoffman speculates:

If one continues with the conception of reality as a product of sender and receiver, then the entry of another reality under the influence of LSD may be explained by the fact that the brain, the seat of the receiver, becomes biochemically altered. The receiver is thereby tuned into another wavelength than that corresponding to normal, everyday reality. Since the endless variety and diversity of the universe correspond to infinitely many different wavelengths, depending on the adjustment of the receiver, many different realities, including the respective ego, can become conscious.

One gets the impression that Hoffman really believed that LSD’s trippy visuals were revealing true information about the environment around us rather than telling us, perhaps, something about the way our brains construct a world-simulation we confuse for reality itself. This is not to say that one cannot in fact notice true details about the environment with LSD, but we can conceive of this as a trade-off between forms of attending to and processing the environment through our normal conventional senses rather than as being given access to new sense organs yet uncharted by science. This is an important distinction.

We should note that variants of direct realism about perception can be steelmanned to some extent. For example, you may look at a tree on a psychedelic and see a mythological creature embedded into the tree. When you come down, you can also verify it by observing that the tree actually kind of resembles the creature you saw on your trip and shows up when you’re not tripping. Once you notice that sort of thing, you cannot unsee it. And maybe other sober people might also see it too once you point it out. In other words, psychedelics will very likely, within some parameters, allow you to see patterns in the real world that you may be missing out on otherwise. It doesn’t mean that you’re perceiving the world directly through a new sense organ. It just means you’re processing that information in a slightly different way.

We would generally suggest to approach a trip report with an indirect realism mindset, where you assume, until proven otherwise, that you are experiencing states of your own internal world-simulation. This allows you to have much better clarity about many strange phenomena. For example, if you feel that you are somehow entangled with your environment, you would in this lens interpret that feeling as an entanglement with yourself. You are just entangled with a part of yourself that you usually interpret as being the external environment.

Indeed, one of the trickiest things about life that we don’t realize for the most part is that the very sense of an external environment itself is part of your internal world-simulation[6]. So for your trip report, make sure to point out if you are interpreting your experience through this lens, the lens of direct realism, or perhaps a hybrid lens (where some aspects are perceived directly and some aren’t).

2. Emotional and Cognitive State

What is your background emotional and cognitive state like? What is your preferred cognitive style? For example, do you naturally have a high baseline well-being or are you more melancholic? Do you identify as a people person or are you a mathematician with no interest in people?[7] It’s actually quite important to note and can result in quite different experiences. 

Observing Your Emotions 

Paying attention to how emotions are expressed on psychedelics is one of the most important things you can do. People regularly project their emotions onto the nature of reality. Be mindful of this as a failure mode. It’s helpful advice both for better phenomenology and psychologically to try to notice the way emotions manifest in your world-simulation. Emotions will be modifying the way your attention is directed, and noticing this can allow you to gain some control over this process. You can tell the difference between physical suffering and mental suffering in terms of whether these patterns have dissonance[8] located in your (phenomenal) body or in the part of your experiential field that represents thoughts.

It sounds kind of strange. When we’re caught up in mental suffering, we usually don’t realize that it’s a type of unpleasant sensation or dissonance. It is not ineffable. There’s actually a location, region, or subcomponent of the phenomenal field that is vibrating in a strange and unpleasant way. In many ways, noticing how emotions modify the structure of either your felt-sense of your body or your thought patterns will prevent you from being controlled by the emotions without you knowing it.

It’s very important to notice this, and noting this can be helpful for avoiding a bad experience. Often, the reason why you feel terrible in your psychedelic state is not because you realized a big, deep truth about reality or due to anything bad you did. It is frequently the case that you entered some kind of dissonant attractor, and there’s probably a way out of it.

Often, one is advised to “let go and embrace whatever is happening”. This advice does allow you to reduce that dissonance and lessen the grip that mental or physical suffering has on you. It allows you to let it just vibrate on its own for a while without you feeding it energy. And that is helpful. We think it’s even more helpful if you can diagnose the source of dissonance and address it directly. Thus, at an even deeper level, “disengage from dissonant patterns” is better advice than “just let go” because there are some states where letting go is actually a bad idea. If you’re actually very close to making a psychological or intellectual breakthrough, letting go is probably not optimal. Instead, have the mindset of being gentle to yourself by letting go of the dissonant component of the experience rather than its intentional content.

3. Temporal Progression

What was the overall temporal progression of the experience? Draw a graph where the x-axis is time and the y-axis is a variable you want to track, such as “intensity of effects”, “brightness of visual field”, or “emotional valence” and update the graph every half hour. This will help you remember where you were at each stage of the trip and allow you to place your thoughts and ideas along the timeline.

Right after the trip, spend some time making sense of the general structure of what you experienced. That is, identify what kind of arc or main stages the trip involved. Outline how your beliefs and emotions changed throughout each of the stages. Try to recall how long each physical hour felt like[9] (e.g. “1st hour felt like 90 minutes, 2nd hour felt like two hours, 3rd hour felt like two hours, etc”).

Example graph of self-reported valence over time. You can also label points and sections of the graph and then describe them in more detail in your written report. Image by Andrew Zuckerman.

4. The Theme

Was the trip primarily philosophical, self-introspective, investigative, or focused on emotional processing? Go into as much detail as you feel comfortable. Obviously, there are going to be very personal things, so record only as much as feels comfortable or useful to you.

5. Valence 

What did you learn about valence? What was the connection between the way the trip unfolded, the quality of each level, and the various thoughts and feelings? How did those contribute to a sense of well being, despair, or neutrality?

We’re very interested in confirming the idea that it feels really good when all your attention centers are synchronized and flickering at the same frequency. If that was the case, then please let us know. If it wasn’t, also please let us know![10]

6. Qualia and Binding Patterns

In what way did the trip allow you to experience qualia that you have never experienced before (like impossible colors)? Let’s say that you experienced a new combination of touch and auditory sensations. This is really significant! Don’t overlook it, note it down! During the trip, if you’re experiencing new qualia, do as much as you can to explore and investigate it by testing when it arises, when it dissolves, and what actions, if any, can multiply or intensify it.

Buddhists have names for a lot of the novel qualia that arise during meditation. One of those is equanimity. Equanimity feels like something; it’s not just a word. There’s actually a facet of experience that corresponds to it.[11] Likewise, on psychedelics you probably experience a ton of new qualia. We need a glossary for uniquely-psychedelic qualia!

In addition to novel qualia, notice and report any novel patterns of binding. This is about how sensations become coupled together or dissociate in unexpected ways—how sensations are linked together in phenomenal time and space to form coherent phenomenal objects. A special case of “exotic patterns of binding” is synesthesia, where two or more of the sensory modalities become coupled together (such as experiencing phenomenal objects that are sound-touch hybrids). But patterns of binding can also be exotic even when they are expressed within the same modality, such as how the visual field seems to acquire extra virtual dimensions on DMT. We would also consider alterations of the sense of space and time as the result of exotic patterns of binding. So, this is a very general effect with many possible manifestations. If you notice anything of this sort, pay attention to it! How were your sensations bound or unbound in ways that are unusual? Be as detailed as possible.

A Meta Consideration

We suggest that you do not get caught up in the obligation to report things during the experience. Or worse, to believe that in order to be a good trip reporter you have to be able to write everything in real time. Trying to write your trip report in real time is likely to make you feel quite miserable! This is because whether we like it or not, we derive a lot of our self-worth from our feeling of verbal competence. So when you are under the influence of something as powerful as LSD and your verbal skills break down, the feeling that you “are not yourself anymore” gives you a sense of personal failure. But this will only arise if you begin your trip with the expectation that you will be able to report on it in real time. Instead, acknowledge that you will probably be terrible at verbalizing on psychedelics and instead focus your energy on remembering the properties of the state in non-verbal ways. Don’t feel compelled to write extensively because that’s going to be difficult. Just take note of the time or make a drawing or mark that you will understand later.

We do recommend recording the experience as much as you can (short of showing yourself on camera handling or consuming the chemical… don’t do that!). Recording the entirety of your experience unobtrusively in the background may be really helpful for reconstructing what happened afterwards. We have heard that not doing this is a common regret, especially for trips involving high doses where you genuinely wonder what was happening around you in consensus reality (if anything, the footage will help ground you in the certainty that at least the God that visited you wasn’t emitting regular photons that were visible to other people in the room). If you’re comfortable with it, leave at least an audio recording on.

We encourage you to record any important ideas, especially if you suspect that there’s any chance you may forget them. Take your insights seriously. They matter. Don’t feel that you lack the qualifications nor the background for your insights to matter. You are in a very exotic state that’s largely unexplored. What you are experiencing probably matters immensely for the collective understanding of humanity.

Additional Resources for Writing High-Quality Trip Reports

If you’d like some inspiration, here are examples of great trip reports:

  1. Typical N,N-DMT Trip Progression According to an Anonymous Reader
  2. Detailed 2C-B Trip Report
  3. Rational 4-AcO-DMT Trip Report
  4. Lucid LSD Trip Report
  5. Self-Locatingly Uncertain Psilocybin Trip Report

And here are more resources for trip reports and strengthening your phenomenological skills:


Special thanks to Mackenzie Dion and Andrew Zuckerman for their feedback, suggestions, and copious edits to this document.


[1]  In fact, we would claim that the mechanism by which “seeing people sob” feels sad can be explained by how this narrative element influences the texture of your experience.

[2]  Beware that it is very loud right before 2:27.

[3]  The ideal units to report would be degrees, depth, and location within one’s visual field. In practice, most people will be better at reporting estimates of distances gauged as if they were physical distances out there in the world. In the future we will provide conversion tables to unify the units of phenomenological reporting.

[4]  Thanks to Ryan Ragnar for providing the analogy between trip reports and middle school book reports. 

[5]  Skip demographic data if you do not feel comfortable sharing it. It will be helpful in order to identify idiosyncratic responses to psychedelics and other compounds, but privacy is also very important. Share approximate information if that makes you feel more comfortable (e.g. “between 20 and 25 years old” rather than “21 years and 3 months old”).

[6]  Steven Lehar’s “Cartoon Epistemology” provides a great visual demonstration and argument for indirect realism about perception.

[7]  See: empathizing-systemizing theory, autism spectrum quotient, systematic empathy.

[8]  Dissonance emerges when two incompatible patterns of resonance try to interact with one another. See Principia Qualia and Quantifying Bliss for an in-depth discussion.

[9]  Physical time being the objective passage of time according to clocks in consensus reality, whereas phenomenal time is how the passage of time feels like in a given experience.

[10]  In particular, pay attention to the temporal and spatial frequency of synchronized patterns, and whether there are competing patterns that cause dissonance with one another (for more, see: Symmetry Theory of Valence: 2020 Presentation and Why Does DMT Feel So Real?).

[11] See Mike Johnson’s interview of Shinzen Young for a discussion on the way equanimity feels.

Ways of Thinking

Related to: On the Medium of Thought, John von Neumann, Early Isolation Tank Psychonautics: 1970s Trip Reports, Pseudo-Time Arrow, Thinking in Numbers, High-Entropy Alloys of Experience, A Single 3N-Dimensional Universe: Splitting vs. Decoherence, A New Way to Visualize General Relativity, Visual Quantum Physics, and Feynman’s QED Video Lectures (highly recommended!)

Transcript from the last section of the 1983 BBC interview of Richard Feynman “Fun to Imagine” (excerpt starts at 55:52):

Interviewer presumably asks: What is it like to think about your work?

Well, when I’m actually doing my own things, that I’m working in the high, deep, and esoteric stuff that I worry about, I don’t think I can describe very well what it is like… First of all it is like asking a centipede which leg comes after which. It happens quickly and I am not exactly sure… flashes and stuff goes on in the head. But I know it is a crazy mixture of partial differential equations, partial solving of the equations, then having some sort of picture of what’s happening that the equations are saying is happening, but they are not as well separated as the words that I’m using. And it’s a kind of a nutty thing. It’s very hard to describe and I don’t know that it does any good to describe. And something that struck me, that is very curious: I suspect that what goes on in every man’s head might be very, very different. The actual imagery or semi-imagery which comes is different. And that when we are talking to each other at these high and complicated levels, and we think we are speaking very well and we are communicating… but what we’re really doing is having some kind of big translation scheme going on for translating what this fellow says into our images. Which are very different.

I found that out because at the very lowest level, I won’t go into the details, but I got interested… well, I was doing some experiments. And I was trying to figure out something about our time sense. And so what I would do is, I would count trying to count to a minute. Actually, say I’d count to 48 and it would be one minute. So I’d calibrate myself and I would count a minute by counting to 48 (so it was not seconds what I counted, but close enough), and then it turns out if you repeat that you can do very accurately when you get to 48 or 47 or 49, not far off you are very close to a minute. And I would try to find out what affected that time sense, and whether I could do anything at the same time as I was counting and I found that I could do many things, but couldn’t do other things. I could… For example I had great difficulty doing this: I was in university and I had to get my laundry ready. And I was putting the socks out and I had to make a list of how many socks, something like six or eight pair of socks, and I couldn’t count them. Because the “counting machine” was being used and I couldn’t count them. Until I found out I could put them in a pattern and recognize the number. And so I learned a way after practicing by which I could go down on lines of type and newspapers and see them in groups. Three – three – three – one, that’s a group of ten, three – three – three – one… and so on without saying the numbers, just seeing the groupings and I could therefore count the lines of type (I practiced). In the newspaper, the same time I was counting internally the seconds, so I could do this fantastic trick of saying: “48! That’s one minute, and there are 67 lines of type”, you see? It was quite wonderful. And I discovered many things I could read while I was… I could read while I was counting and get an idea of what it was about. But I couldn’t speak, say anything. Because of course, when I was counting I sort of spoke to myself inside. I would say one, two, three… sort of in the head! Well, I went down to get breakfast and there was John Tuckey, a mathematician down at Princeton at the same time, and we had many discussions, and I was telling him about these experiments and what I could do. And he says “that’s absurd!”. He says: “I don’t see why you would have any difficulty talking whatsoever, and I can’t possibly believe that you could read.” So I couldn’t believe all this. But we calibrated him, and it was 52 for him to get to 60 seconds or whatever, I don’t remember the numbers now. And then he’d say, “alright, what do you want me to say? Marry Had a Little Lamb… I can speak about anything. Blah, blah, blah, blah… 52!” It’s a minute, he was right. And I couldn’t possibly do that, and he wanted me to read because he couldn’t believe it. And then we compared notes and it turned out that when he thought of counting, what he did inside his head is that when he counted he saw a tape with numbers, that did clink, clink, clink [shows with his hand the turning and passing of a counting tape], and the tape would change with the numbers printed on it, which he could see. Well, since it’s sort of an optical system that he is using, and not voice, he could speak as much as he wanted. But if he wanted to read then he couldn’t look at his clock. Whereas for me it was the other way.

And that’s where I discovered, at least in this very simple operation of counting, the great difference in what goes on in the head when people think they are doing the same thing! And so it struck me therefore, if that’s already true at the most elementary level, that when we learn about mathematics, and the Bessel functions, and the exponentials, and the electric fields, and all these things… that the imagery and method by which we are storing it all and the way we are thinking about it… could be it really if we get into each other’s heads, entirely different? And in fact why somebody has sometimes a great deal of difficulty understanding when you are pointing to something which you see as obvious, and vice versa, it may be because it’s a little hard to translate what you just said into his particular framework and so on. Now I’m talking like a psychologist and you know I know nothing about this.

Suppose that little things behaved very differently than anything that was big. Anything that you are familiar with… because you see, as the animal evolves, and so on, as the brain evolves, it gets used to handling, and the brain is designed, for ordinary circumstances. But if the gut particles in the deep inner workings whereby some other rules and some other character they behave differently, they were very different than anything on a large scale, then there would be some kind of difficulty, you know, understanding and imagining reality. And that is the difficulty we are in. The behavior of things on a small scale is so fantastic, it is so wonderfully different, so marvelously different than anything that behaves on a large scale… say, “electrons act like waves”, no they don’t exactly. “They act like particles”, no they don’t exactly. “They act like a kind of a fog around the nucleus”, no they don’t exactly. And if you would like to get a clear sharp picture of an animal, so that you could tell exactly how it is going to behave correctly, to have a good image, in other words, a really good image of reality I don’t know how to do it!

Because that image has to be mathematical. We have mathematical expressions, strange as mathematics is I don’t understand how it is, but we can write mathematical expressions and calculate what the thing is going to do without actually being able to picture it. It would be something like a computer that you put certain numbers in and you have the formula for what time the car will arrive at different destinations, and the thing does the arithmetic to figure out what time the car arrives at the different destinations but cannot picture the car. It’s just doing the arithmetic! So we know how to do the arithmetic but we cannot picture the car. No, it’s not a hundred percent because for certain approximate situations a certain kind of approximate picture works. That it’s simply a fog around the nucleus that when you squeeze it, it repels you is very good for understanding the stiffness of material. That it’s a wave which does this and that is very good for some other phenomena. So when you are working with certain particular aspect of the behavior of atoms, for instance when I was talking about temperature and so forth, that they are just little balls is good enough and it gives us a very nice picture of temperature. But if you ask more specific questions and you get down to questions like how is it that when you cool helium down, even to absolute zero where there is not supposed to be any motion, it’s a perfect fluid that hasn’t any viscosity, has no resistance, flows perfectly, and isn’t freezing?

Well if you want to get a picture of atoms that has all of that in it, I can’t do it, you see? But I can explain why the helium behaves as it does by taking my equations and showing that the consequences of them is that the helium will behave as it is observed to behave, so we now have the theory right, but we haven’t got the pictures that will go with the theory. And is that because we are limited and haven’t caught on to the right pictures? Or is that because there aren’t any right pictures for people who have to make pictures out of things that are familiar to them? Let’s suppose it’s the last one. That there’s no right pictures in terms of things that are familiar to them. Is it possible then, to develop a familiarity with those things that are not familiar on hand by study? By learning about the properties of atoms and quantum mechanics, and practicing with the equations, until it becomes a kind of second nature, just as it is second nature to know that if two balls came towards each other they’d mash into bits, you don’t say the two balls when they come toward each other turn blue. You know what they do! So the question is whether you can get to know what things do better than we do today. You know as the generations develop, will they invent ways of teaching, so that the new people will learn tricky ways of looking at things and be so well trained that they won’t have our troubles with picturing the atom? There is still a school of thought that cannot believe that the atomic behavior is so different than large-scale behavior. I think that’s a deep prejudice, it’s a prejudice from being so used to large-scale behavior. And they are always seeking to find, to waiting for the day that we discover that underneath the quantum mechanics, there’s some mundane ordinary balls hitting, or particles moving, and so on. I think they’re going to be defeated. I think nature’s imagination is so much greater than man’s, she’s never gonna let us relax.

From the blog Visual Quantum Physics (same as gifs above):

The Symmetry Theory of Valence: 2020 Presentation

Presentation Given at the Centre for Psychedelic Research at Imperial College London by Andrés Gómez Emilsson (December 8th 2020)


Transcribed with otter.ai. Edited for grammar and clarity by Mackenzie Dion.

Watch the talk on our Youtube channel.

So, the Symmetry Theory of Valence. Just defining terms so that we’re all on the same page. There’s this thing called core affect which is basically what you get when you apply dimensionality reduction techniques to any one of many areas of psychology. There’s a surprisingly robust pair of dimensions that emerge in co-occurrences of words or even descriptions of behavior. These two axes, arousal and valence, seem to account for about 60% of the variance in terms of what information emotional words contain. And I mean, roughly speaking, arousal is the level of activation, how energetic you are, and valence is how good you feel. Most of what I’m going to be talking about is valence. That said, you need to also consider arousal in the picture to know what this is all about. Just a few examples: you have high arousal, high valence, so that would be kind of excitement and anticipation. But you also can have high energy, but not feeling really good, and that would be kind of anxiety or anger or irritation. Likewise, you have depression, which is low arousal, low valence, and serenity is peaceful, blissful calm, that would be low arousal, high valence. 

This is just one example of one of the ways in which you can recover these dimensions of valence and arousal. This was a little study we conducted years ago. We were studying people who have experiences with all kinds of substances online. We were giving them the survey, where they were going to describe a particular substance along something like 70 different dimensions. Then I conducted factor analysis on that data set. Interestingly, we have three core dimensions of valence or valence-related axes, which give you a sense of, okay, what is the space of possible effects that you can get from some substances. There were actually six dimensions that emerged, but three of them are valence-related:

We have slow euphoria, which is equivalent to low arousal, high valence with top terms like calming and relieving. The negative predictors of it would be something like anxiety, producing difficult bodily discomfort. Fast euphoria is the sort of thing you get with stimulants, you know, energizing, sociable, the opposite of feeling spaced out and confused.

The other axis that kind of emerged was this notion of spiritual euphoria. That’s the term I used back then. I also used the term significance, or saliency nowadays. Now I would actually use the term criticality for other reasons that we can go into. There’s this other kind of axis for how you can experience intense valence with substances, which is different from slow and fast euphoria, which would roughly correspond to the psychedelic space. And that, you know, gets marked with things such as mystical, incredible, life changing. The opposite of that is trivial, self-centered, or irrelevant or something like that. This is just to complete the cube. And, you know, in a sense…

This is just a kind of change of basis, where you still get, in a sense, the valence dimension emerging out of this dimensionality reduction analysis. If you were to apply just one dimension, you know, if you ask the factor analysis to just give you one factor, it is going to be the valence factor. That’s the axis that accounts for most of the variance for the effects of drugs.

I’ve got to say that I absolutely acknowledge that emotions are far more complex and intricate than just valence and arousal. This is the result of my master’s thesis where we were analyzing this thing called mood updates, how people feel over time, day after day. I was computing the transition probabilities between emotions, and you can do cluster analysis here and finding attractors. You’ll see that there’s additional information. That said, we concluded that a big chunk of the additional information that is not valence and arousal is actually information about your trajectory in the valence arousal space. For example, we found there would be emotions that because of what they tell you about your emotional dynamics we called gateway emotions, like feeling relieved and feeling hopeful. These terms contain information that you were in a negative, kind of depressive attractor, and you’re moving towards the positive high arousal attractor. In essence, the terms we use for emotions give you not only information about where you are in the valence-arousal space but also what is your trajectory in that space. But in a sense, valence and arousal still account for a very, very big chunk of what an emotion is. Okay, so hopefully I’ve convinced you of the importance of valence, at least in this context.

Now, let’s jump into the Symmetry Theory of Valence (STV). The overall hypotheses and the first explicit argument for it appeared in this really, really awesome work by my collaborator, Michael Johnson, Principia Qualia. He has a really interesting skeleton of an argument that points to a lot of research threads that are really worth getting into. I highly recommend digging into this work.

One of the things that it lays out is the kind of conceptual framework to make sense of what type of thing valence might be. I’ll just define a couple terms, which is, first qualia formalism. If there’s one thing at QRI we are married to, you could say, it would be qualia formalism. That is, for any conscious experience, there exists a mathematical object isomorphic to it. We can make an analogy here to something like electromagnetism where we used to have lightning, and electricity, and magnets, and all of that seemed sort of somehow thinly related. But, it turns out that there’s actually just four equations of electromagnetism that tie together all of that phenomena. And you can compare it to something like élan vital, the essence of life. People used to think that maybe there is some kind of a substance that determines whether you’re alive or not. And we would say that, well, that kind of fell through, you know, in the end there is molecular complexity under more molecular complexity. There doesn’t seem to be such a thing as “life itself”. Life is not formalizable in the same way as electromagnetism is, but something that we would claim at QRI or we could even say something that we assume at QRI, because we believe it is a very generative frame, is that yes, there will be a set of deep mathematical structures to consciousness. In particular, if you expand this into other areas, we also think this is going to apply to valence: that there is going to be a deep and rich mathematical structure to valence, and that notion is called valence structuralism.

In Principia Qualia by Mike Johnson, he has this argument for it, which I definitely recommend reading, especially if you have the aesthetic of a physicist. I think you’ll really like this work, because I think it’s really, really good in that sense. What I’m going to do now is try to give you a kind of intuition for it. And then the whole empirical argument.

Importantly, there are a lot of theories of what valence is. Mike looked at the literature, did a very deep dive into it, and realized that they’re usually unsatisfactory, or at the very least, they don’t get at the true core of what an explanation for valence should be like. So basically, you have these accounts of, for example, valence sees how the brain represents value. Ultimately, that’s just a correlation. Value is a fuzzy abstraction. Some people think valence is the presence of opioids in the brain. But if you inject opioids in different parts of the brain, it doesn’t always feel good. It actually needs to be injected in a very narrow range of stripes in the pleasure centers, and otherwise, it just causes strange feelings or wanting, but it’s not the signature of valence itself. Or, for example, the pleasure centers. Just because you’re calling something “the pleasure center”, and it’s correlated with feeling good, it doesn’t mean you have an explanation. It’s not a very insightful, illuminating, account of valence. 

So what could it be? I’ll focus to a large extent on what we are going to call bliss, which is just very positive valence. What is that? What is very positive valence? What is the sense of ecstasy, bliss, intense happiness? There’s a lot of intuitions. Definitely a lot of people think it’s some kind of spiritual signal, and I wouldn’t want to convince you out of that view. But the truth is that there are a lot of different spiritualities, and they sometimes say contradictory things. So it’s kind of strange to expect that there’s this underlying universal spiritual signal that whenever you’re doing something aligned with spirit, you feel good. Because sometimes you can do something very different than somebody else and still have that feeling. Also, the idea that it is “merely” chemical reactions in the brain, again, is not a super satisfactory explanation… same as with pleasure centers, health, few prediction errors, etc. Well, and in the end, I add, yes, symmetry and consciousness, which is what I will be arguing.

I also want to point out, and this is super important, that valence is not the same as healing, and it’s not the same as meaning. However, they’re correlated. I would also go as far as to say that high valence is necessary for healing and for meaning to a large extent. In a sense, you can have a lot of very high valence states that are actually very unhealthy for you. Just an example would be methamphetamine. It can feel great, but it’s unsustainable. To the extent that your nervous system is self-organizing around that high valence experience, it makes it kind of the center of your life. And, you know, it’s a dopamine releaser. It’s obviously unsustainable. You can’t actually do that long-term and expect good results. Whereas, something like meditation, or even psychedelics, because their tolerance mechanism is very, very different. You could say that, yeah, those might be high valence, highly meaningful, and also healing experiences.

So I just want to say that, you know, high valence doesn’t entail healing. And that in that sense, you might say, “Okay, why are we so interested in this?”, but I would say that high valence is a necessary condition for deep healing. And I would even go as far as to say that, for a psychedelic experience to be deeply healing, it has to involve high valence in one context or another. Of course, you may end up processing a lot of very difficult emotions. But ideally, it would be something that basically allows you to heal those difficult emotions and transform them into a state of mind that has many more of the positive qualities. 

And more so, high valence, even according to the Buddha, is an important factor for awakening. Of the seven factors for awakening, I would actually say about five of them are very connected to valence. Mindfulness, joy, relaxation, concentration, equanimity; they are kind of different flavors of high valence. They’re different ways in which a very high valence experience can manifest. The Buddha says that these are important things. Even if you only care about awakening, enlightenment, you may also care about the mathematics of valence. It might point you in the right direction as well.

I’ll also mention, there’s a big difference between the recipe of a state of consciousness and what you might call the review, or the description, of that state of consciousness. I’ll make an analogy with cooking: if you have cooking instructions for how to make a cake, sometimes it’s very counterintuitive what the cake is going to taste based on those instructions. Like “add yeast” for example. A lot of things in the recipe you may not know exactly how are going to actually affect the result. So, the recipe may look very different from the review of the state. I would say that for a lot of meditation states, or even just general life advice, this idea of don’t mindlessly chasing pleasure or trying to satisfy all of your existing desires compulsively gives counter-intuitive results. Yeah, chasing pleasure compulsively is not going to result in a sustainable high valence. To some extent, a lot of meditation instructions tell you to neither approach nor withdraw from emotions to develop equanimity. Since you are not engaging with your emotions, it sounds like the result is a fully neutral experience, right? It sounds like it’s unrelated to valence, almost cutting out the valence. But I would say: that’s just the recipe. Those are the instructions for how you manage your attention in order to eventually change your brain to actually generate these very healthy, sustainable, high valence states. So I definitely want to overcome this prejudice of thinking that high valence is unrelated to spirituality. No, I think they’re actually very deeply, intimately connected. 

Okay, so let’s go into the Symmetry Theory of Valence. I’ll just read these, but we will go into more depth into all of these. So, you know, we talked about qualia formalism, there is a mathematical object whose features are isomorphic to phenomenology. We believe that, yeah, harmony basically feels good because it’s symmetry over time. And basically, there’s kind of this duality between symmetry and space and synchrony in time. We will go over pleasure centers. The way we explain pleasure centers in this theory is that they are kind of tuning knobs (this was first proposed in Principia Qualia). They are there these bridges that, basically, when they get activated, they enable global large-scale synchrony in the brain. This is something that ultimately is very testable. Because if you can activate the pleasure centers, or inhibit whole brain harmony, we predict that’s going to actually negate the positive valence effects of the pleasure centers. Likewise, if we can induce large scale harmony, without activating the pleasure centers, or maybe even inhibiting the pleasure centers, we expect that to be a high valence state. So, it’s a cool, testable interpretation of what pleasure centers even are. 

Boredom is kind of an anti symmetry mechanism. So that’s why even if you look at a cathedral or something like that, you’re not going to be happy forever. You’re going to be happy for a little bit. Because your brain realizes that you’re not learning anything, and adds kind of this dissonance in order to make you move on to something else. We are wired in such a way that what helps us reproduce symmetrifies our consciousness. So, it’s not that high calorie food in and of itself is symmetrical, it’s not that it in and of itself is pleasant. It’s more that the way our nervous system is programmed is such that when you eat high calorie food, it triggers high valence. And that triggered high valence is what would be symmetrical, not necessarily the chemicals that you’re eating.

Importantly, valence, we think, has these three dimensions, which is positive, neutral, and negative. And you can actually have highly mixed experiences. You can have experiences, I don’t know, an example is you’re at a concert, enjoying yourself, but also you have to go to the bathroom, and you just broke up with your boyfriend. You can have these very complex mixed valence experiences, where parts of your experience are very pleasant, parts are very distressing, parts of those are very neutral, and that’s fine. At the same time, it still kind of collapses into this ultimately, “Hey, are you having a good time or not?”.

And something that the Symmetry Theory of Valence would say, and this is a pretty interesting kind of relationship, and I’ll explain it in a couple slides. This is just to kind of put it out there in your head to bounce around as we go on, which is that we expect there to be a very, very intimate relationship between information content, and basically the range of valence that you have access to. So in brief, for very, very high valence states of consciousness, we expect those to have very close to zero information. Whereas, when you have this state that is close to pure white noise, we expect that to be basically zero valence. Hopefully, this will make more sense as we go along.

These are just some illustrations of this principle. Actually, we expect that some of the most negative experiences out there will actually be pretty close to very, very highly symmetrical. I put this disjointed lattice at the bottom. And I would claim that something like a bad 5-MeO-DMT experience is actually something that is very regular, except for some strange disjoints, or imperfections, that cause profound dissonance. Whereas, if you’re in the pure noise kind of range, it all feels blah, it all feels really close to neutral.

When we say the state of consciousness is highly symmetrical and such, you know, let’s say, 5-MeO-DMT, or jhanas, or something like that, we expect these to actually show up in many ways. If you look at the biorhythms, like heart rate and breathing, that’s going to show up, symmetry is going to show up in some ways, being a different kind of projection of the latent state. I mean, ultimately, the formalism, you know, this mathematical object corresponds to consciousness is not observable directly, at least not right now. So we have to kind of rely on these projections, these interpretations of what’s going on, these ways of getting at this unobservable, underlying state. And EEG, connectome harmonics, biorhythms, and so on, are different ways of getting at it. I’ll show you at least empirically that it’s all so far consistent with the Symmetry Theory of Valence.

Here’s kind of the big plan. All of these different projections of this underlying state. So we have basically this stimulus. These are kind of visualized also to give you an intuition. So there’s stimuli, basically more symmetrical stimuli with higher valence, then there’s the endogenous bodily state, you know, biorhythms, as well. The CNS State, the actual, okay, what’s going on in your brain, then the formalism, and then the phenomenology of valence. When you have high valence, we expect (and what we see is) that there’s symmetry all across the board, in each of these different ways of looking at the state of consciousness. In each of these projections of the latent state.

So I’ll go on and start with phenomenology. I know that phenomenology is such a tricky thing. It’s so difficult to do, right. It’s so difficult to do. You make a lot of mistakes in phenomenology, get confused, and become self-deceived. So I mean, hopefully, the observation I’ll relate to you is going to show you that at least we’re taking care of some of the failure modes of phenomenology.

So, first of all, we distinguish between intentional content and phenomenal character. So, if you smoke DMT, and you experience, you know, you say something like “I saw a dragon with my own eyes” that doesn’t mean there was actually a mind-independent dragon out there. And, you know, I take seriously your report that you saw a dragon, but I don’t know how significant that is necessarily. On the other hand, if you describe “Oh, and by the way, the dragon had scales that had a symmetry group of what’s called the glide mirror symmetry group, and it had a 17 hertz strobing effect“. Okay, yes, so we’re getting more into the phenomenal character. You’re actually describing what it felt like, not only what it was about. I would make the claim that these observations of symmetry being related to valence are about the phenomenal character. I don’t care that much about, you know, “What was the journey? What was the content of the experience?” I care more about what it felt like, what are the features of it, and what we observe is that there’s a deep connection here.

So I’ll just give you some examples. Basically, introspect. You know, the difference between massage and bodily pain. Massage is kind of this very, very pleasant, harmonious, tactile pattern throughout your body that gives you these very nice waves of pleasure, as opposed to bodily pain. Bodily pain, if you introspect on it, it’s almost kind of like there’s like pinch points and discontinuities and fragmentations and deformations in your sense of self and the continuity of your skin or your felt sense of your inner organs. Basically, I would make the claim that bodily pain always manifests in one way or another as a kind of symmetry breaking operation. Now, definitely keep this in mind if you ever have a pain again, hopefully not.

Also, let’s say anxiety versus relaxation. Anxiety, you could almost describe it as, constant prediction errors. “Oh, did my heart do something strange? Is my leg positioned properly?”. It’s a state of mind where all of these little imperfections bubble up to your awareness. I would say it’s interrupting the flow of your attention and creating these pinch points and deformations in the way you experience the world. As opposed to relaxation, where you’re almost kind of just completely melted into it. And it’s so regular, you can almost filter out most of your bodily sensations. And in that sense I would argue it has a very symmetrical quality.

There’s also this whole argument Mike brings up which is the phenomenology concerning non-adaptiveness, the non-adaptiveness principle, which is that basically, there’s a bunch of things out there that feel really good, but that weren’t in our evolutionary environment. Those are hints; we consider those hints that hey, if something wasn’t in the African savanna but feels great, it probably means that it’s kind of directly hacking into the patterns of valence somehow. We didn’t evolve to filter those out or to not get absorbed by them. And yeah, here are some examples, but I’ll go deeper into those. 

Now, there’s also this exotic valence. Bodily pain, anxiety, relaxations: those would be examples of “normal valence”. It’s the valence that we’re all used to. But I would say that also in “strange valences”, like valences in weird states of consciousness, they also follow this pattern. That in some sense, symmetry explains their pleasantness. And I’ll give you some examples.

So, dream music. I’ve had the pleasure or displeasure, you could say, of having had a lot of sleep paralysis and lucid dreams, and this effect is something you can experience in either sleep paralysis or lucid dreams. If you’ve had a lucid dream, where you were making music, or you heard, you’re hallucinating that there was a radio playing, you will notice that, “Oh my gosh, the music can be beautiful, like… incredible”. And this music, maybe you have heard it before, maybe not. Maybe your brain is generating it on the fly. But it has a quality to it that is extraordinarily hedonic and pleasant. And I remember studying this on myself over many lucid dreaming experiences. At first, I thought, “Oh my gosh, my brain is just unlocking this ability to create awesome harmonies and melodies”. But then I ended up realizing that even if I just make a kind of an “om”, this meditation sound, even though that sound is extremely simple, the quality of the sound in the lucid dream is profound. I mean, it’s almost kind of a surround sound, like 360 surround sound, and stereoscopic and full of reverb and richness. 

I would claim that it’s actually because, during a dream state, your brain is more resonant. You can kind of enter into these very, very resonant attractors, and it’s that quality that makes the music so compelling, not the melody. If you transcribe the melody, the melody may not be very significant. It was how it sounded that was so profound in the music in the dream.

Then you have meditation. Even these images, maybe, I don’t know if this is cheating, but representations of meditation, like high attainments, and so on, they usually come with these beautiful symmetries and whatnot. If you examine the phenomenology of jhanas, how they’re described, there seems to be kind of this projection of less and less information content in your experience. Going from having all of your attention concentrated in one point to then the experience of completely perfectly smooth, boundless space to then just pure consciousness, and then the experience of neither nothing nor something. In a sense, that’s kind of approaching the limit of zero information. And then people report these jhana experiences, they’re not pleasant in a conventional sense. It’s not like eating ice cream or something like that, but they’re still very, very high valence. They’re blissful, in an exotic way. But, I do want to point out that there’s this fascinating, strange relationship here between low information content and the blissfulness and the healing quality of the state.

And then there is exotic valence from psychedelics. I mean, again, I don’t want you to focus on the intentional content, what was the experience about. What you thought, of course, can influence your valence, but it’s more about the phenomenal character. There’s this phenomena of tracers, you move your hand around, and you see copies laying around, and in a sense, it’s giving a temporal depth to your experience. It’s almost kind of adding a new dimension of time, where qualia can pile up. And usually, if the trip is good, you’ll notice that these tracers are in a harmonic relationship with each other. That is kind of the essence of what makes them feel so good.

Likewise, there’s a psychedelic texture repetition. You stare at a piece of grass on LSD, and it starts to symmetrify. And I would totally say this is exotic valence because you ask the person, and they will say “the ground was symmetrifying, and I don’t know why, but it was awesome”. There was something really cool about it, and why would that be? Our interpretation here is that psychedelics are, in a sense, unlocking the valence capacity of your visual cortex. It’s kind of transforming your cortex into a pleasure machine, basically allowing it to exhibit these profound symmetries, and that is what actually is making them feel so compelling. People will struggle to explain “Why were the visuals cool? Why were they interesting?”. When it comes down to it, I think it is the symmetry.

Interestingly, these are called the wallpaper symmetry groups. There’s 17 possible ways of tessellating a two dimensional space. From subjective reports, we know that any of these can be experienced on a psychedelic. The ground, kind of chaotically, will arrive at one attractor of symmetry. It could be any of these 17, and they all feel great. They’re all extremely aesthetic and beautiful and blissful in one way or another. But it’s kind of a testament to just how general this effect is.

I would make the claim, and this is obviously a strong claim, but it matters for something like therapy, psychedelic therapy. We recently saw this fascinating research on psilocybin for major depression, and that a lot of these effects are mediated by whether you had a mystical experience or not. I would say that if you did have a mystical experience, and it was healing, I would bet that while you were having that experience, the sense of space and time was basically extremely, extremely symmetrical. And here is kind of why it’s so confusing. Because you come back and you say, “Well, I saw Jesus”, and you think that you got healed because of Jesus. I don’t want to dissuade you from that view, but I would basically ask you “Okay, but when you experienced Jesus, what was the feeling of space and time?”. They might say something like, “Oh, it had a beautiful light. It had this beautiful harmony and rainbows”. And I’ll claim that if you introspect on them then that it’s actually the quality of phenomenal space and time that is healing and blissful. The meaning, the religious meaning, is something that is helping your mind basically concentrate on that space, and take it seriously as a way of propagating this negentropy in your nervous system.

Now, another place where this shows up super, super clearly, phenomenologically, is on DMT. I definitely recommend this article we wrote that basically charts the DMT space. You can know a lot about where you are in the DMT space by describing what is your energy level on the one hand, and then what is the information content on the other. I would say DMT states that have close to zero information content would be kind of these geometric, perfectly repeating, symmetry groups, either 2D or 3D. Whereas, more chaotic states would be kind of in the middle. The energy level would be a matter of dose. The “height” you reach is very, very dose-dependent. But then the valence, I think it’s very, very dependent on actually where in the axis of information content you find yourself in.

Here again, there’s this diagram that the most blissful experiences you may have on DMT are going to be on these kinds of honeycombs and perfectly symmetrical patterns. The most unpleasant experiences are going to be just right next to those, they are going to be kind of dissonant honeycombs. Whereas you know, when you get to complex narratives, like machine elves and alien realms and all of that stuff, those experiences would be very mixed in their valence. There’s both dissonance, consonance, symmetry, anti-symmetry; those are very complex experiences.

Now, the information content, we think of them as basically attractors in feedback systems. You may end up in a chaotic attractor, you may end up in a limit cycle or a fixed point. And that will determine how much information content the state has. 

Interestingly, this also can be used to describe the difference between DMT and 5-MeO-DMT. We think DMT tends to have a lot more information content. 

So you have these very rich patterns, and I would say competing synchronies. On DMT, there’s all of these slightly different frequencies that are competing for your attention and creating a narrative out of that. That is like a very mixed experience; it is both blissful and distressing at the same time.

Whereas 5-MeO-DMT, which is described as far more powerful emotionally, tends to give you this sense of pure space, like the feeling of the insight into emptiness, the feeling of infinite boundless consciousness, very little information content. Yet, it’s so emotionally impactful to such an extreme extent.

Interestingly, I would say, the reports do come out that on 5-MeO-DMT, you may have the best experience of your time, or you may have the worst experience of your life. It’s kind of bimodal. It’s either amazing or it’s extremely bad. Often, it starts out really bad and then it gets amazing. I would describe that in terms of kind of this annealing process where it basically starts with dissonance, and, over time, things synchronize, and you do end up where all of your nervous system is entrained to the same frequency, and that feels very, very blissful. Whereas DMT is always kind of in this mixed state. It is very difficult for DMT to be pure negative or pure positive. It’s always this mixed state. So I would say, yeah, this is kind of the phenomenological case for the Symmetry Theory of Valence.

I’m two thirds of the way through the presentation. I’m just gonna walk you through the empirical evidence. So we were talking about phenomenology; that’s one of the projections of this formalism and its symmetry. There’s symmetry in the formalism. It’s gonna manifest in some forms of phenomenological symmetry. Likewise, you know, if you use external stimuli in order to generate a state, like, let’s say, watching a movie, playing music, playing stroboscopic stimulation, there’s a lot of evidence that indicates that the symmetry of the stimuli is the leading factor for how pleasant or unpleasant the resulting state is. We have all of this research in vision.

These are just some examples. It’s so stunning, right? Even if you know the effect, you still get the valence response. You go to a cathedral and think “Okay, I’m not gonna get high valence, I’m not going to get high valence”. You still get the response. It’s pretty automatic. As long as it has this rich, deep symmetry, oftentimes, it’s going to be very beautiful. There’s something very compelling about this.

Just some random pictures to give you a sense of this.

Why does this feel good? It really has very little to do with our ancestral environment.

Anyway, this is such a robust effect that, with the symmetry of faces, for example, even face paint can be used to modify the valence. So, if you don’t have a perfectly symmetrical face, but you add symmetrical face paint with beautiful patterns, you’re going to be judged as more beautiful. It’s just such a strong effect, that it can actually modify your perception of how beautiful somebody is. Likewise, if you add asymmetrical patterns, you look less beautiful. Now, this, I wouldn’t say this is that strong of evidence because this actually does have an evolutionary reason. Symmetry in faces is a marker of mutational load. So I don’t put that much stock in, symmetry of faces being that relevant. But symmetry in other forms is where I think it’s so stunning. 

You also see this in symmetry in audio, basically, regular rhythms. Harmony is the leading predictor for whether a sound is going to be pleasant or unpleasant.

You know, this is Helmholtz’s big idea. He was the first one to figure out why playing two notes in a piano that are one semitone apart feels unpleasant. It’s because the harmonics are basically within what’s called the critical window. They generate beat patterns and the beat patterns can be described as basically symmetry breaking operations in the waveform. Those symmetry breaking operations, in essence, cause irritation. So basically, the more beating there is in sound, and the more beating across the spectrum, the more irritating and distracting and rough the sound is going to sound like. Whereas, when you have these harmonic relationships, you play one note, one piano note, and another at an octave of difference, the harmonics line up perfectly. Actually, the sound is very compressible because you don’t have this extra information of where all the other harmonics lie. They’re just the harmonic sequence. And that is universally described as a more pleasant sound.

When you add up all the harmonics, you get these interesting curves. The height here is the amount of dissonance. When you have a relationship of one to two, basically an octave, you have zero dissonance, and that feels really good. Now, music is very complicated. We have to factor in the boredom mechanism. If you just play the same octave over and over, you get bored, and there’s an inner sense of restlessness and dissonance. But if you just hear it for the first time, then there’s a super, super strong relationship between symmetry and valence.

These are just examples of a piano chord.

Dissonant sounds. I can send you a link to all of these sounds after the presentation*, but I have some links for a SoundCloud account where you can kind of get convinced that “Oh gosh, these are actually really bad sounds”. It’s not that I’m saying they’re bad. If you ask 100 people, like 99% of people will say they’re awful. 

Likewise, reverb basically symmetrifies any waveform. Reverb is almost kind of this hack that you take almost any dissonant sound and you add reverb to it and is going to sound a lot less bad, a lot less distracting, irritating, and so on. So this is comparing the sound of a baby crying, which by the way, like in our analysis, it shows that babies crying, it’s almost like their sound is optimized for dissonance. It’s almost kind of as dissonant as it gets for a sound made by a human. For good evolutionary reasons, it has to be distracting, and catch your attention, bring the desire to stop it. But you add reverb and to give you a sense, that’s like if the baby was in a huge cave, you get all these echoes averaging out the beat patterns. It sounds way better, way less distracting, probably not good from an evolutionary standpoint. But, it’s just a fascinating kind of transformation you can apply to any waveform.

And here, I just want to illustrate that valence can happen across the spectrum. So I also have this file**, and you’re welcome to listen to it after the presentation where you can have consonance anywhere in the spectrum, mixed in with dissonance anywhere in the spectrum, mixed in with noise anywhere in the spectrum. That ends up basically creating these very mixed states. 

So basically, when I say “Oh, I had a mixed experience, a mixed valence experience” that underdetermines what I experienced because we don’t know if the positive part was in the high frequencies or in the low frequencies. We don’t know that. That’s why the full picture of valence would also include the spectrum for positive, negative, and neutral valence. You can have high frequency pleasure, you can have low frequency pleasure, etc. So that kind of explains why there’s a tremendous diversity of possible mixed experiences even though ultimately they’d still come down to symmetry. Deep down, they can all still be explained with symmetry.

Now, endogenously generated symmetry, this is fascinating research. That when you have this “biorhythm coherence” you feel happier. And the way of computing biorhythm coherence is very related to musical consonance. Breathing entrained with heart rate variability is reported as giving rise to a just much, much better positive mood, and is one of the things that long-term meditation achieves. Meditation entrains these biorhythms and basically makes them interlock with one another. That is reported as giving rise to positive mood which is an interesting finding and very consistent with STV.

Here are just some quotes. Cool.

And you know, the heart palpitations. I mean, it’s similar to anxiety in that if you have like this usually regular metronome, and it’s failing, is generating these imperfections, that gives rise to unpleasant states of mind. I’m sure heart disease is terrible for your valence. Likewise, meditation is a wonderful tool for heart disease because it allows you to overcome those imperfections and still feel good despite the problem.

In terms of other endogenously generated symmetry, I will mention orgasm and flow. Orgasm is a powerful generator of endogenous resonance. It’s the entrainment of motor systems to near hallucinations, to synchronizing feedback processes across multiple functional networks. With an orgasm, there’s a deep, deep level of synchrony and symmetry across the nervous system. I highly recommend introspecting on this (not to get into your sex life or anything, though). I mean, it’s something you can actually pay attention to, and it becomes very obvious once you notice it. 

Likewise with flow, there’s this evidence that symmetry is deeply related to flow. Two physiological metrics for measuring flow are cortical muscular coherence and a degree of coupling between neural EEG waves and EMG oscillations of muscle activity. So, there’s also these interlocking patterns, lower information content, more symmetry. Yeah, it’s a strong predictor of flow. So like, hey, go figure flow is also symmetrical.

Okay, let’s get into the symmetry in the brain. So this is kind of the other projection you could take of the latent state. If you look at the central nervous system of high valence states, how does the valence show up? And, you know, meditation, like all over the place, basically pretty much any kind of meditation, if done for a long enough time, leads to some kind of EEG coherence. Whether it’s gamma coherence, delta coherence, or alpha coherence, depends on which kind of meditation you do. But they all generate some form of coherence, and coherence in EEG is intimately related with symmetry. I mean, basically, two signals are coherent when they’re both reflections of a shared signal through a reverb pattern, meaning that they’re encoding the same information just through a different filter, which is, again, deeply, deeply connected to symmetry. 

Here’s a fascinating study from 2019 that I recommend reading which to me was really stunning. It was stunning in just how clear the connection with the Symmetry Theory of Valence was. The study is about the EEG recordings of the first and second jhanas and the interesting patterns that emerged in them. One of them is this seizure-like activity. Now, seizure-like activity is three to five hertz, and it doesn’t have harmonic structure. I mean most seizures don’t have their harmonics together with them. But the type of seizure-like activity you see on jhanas does have harmonic structure. And the picture here is basically the Fourier transform of the independent components of the EEG recordings. You can see there’s a very clean 5.6 hertz signal, together with its harmonic of 11.23 hertz. This is kind of stunning. Why would this happen? And jhanas feel really blissful. Without the Symmetry Theory of Valence, this is just super surprising and strange. With the Symmetry Theory of Valence it’s like, “Oh, yeah, you’re, feeling a really great symmetrical attractor of your brain and sustaining it”. So that’s going to feel good. 

Even you know, ketamine showing high levels of a gamma coherence.

For 5-MeO-DMT, the only dataset I’m aware of, of EEG and 5-MeO-DMT, shows coherence across the spectrum, not only gamma coherence, but also beta coherence, and especially delta coherence. Again, why on earth? The Symmetry Theory of Valence would explain this. It would say, “Yes, this is expected”. Other theories might struggle a bit. Now, I’ve got to say that just because you have high coherence doesn’t mean it’s going to be high valence. We expect also very negative valence could also be high coherence. Except that when you have total coherence, then we expect that to be always positive valence. Again, it’s going to have that relationship because you could still have a high average coherence, but have half of your channels coherent in a certain frequency and half of the other channels coherent in a slightly different frequency. That might actually maximize dissonance. So just average coherence is not enough. You also need to tell whether it’s in harmonic structure or not.

Pleasure in the brain seems to be kind of this distributed effect that also from our point of view would mean it’s actually a whole brain phenomena. 

This is about what I was mentioning about the pleasure centers from our point of view. I mean, there’s this research of if you tried to synchronize clocks, and you tried to synchronize neurons, and you put them in a geometric grid. If it’s large enough, you’re not going to usually get full scale synchrony. You might have emergent patches of synchrony or traveling waves of synchrony. But if you also add these random connections across the network and reduce the synaptic path length, then you can unlock the ability for the entire network to enter synchrony. So we think of the pleasure centers as kind of these bridges that are, in a sense, lowering the average synaptic path length across your brain, and therefore enabling similar synchrony across the brain. And that’s the reason why we think the pleasure centers generally feel good when you activate them. 

Okay, getting to the end of the presentation. So I’ll just talk about a few near “enemies”. I put “enemies” in quotes, because we actually admire these people. They’re part of our research lineages. I think they’re a very, very key component of any good theory of consciousness. But I think when it comes to valence itself, there’s some explanations in the space that are really close to the Symmetry Theory of Valence, but they’re not exactly what we’re getting at. So there’s this whole account of computational efficiency. The brain likes computational efficiency, but in a sense, you still have to explain why the brain likes computational efficiency- what does this liking manifest as? We use this argument of “passing the bucket” which ideally your theory of valence should avoid. The theory should explain what valence itself is, not only when it gets triggered. These theories of computational efficiency, energy efficiency, we would claim, they’re telling you under what conditions positive valence gets triggered, but they don’t tell you what positive valence itself is. And that’s what the Symmetry Theory of Valence is getting at. 

So yeah, these are some of the issues with those, at least as complete theories.

Finally, okay, counter examples. There’s this whole theory I recommend reading called Neural Annealing (by Mike Johnson). But even very neutral energy that neither has harmony or dissonance, can still give rise to very positive feelings because it can give rise to this annealing process. And that’s actually what we believe is going on with psychedelics. Psychedelics gives you what Mike would call semantically neutral energy. And that gives rise to basically this entropic disintegration, a term from Robin Carhart-Harris and the entropic brain hypotheses, which then gives rise to kind of this search, or self-reorganisation that basically will settle on these basins of symmetry. And it’s those that feel good, not the energy that feels good. It is the end result, the attractor that it takes you to.

And this explains, I think, why even somebody can like hot sauce. Hot sauce is kind of this unpleasant stimuli, but it can lead to euphoria. It can lead to this heightened state of energy. If you introspect on the euphoria of hot sauce, it’s not the unpleasant pain in the mouth, it’s that it raises all of your energy, your entire amount of the intensity of your consciousness. You can then notice these resonant waves, and it is those resonant waves that feel good, not the hot sauce itself. So there’s this kind of a step that basically separates one from the other.

I’ll just very quickly, briefly describe one way we’re trying to test the Symmetry Theory of Valence. It is not the only way to test it. I would even argue that, you know, the argument that I here presented is itself a potentially strong argument. But ideally, you know, we generate novel predictions. And this is one of them, which is that we basically expect that the very positive states of consciousness will have a harmonic relationship, basically a consonant relationship between the brain harmonics. Yeah, using the work of Selen Atasoy.

This algorithm of quantifying the amount of consonance in brain harmonics, which is something we were working with, and hopefully will get resolved soon.

We anticipate that, again, if this is true, the Symmetry Theory of Valence would be validated. If it’s not, it doesn’t invalidate it, because there’s many ways in which it can manifest. But when you have harmonics that are in a consonant relationship with each other, and those are the main drivers of your experience, we expect that to be pleasant.

That is, euphoric.

Whereas, when you have harmonics that are dissonant with each other, they generate these intense beating patterns. So we expect that to be described as unpleasant. Again, we don’t know, but we want to check if this is true. 

Just a couple testable predictions based on this, which is that we expect psychedelics to enhance the range of valence. Basically, psychedelics enhance energy across the board. Just all of the harmonics have more energy. We expect that some of those combinations will be just very consonant and reported to be very pleasant, some of those will be very dissonant, reported to be unpleasant. Then SSRIs, there’s a lot of research on SSRIs and their blunting effects. They cut the extremes of valence. So, we expect when it comes to harmonics that the SSRIs will be more noisy, less consonant, less dissonant. MDMA, we expect it to be a stable attractor of a few resonant modes that are very consonant with each other. Stimulants would be kind of high frequency consonance. Opiates would be low frequency consonance. Again, this idea that you can be in a good state leaves underdetermined whether there are symmetries in the high frequencies or the low frequencies, and this would disentangle these types of mixed experiences.

These are the last two or three slides which is kind of a case study which is SSRI’s. Roughly speaking, we interpret them as being noise inducers which is why things like orgasm on SSRIs are less intense. Crying is hard. I mean, crying itself is a kind of a dissonant and sometimes consonant, kind of resonant state. On SSRIs you feel kind of spaced out and music enjoyment goes down. So yeah, the way we think of SSRIs is that they’re almost kind of like listening to a white noise machine along your life, so it’s gonna cut off the extremes. It’s gonna blunt both very positive and very negative valence, and it’s gonna just kind of center you in neutral valence.

Whereas psychedelics, they basically kind of purify and intensify your harmonics. And in that sense, you get to have more pleasant and more unpleasant states and both extremes.

Just to remind you: introspect. I compel you, next time you’re on a psychedelic having a mystical experience, introspect on the quality of space and time. I suggest that you will probably be experiencing these kinds of beautiful ripples that are in a harmonic relationship to each other. Please email me if this is true or not true. But that’s the experience so far. And that’s the reason why this can feel so amazing. 

The future of mental health, ideally, would be that we can identify, “what are the sources of dissonance in your nervous system?” and then find the shortest path to the smallest change possible that will give rise to sustainable consonance in your nervous system. Whether this is going to be with meditation, a psychedelic session, or yoga, or biofeedback will be person-specific. There’s probably a shortest path from a highly dissonant dysfunctional state to a sustainable consonant state for each person.

And with that I just want to say thank you to other people in the team of QRI. And thank you, Robin, Shamil, and all of you guys for attending this presentation. And to the Centre for Psychedelic Research for hosting this presentation.

Thank you so much.

* BART sound, Baby Crying, Baby Crying w/ Reverb

** Consonance – Noise – Dissonance – Mixed Spectra

Special Thanks to: Mike Johnson who initiated this research direction and has been deeply involved in it for years. To Andrew Zuckerman, Quintin Frerichs, Kenneth Shinozuka, Sean McGowan, Jeremy Hadfield, and Ross Tieman for their contributions to the current work this year. To everyone in the team for their help, support, and love. To our donors for their incredible help. And to you, dear reader. Thank you!

Modeling Psychedelic Tracers with QRI’s Psychophysics Toolkit: The Tracer Replication Tool

Try it yourself!

By Andrés Gómez Emilsson (see special thanks)


We developed a new method for replicating psychedelic tracer effects in detail: the Tracer Replication Tool. This tool gives us a window into how the time-like texture of experience determines the state of consciousness we find ourselves in, which clarifies what makes both meditating and taking psychedelics such powerful state-switching activities. We discuss how the technique of using the tracer tool may find useful applications, such as allowing us to describe exotic “ineffable” experiences in clear language, standardize a scale of intensity of psychedelic drug effects (a.k.a. a “High-O-Meter”), help us quantify the synergy between different drugs, and test theories for what makes an experience feel good or bad such as the Symmetry Theory of Valence. The pilot data collected with this tool so far is suggestive of the following patterns: (1) THC and HPPD result in a smooth and faint trail effect. (2) The characteristic frequencies of the strobe and replay effects for 2C-B are slower than those of either DMT or 5-MeO-DMT. And, (3) whereas DMT comes with a strong color pulsing effect leading to very colorful visuals, 5-MeO-DMT gives rise to monochromatic tracer effects. We conclude by discussing the implications of these patterns in light of an analysis of experience that allows for a varying time-like texture. We hope to inspire the scientific community and curious psychonauts to use this tool to help us uncover more patterns.


Rhythmic activity in the brain is a staple of neuroscience. It shows up in spiking neurons, synchronous oscillations at the level of networks, global patterns of resonance and coherence in EEG recordings, and in many other places. The book Rhythms of the Brain by György Buzsáki is a systematic review of what was known about these rhythms back in 2006.[1] One of the things György talks about in this book is how a lot of neuroscience techniques focused on finding the neural correlates of perception tend to consider the variable activation of neurons from one trial to the next as noise. In experiments that look into how neurons respond to a specific stimulus, datasets are constructed that track the neuronal activity that stays the same across trials. That which changes is discarded as noise, and György argues that such “noise” is really where the information about the internal rhythms is to be found.[2] We concur with the assessment that understanding these native rhythms is key for making sense of how the brain works. Perhaps one of the most exciting developments in this space is the method of Connectome-Specific Harmonic Wave analysis (Atasoy et al., 2016). This way of analyzing fMRI data describes a “brain state” as, at least partly, consisting of a weighted sum of its resonant modes. This paradigm has been used with success for comparing brain states across widely different categories of experience: LSD, ketamine, and anesthesia, among others (Luppi et al., 2020).

These are exciting times for exploring the native rhythms of nervous systems in neuroscience. But what about their subjective quality? One would hope that we could connect a formal third-person view of these rhythms with their experiential component. Alas, at this point in time the behavioral and physiological component of brain rhythms is far better understood than the way in which they cash out in subjective qualities.

Could there be a way to make these rhythms easily visible to ourselves as scientists? One interesting lens through which to see psychedelics is in terms of the way they excite specific rhythm-generating networks. This lens would present psychedelic states as giving you a sense of what it feels like to have many of these rhythms simultaneously activated, thus having access to a wider repertoire of brain states (Atasoy et al., 2017).

But you don’t need psychedelics to realize there’s something fishy about the solidity of our perception. Intuitively, one may get the impression that normal everyday states of consciousness do not show the signatures of being the result of ensembles of rhythmic activity. That said, some would affirm that paying attention to the artifacts of our perception may in fact be a window into these rhythms. For example, Lehar’s Harmonic Resonance Theory of the gestalt properties of perception (Lehar, 1999) attempts to explain the characteristics of well known visual illusions (such as the Kanizsa triangle) with principles derived from the superposition of rhythmic activity.

Kanizsa Triangles

Paying close attention to the act of observing an object over time has led some researchers to play with the idea that our experience of the world is best understood as music (Lloyd, 2013), for our feeling of a solid surrounding results from the interplay between finely coordinated sensations and acts of interpretation. Indeed, the fluidity of sensory impressions betrays our common-sense notion that we experience a solid and stable world. It often takes a perturbation out of our normal everyday state of consciousness to notice this. As an example here, we can point out that insight meditation practices peer into the illusion of solidity and continuity of our experience, whereas concentration meditation enhances these illusions (Ingram, 2018).

Arguably, like a fish who cannot notice water until it’s taken out of it, the stitching process by which our brain constructs reality is usually hidden from view. To be taken out of the water in this context would be to be in a state that allows you to notice the seams of one’s experience. To the extent that this normal stitching process breaks down in exotic states of consciousness, they are clearly useful for research in this domain. Thus we argue that the artifacts of perception in alien states of consciousness are not noise; they provide hints for how normal experience is constructed. In particular, we posit that “psychedelic tracers” (i.e. the cluster of persisting visual phenomena caused by hallucinogens) may be a window into how rhythmic feedback dynamics are used to control the content of our experience. For this reason, we have been interested in turning what until now has been qualitative descriptions and informal approximations of this phenomenon into concrete quantitative replications.

In what follows we will showcase the value of a psychophysics toolkit we developed at the Qualia Research Institute called the Tracer Replication Tool for modeling psychedelic tracer phenomenology. Although we will focus on psychedelic experiences, this tool can have a much broader set of applications. For example, we show how the tool can be used to visualize and quantify the severity of HPPD, which currently has a very qualitative, and imprecise at best, diagnostic criteria. Likewise, the tool has the potential to bring together the complex clinical presentation of visual disturbances such as palinopsia, photopsia, oscillopsia, visual snow, and other conditions, into a coherent framework. Perhaps, speculatively, the connection between all these visual disturbances is to be found in the dysregulation of the rhythms of the visual control systems, which is what the tracer tool sets out to quantify.

The only attempt of arriving at quantitative replications of psychedelic tracers in the scientific literature we are aware of is by (Dubois & VanRullen, 2011). They used multiple-exposure stroboscopic photography in order to depict video scenes. They then asked many people who have had LSD experiences to identify the strobe frequency that best approximated their tracers (which on average was in the 15-20 Hz range).

As we will see, our model for psychedelic tracers is more detailed: it has multiple persistence of vision effects that combine together into a complex tracer. For this reason, the kind of tracers used in Dubois & VanRullen turn out to be a special case of our tool, which we call the strobe effect:

LSD users perceive a series of discrete positive afterimages in the wake of moving objects, a percept that has been likened to a multiple-exposure stroboscopic photograph, somewhat akin to Etienne-Jules Marey’s chronophotographs [5] from 1880, or to more recent digital art produced in a few clicks (Figure 1).

Visual Trails: Do the Doors of Perception Open Periodically? by Dubois & VanRullen
Multiple-exposure stroboscopic photograph. (source)

By using a wider set of effects, the Tracer Replication Tool might give us hints about how psychedelics disrupt native rhythms given how they affect the processing of perceptual information at a granular level.

Before we provide the full set of tracer effects along with their associated vocabulary, let us jump into the preliminary psychedelic replications we have obtained thanks to this tool.

Psychedelic Replications

Over the years since I’ve run the Qualia Computing blog, I’ve received many messages from people who, for lack of a better term, we could call rational psychonauts. This should not be too surprising, with pieces like “How to Secretly Communicate with People on LSD” and “5-MeO-DMT vs. N,N-DMT: The 9 Lenses”, the site has become a bit of a Schelling point for people who like to blend computational reasoning and the study of exotic states of consciousness. These rational psychonauts are people who not only are well acquainted with exotic states of consciousness, but also like to use a scientific and rational lens to make sense of such states. In particular, people in this cluster often ask me to send them experiments to try out next time they take a psychedelic substance. I certainly never encourage them to take drugs, but under the assumption they will do so anyway, I sometimes send them tasks to do. Thus, once we had a prototype for the tracer tool, I already had a set of more than willing anonymous pilot participants. I sent them the link to the tool along with some brief instructions. Namely:

Look at the ball for a few minutes in state X (where X can be any substance, meditation, etc.). Then as soon as you come down, try to fiddle with the parameters on the left until the simulated tracer looks as close as possible to how you experienced it in the state. When you are ready, simply click “submit parameters” and add info about what the state you were in was at the time. In the case of HPPD, just try your best to replicate the tracer (I know it gets confusing when we talk about the tracers of the simulated tracers, but try to ignore those and just replicate the tracer of the original input).

Without further ado, here are the resulting replications I received:


Mild HPPD (participant said it was strongest on color red)


12.5mg edible, 60 minutes post-ingestion
15mg edible, 90 minutes post-ingestion


20mg orally ingested
12mg “gummed”

Notice how although the replication of the higher dosage is more mild in a way, they both share the presence of a strobe effect at roughly 5.5 Hz!


5mg vaped
10mg vaped
20mg vaped

The higher dose has a complex mixture of effects, including 40 Hz color pulsing (positive and negative afterimages mixed together), 22 Hz replay, and 27 Hz strobe. I’ll note that the participant included the following comment: “Aside from extremely fast tracers, the white space consisted of pixelated fractals. Color was abundant.”


5mg vaped
10mg vaped

As we will discuss further below, it is worth noting that at least in this sample, there are no color pulsing effects present (which is unlike “regular” DMT).

Drug Combination: Mescaline + ETH-LAD

125μg ETH-LAD + 2 teaspoons of San Pedro powder

The above is the only datapoint we have so far from the combination of psychoactive substances. The participant took 125μg of ETH-LAD, and then two and a half hours later 2 teaspoons of San Pedro powder. The replication is of the way the ball looked like 5 hours after taking the first drug.


Let us now look into the specifics of the tracer tool:

Core Effects

Core effects are pillars of the tracer tool where a particular feedback dynamic is used. The core effects include trails, strobe, and replay.


A modifier effect is one that plays with a core effect and alters it in some way. We will talk along the way about the modifying effects of persistence, intensity, and frequency, and then have a separate section to talk in more detail about the modifier effects of envelope (ADSR), pulse, and color pulse.

Trails (Core Effect)

This is perhaps the most basic effect. Making an analogy with sound, trails are akin to a soft reverb with no delay:

The three settings for trails are: persistence, intensity, and exponential decay (which is binary in the current implementation and otherwise takes on the value of linear decay). Persistence determines how quickly the tracer vanishes, whereas intensity is a constant multiplier for the entire trail. Thus, by changing those parameters you can choose between e.g. a long but dim trail or a short but bright trail.

High persistence / low intensity

Low persistence / high intensity

The exponential decay parameter slightly changes how quickly the brightness goes down; when it’s on, the trails go down more smoothly (cf. gamma correction).

Without exponential decay

With exponential decay

Strobe (Core Effect)

The strobe effect takes snapshots of the input at regular intervals. It works like chronophotography, and it is perhaps what most people think about when you first talk about visual tracers. It is the effect that Dubois & VanRullen used to find that LSD produces visual tracers at ~15-20 Hz.

Strobe effect at 16.4 Hz

The strobe effect, just as the trail effect, also has intensity, persistence, and exponential decay modifiers. In addition, it also has frequency, which encodes how many snapshots per second are being taken.

5 Hz Strobe

10 Hz Strobe

20 Hz Strobe

Note: The current implementation of the trails feature is done with a very fast strobe. In this way, when you set the strobe frequency to the maximum you get something that starts to look a little like the trails effect.

Replay (Core Effect)

With an analogy to sound, replay would be akin to adding an echo or delay to a signal. Replay adds to the raw signal a copy of the output from a fraction of a second into the past. The result is a current output that contains a sequence of increasingly dimmer video replays of itself at regular time intervals into the past.

6 Hz Replay

As with strobe, replay has intensity, persistence, exponential decay, and frequency as its modifying effects.

3 Hz Replay

12 Hz Replay

Note: the replay effect is difficult to distinguish from the strobe effect with only still images

Pulse (Modifier)

This is a modifier effect that can apply to trails, strobes, and replays (right now the implementation only applies to strobe, but we may change that in the future). It takes a fraction of the input and modulates it with a sine wave at a given frequency. This way the trails, strobes, and replays can come and go (either in part or in full) at a given frequency. This adds sparkle to the experience, and it can plausibly help create a sense of reality or object-permanence for the hallucinations as they “vibrate at their own frequency”.

Compare the difference between a strobe at 4 Hz vs. a strobe at 4 Hz with a pulse at 2 Hz:

4 Hz Strobe
4 Hz Strobe + 2 Hz Pulse at 50% amplitude

As you can see, the pulsing effect makes the strobes look like they have a sort of life of their own.

ADSR (Modifier)

This modifier effect was something we decided to add because James Kent of Psychedelic Information Theory (Kent, 2010) talks about ADSR envelopes for tracers in the section titled “Control Interruption Model of Psychedelic Action”:

Using control interrupts as the source of hallucinogenesis, we can model hallucinogenic frame distortion of multisensory perception the same way we model sound waves produced by synthesizers; by plotting the attack, decay, sustain, and release (ADSR envelope) of the hallucinogenic interrupt as it effects consciousness. (Fig. 2)3,4 For example, nitrous oxide (N20) inhalation alters consciousness in such a way that all perceptual frames arise and fall with a predictable “wah-wah-wah” time signature. The throbbing “wah-wha-wah” of the N20 experience is a stable standing wave formation that begins when the molecule hits the neural network and ends when it is metabolized, but for the duration of N20 action the “wah-wah-wah” completely penetrates all modes of sensory awareness with a strobe-like intensity. The periodic interrupt of N20 can be modeled as a perceptual wave ambiguity that toggles back and forth between consciousness and unconsciousness at roughly 8 to 11 frames-per-second, or @8-11hz.5 Consciousness rises at the peak of each “wah” and diminishes in the valleys in between. On sub-anesthetic doses, N20 creates a looping effect where frame content overlaps into the following frame, causing a perceptual cascade similar to fractal regression. We can thus model the interrupt envelope of N20 as having a rounded attack, fast decay, low sustain, medium release, with an interrupt frequency of @8-11hz. Any psychoactive substance with a similar interrupt envelope will produce results that feel similar to the N20 experience. (Fig. 3) For instance, Smoked Salvia divinorum (vaporized Salvinorin A&B, or Salvia) has an interrupt envelope similar to N20, except Salvia has a harder attack, a slightly longer decay, a more intense sustain, a slightly longer release, and a slightly faster interrupt frequency (@12-15hz).6 These slight changes in the frequency and shape of interrupt envelope cause Salvia to feel more physically intense, more hallucinatory, and more disorienting than N20, even though they share a similar throbbing or tingling sensation along the same frequency range.

The chapter about the Control Interrupt Model of Psychedelic Action in Psychedelic Information Theory by James L. Kent

“Figure 2.” (source)

This actually seems to be important for showcasing what makes drugs with similar characteristic frequencies capable of feeling so different.

2 Hz Strobe
2 Hz Strobe + soft ADSR pattern

A really interesting research lead that is connected to the ADSR envelope of psychedelic tracers can be found in The Grand Illusion (Lehar, 2010), where cognitive scientist Steven Lehar narrates some of his experiences with LSD vs. LSD + MDMA. One of the things he discusses is the way that MDMA makes the experience jitter in a pleasant way that results in the LSD visuals becoming smoother (emphasis mine):

Under LSD and ecstasy I could see the flickering blur of visual generation most clearly. And I saw peculiar ornamental artifacts on all perceived objects, like a Fourier representation with the higher harmonics chopped off. LSD by itself creates sharply detailed ornamental artifacts, like a transparent overlay of an ornamental lattice or filigree pattern superimposed on the visual scene, especially in darkness. Ecstasy smooths out those sharp edges and blurs them into a creamy smooth rolling experience.

The Grand Illusion (pg. 62) by Steven Lehar

I would suspect that this distinction will become legible with the judicious use of ADSR envelopes. Below you will find a possible rendition of this effect:

10.3 Hz Strobe (maybe LSD)
10.3 Hz Strobe + soft ADSR pattern (maybe LSD + MDMA)

As we will discuss further below, a more creamy ADSR envelope may cash out in a more pleasant experience, whereas a sharper or spikier envelope may in turn create more harsh experiences.

Color Pulse/Negative After Images (Modifier)

The color pulse effect transforms the image’s color towards its opposite in the CIELAB color space with a given frequency. It modifies strobe, replay, and trails (in principle, there can be a different color pulse for each effect, but for now it modifies all three simultaneously).

23.6 Hz Strobe
23.6 Hz Strobe + 2 Hz Color Pulse

Unlike pulse, color pulse modulates the color rather than the brightness of the input. The way we determine what color to transform into is by going to the opposite side of the CIELAB color space. This accurately approximates the negative afterimage of any phenomenal color (such as yellow being the negative afterimage of blue, and green being the negative afterimage of red). In our current implementation, color pulsing affects strobe and replay quite differently. For replay, the effect is one where there are now versions of the ball (or image, more generally) that have the opposite color that are chasing the original ball, whereas for strobe the effect is that of giving a seizure to each of the recent snapshots of experience! See for yourself:

26 Hz Replay + 13 Hz Color Pulse
26 Hz Strobe + 13 Hz Color Pulse

In a future version of the tracer tool, color pulse may become a sub-property of each main tracer layer in the same way ADSR is a sub-property of the strobe and replay layers.

Color pulsing may be an important piece of the puzzle for understanding how otherwise similar drugs can have such dramatically different effects. Tentatively, color pulsing showed up as a distinction between DMT and 5-MeO-DMT according to one of the persons who submitted parameters (as you can see above in the replication section). For that person, DMT produced color pulses while 5-MeO-DMT did not. Of course this is just a sample size of N=1. But it seems like an important research lead if true! After all, DMT trip reports do talk of highly colorful hallucinations that typically involve the combination of colors and their opposites (e.g. “The wall looked like a Persian carpet with an alternating checkerboard pattern design of neon green and magenta light” – anonymous 10mg DMT), whereas most 5-MeO-DMT trip reports don’t feature color very much. In fact, 5-MeO-DMT trips are often in black and white, pure white, pure black, or “nothingness color”. We discuss the implications of this in more detail in the last section of this piece (Getting Realms from Time-Like Textures).

Face Value vs. Dynamic Feedback Model

It is important to point out that the tracer tool works under the assumption of linearity between the effects it models. In other words, each effect modifies the input in its own way, and the corresponding modifications are added linearly at the end. This does not need to be the case. And in fact, we must expect the brain to have a lot of complex non-linearities where e.g. the pulsing effect is then used in a replay loop which entrains a strobing pattern which focuses your attention and so on. This complication aside, there is a lot of value in postulating the simple model first, and then adjusting accordingly when it fails to model the more complex phenomena. When we get there, once we have identified particular drugs, doses, and combinations that produce strange nonlinearities, we can then build tracer tools that explore how the parameters of particular dynamic systems can best explain the empirical data. Until then, let us start mapping out the space with this (relatively) simple linear model.

Useful Vocabulary

I would like to highlight the fact that using the tracer tool can be very educational. Familiarizing yourself with the effects and their modifications will allow you to be able to describe in detail psychedelic tracers even without having to use the tool again. For instance, I find myself now able to describe what kind of tracer effect appears on any given replication or trippy video. For example, now that you have read about them, can you tell us what is going on in the following gifs?:


The Explanatory Power of the Time-Like Texture of Experience

Exotic Phenomenal Time

We have previously suggested that tracers in the most general sense (i.e. including tracers for emotions, thoughts, and all sensory modalities in addition to visual experience) are very important for understanding the time distortions one experiences in exotic states of consciousness. The overall idea is that the aspect of our experience that gives rise to the feeling of time passing is the result of implicit causality in the network of local binding connections, which we call the pseudo-time arrow (see a recent presentation about it). Don’t worry about the details, though. All you need to know is that here we model phenomenal time as the direction along which causality flows within one’s experience. And because this is a statistical property of our experience, it turns out that phenomenal time ends up being very malleable; it admits of “exotic phenomenal time” variants:

This framework can articulate what is going on when you experience crazy psychedelic states such as moments of eternity, time branching, time looping, and so on. Now, even these are just some of the possible ways in which the network of local binding connections can give rise to exotic phenomenal time experiences. In reality, because the pseudo-time arrow emerges at a statistical level in the network, one can have all manners of local pseudo-time arrows nested in complex ways, as briefly discussed in the presentation:

 I will end by speculating: I just walked you through seven types of exotic phenomenal time, but if indeed [the experience of time] can be explained in terms of causality in a graph, then there are many other exotic phenomenal times we can construct. This is especially so when we consider the space of possible hybrid phenomenal times. For instance, where in some regions in the network we may find time looping, some other region might be a moment of eternity, and perhaps another region is branching, and you know, if you have a very big experience, there is no reason why you wouldn’t be able to segment different regions of it for different types of phenomenal time. This is not unlike, perhaps, how we think of Feynman diagrams, where this part of it here is moving forwards in time, this part here is doing a loop, this part here is branching… I think a lot of the topologies we see here could be used to represent completely new [hybrid] exotic phenomenal times.

The Pseudo Time Arrow | Andres Gomez Emilsson (2020)

Given the diversity of ways in which phenomenal time can be expressed in an experience, I will start talking about the patterns encoded in the pseudo-time arrow as the time-like texture of experience. This way, rather than assuming that one’s sense of time is globally consistent in a given way (e.g. as in “I am fully inside a time-loop”), we can discuss how various patches and components of one’s experience have this or that time-like texture (e.g. “my visual field was looping, but my proprioception was strobing and my thoughts felt timeless”).


As a generic effect, all psychedelics seem to increase the duration of qualia in one’s experiential field, leading to a buildup of energy. But the precise shape this takes matters a lot, and it is certainly different between drugs. An example pointed above is how LSD and DMT seem to produce strobe and replay patterns of markedly different frequencies. For DMT, the spatial and temporal frequency of the visual hallucinations is usually described as “very high”. Based on the replications thus far, along with personal reports from a musician I trust, DMT’s “characteristic frequency” seems to be in the 25 to 30 Hz range. In contrast, LSD’s frequency is more in the range of 15 to 20 Hz: both Dubois & VanRullen’s LSD tracer study and subjective reports I’ve gathered over the years point to the hallucinations of acid having this rough frequency. Hence, the very building blocks of reality of a high-dose DMT breakthrough experience consist of tiny time-loops and strobe effects interacting with one another, weaving together a hallucinated world with surprising levels of detail and intense freshness of experience (as all the time loops are “young” due to their short duration). Really, when you take a small dose of DMT and you see the walls tessellating into wallpaper groups, notice how each of the tiny “bricks” that make up the tessellation is itself a time loop of sorts! It is not a stretch to describe a DMT experience as a kind of complex Darwinian ecosystem of tiny coalition-based time loop clusters bidding for your attention (cf. Hyperbolic Geometry of DMT Experiences).

Taking this paradigm seriously allows us to interpret psychoactive effects at a high level in novel ways. For example, these are some of the general patterns we have identified so far:

  1. Psychedelics tend to have strong replay and strobe effects
  2. HPPD, cannabis, and dissociatives seem to have a much smoother trail effect
  3. MDMA and 5-MeO-DMT have characteristically creamy ADSR envelope effects

Using the sound metaphor to restate the above, psychedelics introduce beats and recursion, dissociatives introduce reverb, and empathogens/valence drugs may affect the temporal blur of one’s experience. Thus, we arrive at a model of psychoactive substances that makes sense of their effects in the language of signal processing rather than neurotransmitters and functional localization. This sheds a lot of clarity on the mysterious and bizarre state-spaces of consciousness disclosed by psychoactive drugs and paves the way for a principled way of predicting the way drug combinations may give rise to synergistic effects (more on that below). More so, it lends credence to the patternceutical paradigm of drug effects.

Meditation: Insight and Concentration Practices

The pseudo-time arrow paradigm suggests that one of the ways in which meditative practices can switch one’s state of consciousness is by disrupting sober time-like textures and enabling exotic time-like textures not available to the sober mind (see also: The Neuroscience of Meditation: Four Models (Johnson, 2018)). My personal experience with meditative practices is limited, but I’ve had the pleasure of experiencing some strange effects so far. In particular, I would say that concentration practices seem to give rise to experiences with long and stable pseudo-time arrows – a peacefulness in which nothing is happening yet the flow of time is constant and rather uneventful. The phenomenal time of highly focused states of mind may be full of reverb, but I do not think it has crazy time loops. Moments of eternity and timelessness may be present at the limit here (e.g. moments of eternity and Jhanas may be deeply connected), though I will need more personal experience to say this with confidence. 

On the other hand, insight practices such as noting meditation may have more of a replay and strobe effect. In particular, this may happen as a result of three core effects from this kind of meditation: (1) it stops you from dissipating energy across long narratives, (2) it recaptures the energy you were going to use for a longer narrative to feed the noting process instead, and (3) it entrains the rhythm of noting. This in turn (a) energizes a regular constant-frequency pattern (the frequency of noting) and (b) reduces the energy of every other rhythm, which in turn (c) canalizes sensory stimulation energy towards the brain’s noting frequency and all of its harmonics, which eventually leads to a high-frequency energized state of consciousness whose building blocks are tiny time-loops. These can synchronize and create experiences with characteristic time-like textures made up of such tiny energized loops. Hence, noting practice above some level of skill (e.g. with a noting frequency above 3 Hz) can be DMT-like to an extent (in light of thinking of DMT realms as made up of energized high-frequency mini-time-loops).

These experiences characterized by intense tracer effects are in a similar space as the strange temporal distortions that happen when you are dizzy (like when you stand up too fast or hyperventilate). The “loss of context” that results from this effect is due to the longest replay loops becoming too short to contain the necessary information to “keep you in the loop about what is going on”. Hence the confusion about who or what you are, what you are doing, and how you got here that happens when you are near passing out from standing up too quickly. That confusion takes place in an otherwise highly detailed and intense high-energy and high-frequency “rush” made of tiny time loops.

Thus, one of the gateways into altered states of consciousness via meditation with noting can be summarized as what happens when you induce a self-reinforcing pattern of strobing, replay, and pulsing that fully captures your attention. This process builds up a lot of energy, which one can only wield up to a point. When one fails to control it, the state decays into a series of tracer patterns that use the clean loop as its background reference. As this happens, one experiences a world whose building blocks are beautiful tiny jewels of attention, slowly decaying as one loses the ability to stay focused. The decay process also seems to do something good when properly orchestrated. Namely, as the decay process begins, one naturally experiences a Cambrian explosion of qualia critters eager to feed off of the negentropy generated, as thought-forms need attention to survive. This whole process, one could argue, lends phenomenological credence to the paradigm of neural annealing, where one’s brain uses a heating and cooling schedule to entrain brain-wide harmony.

In other words, with something like a noting practice, one ends up creating a world simulation whose building blocks are all embedded in a very tight time-loop, a wind-up universe of concentrated awareness. Perhaps we are going too far with this explanation. Either way, we really feel that thinking in terms of these generalized tracer dynamic patterns is an exciting new conceptual toolkit that allows us to describe the quality of exotic experiences that were hard to pinpoint before.

Three Exciting Possible Applications of the Tracer Tool: High-O-Meter, Synergy Quotient, and Harmonic World-Building

(1) High-O-Meter

How high are you? It is often difficult to put a number on this question. But once we have established the parameters for different drugs (e.g. characterized DMT as living in a region of the parameter-space that is of higher frequency than LSD, etc.) we can show a series of gifs to someone and ask them to point at the one that best shows what tracers looked like at the peak of their experience. This way we can quickly estimate how high they got (at least visually) with a very simple question.

For example, we may find that the “modal response” to 50, 100, 200, and 300 micrograms of LSD looks as follow:

Simulated tracer for 50 μg of LSD
Simulated tracer for 100 μg of LSD
Simulated tracer for 200 μg of LSD
Simulated tracer for 300 μg of LSD

If this works, we would be able to sort research participants into one of these ranges just by asking them to point at the image that best captures their experience. Similar tools for other modalities could be used to obtain a global “highness score” meaningful across people.

(2) Synergy Quotient (orthogonality vs. synergy vs. suppression vs. harmonization)

What happens when you combine psychoactive drugs together? We have previously discussed in great detail what happens when you take combos of drugs from various categories (see: Making Amazing Recreational Drug Cocktails), but admit that there are huge puzzles and unknowns in this space. Of note is that some combinations give rise to synergistic effects (e.g. psychedelics and dissociatives), others blunt each other’s action (e.g. agmatine and nootropics), while yet others seem to create competing effects due to some kind of mutually-exclusive qualities of experience (e.g. salvia and DMT, a.k.a. “drugfights”). For an illustrative example of the third category, famous psychonaut D. M. Turner reports:

I smoked 30 mg. of DMT in three tokes, followed immediately by 650 mcg. of Salvinorin that I had preloaded in a separate pipe.

The effects were felt almost immediately. The first thing I noticed was a grid of crosshatch patterns. I had perceived something similar when using 2C-B with mushrooms, which I believed to be the result of using two psychedelics that were not compatible with each other. However, in this case the patterns were defined to a much sharper degree, and it seemed apparent that these two substances affect consciousness in differing ways that are not synchronistic when used together. Both the Salvia and DMT entities seemed to have been taken entirely off guard and had not been expecting this confrontation. These entities seemingly paid no attention to me as their attention was entirely fixed on each other. It soon became apparent that the two were going to battle, vying to determine who would have control of my consciousness.

Source: #9  D.M. Turner – 650 mcg. Salvinorin with 30 mg. N.N. DMT

We think that the tracer tool can be useful to quantify the degree of interaction between two drugs. For instance, say that drug A produces a robust 10 Hz replay effect, whereas drug B produces a 7 Hz Strobing effect. Would drug A + drug B cause a tracer that blends these two facets, or does it produce something different? If the combination’s tracers are different than the sum of its parts, how large is this difference? And can this difference be identified with a particular recursive stacking of effects, or as the result of a nonlinear interaction between dynamic systems? We believe that this line of research may be very illuminating.

Drug A
Drug B
Drug A + Drug B (“orthogonal”)
Drug A + Drug B (“suppression”)
Drug A + Drug B (“synergy”)
Drug A + Drug B (“harmonization”)

In the above example, we show what various possibilities for the result of drug combos may be. “Orthogonal” effects mean that the resulting tracer is the sum of the tracers of each drug, “suppression” means that one drug’s effect reduces the effect of the other, “synergy” means that the resulting effects are stronger than you’d expect by just linearly adding the effects of each drug, and “harmonization” refers to the possible slight-retuning of the characteristic frequency of each drug’s effect that allows for a consonant blending. How strongly the combo is from the predicted effect based on each drug would determine the synergy quotient of the pair.

A few possible (tentative) examples: alcohol + psychedelics give rise to orthogonal effects, opiates and psychedelics result in effect suppression, dissociatives and psychedelics result in strong synergy (not unlike what you get when you stack reverb and looping in music), and MDMA and psychedelics might result in harmonized tracers (hence the creamy and harmonious visuals of candy-flipping). We would love to see research tackling this question.

(3) Harmonic World-Building

Tinnitus is usually loud and distracting, but in addition, it can also be annoying and unpleasant. At QRI, we posit that the precise pattern of tinnitus—not only its loudness—has implications for how bad it is for someone’s mental health: dissonant and chaotic tinnitus might be worse than consonant and harmonious patterns, for instance. 

In a similar vein, we think that the particular tracer patterns, over and above just their intensity, of perceptual conditions like HPPD probably matter for how the condition affects you at a cognitive, perceptual, and emotional level. Concretely, we would like to study how valence is related to one’s particular tracer patterns: we think that when psychedelic tracers feel good, that such positive valence may show up in the form of (a) harmonious relationships between the components of the effects, and (b) a sort of creaminness in the way the tracers come over time (as shown in the MDMA + LSD trip report by Steven Lehar).

We take seriously the possibility that something akin to the rules of harmony in music (see: Tuning Timbre Spectrum Scale by William Sethares) will have a showing in the way resonance in any experiential field cashes out into valence. In other words, the way patterns of resonance in the brain combine might be responsible for whether the experience feels good or bad. In particular, under psychedelics and other high-energy states of consciousness, one’s visual field is capable of instantiating visions of both tremendous beauty and tremendous terror. It is as if in high-energy regimes, one’s visual field acquires the capacity for creating pleasure and pain of its own (albeit “visual” in flavor!). While sober, one can get something akin to this effect, though only mildly in comparison: you can experience beautiful patterns by staring at a smooth strobe with eyes closed, or experience unpleasant reactions when the strobe shines at irregular intervals. The quality of the self-generated light-show in energized states of consciousness (such as a psychedelic experience) will likely have an impact on one’s sense of wellbeing. Is one’s inner light show all irregular, uncoordinated, sharp, and jarring? Or is it smooth, clean, robust, and soft? Based on the Symmetry Theory of Valence, one can anticipate that one’s tracer phenomenology feels good when it expresses or approximates regular geometries and bad when the implied geometries are irregular or disjointed.

Dissonant emergent pattern
Consonant emergent pattern

The creaminess of smooth ADSR envelopes would likewise prevent sensory and emotional dissonance by virtue of softening spikes of sensations. This, of course, is ultimately an empirical question. Let’s investigate it!

Final Thoughts: Getting Realms from Time-Like Textures

The complexity and information content of one’s state of consciousness as induced by a substance may depend on what fits in the repertoire of time-like textures of the state. For example, some states might be much more prone to generate quasi-crystals as opposed to crystals, as we argued in DMT vs. 5-MeO-DMT (Gomez Emilsson, 2020).

What are these crystals? One of the characteristic spatial effects of psychedelics is that they lower the symmetry detection threshold. This gives rise to the beautiful tessellations (at times Euclidean, at times hyperbolic (Gomez Emilsson, 2016)) everyone talks about. Analogously in time, psychedelics are notorious for creating time loops (cf. Going Loopy (Alexander, 2014)). In a deeper sense these are, we might argue, two facets of the same underlying effect. Namely, the creation of, for lack of a better term, qualia crystals. We can be cautious about assigning an ontological interpretation to qualia crystals; all we are proposing here is to accept them as phenomenological artifacts that tie together a lot of these experiential qualities. These gems of qualia come in many flavors, but they all express at least one symmetry in a clean and deep way. Whereas our experience of the world is usually made of a complex distribution of (tiny) qualia crystals which form the macroscopic time-like texture of our mind, we find in exotic states of consciousness the possibility of experiencing the refined, pure version. Timothy Leary in The Psychedelic Experience describes what he believes is the key existential conundrum close to the peak of an ecstatic trip:

Is it better to be part of the sugar or to taste the sugar?

Timothy Leary, Richard Alpert, and Ralph Metzner in The Psychedelic Experience

In line with the neural annealing frame (Johnson, 2019), there is a very real sense in which slightly past the peak of a psychedelic experience you will find some of the largest, purest, most refined qualia crystals (at least relative to the human norm). And what this looks like will depend a lot on what the available building blocks are! The diversity of these building blocks makes the time-like texture of experience triggered by different drugs dramatically variable. 

Some of the realms of experience are made with a time-like texture of interlocking time loops of different frequencies allowing you to experience the sense of “a big other”. In some other realms, the time loops are all aligned with each other, which makes self-other distinctions hard to represent and reason about. The various flavors for the felt sense of non-duality, for example, may correspond to different ways in which strobes, replays, pulse, etc. align perfectly to dissolve the internal boundaries used as building blocks to represent duality. At the extreme of “unification”, such as the state found in the 5-MeO-DMT breakthrough, one “becomes” a metronome whose tune is reflected faithfully everywhere in one’s experience, such that there is nothing else to interface with. Hence, one becomes “invisible to oneself”. To be in a state of near total oneness may entail the feeling of nothingness for this reason (thus the highest Jhanas being “nothingness” and “neither nothing nor something”).

This overall interpretative frame of exotic states as the result of time-like textures may show up empirically, too. One of the exciting early results, as mentioned above, is the report that while DMT creates complex positive and negative after-image dynamics full of color and polarity, the tracers on 5-MeO-DMT are monochromatic, meaning that one only experiences their positive after-image.

This alone may go a long way in explaining why the visual character of these two drugs is so distinct at their upper ranges. Namely, because DMT gives rise to complex checkerboard grid-patterns of overly-saturated colors intermingling with their polar opposites, whereas on 5-MeO-DMT, one often experiences an incredibly bright white light, or even a sense of translucid empty space, but no colors! The paradigm of using tracer patterns to make sense of states of consciousness would here suggest that a “breakthrough” experience can be interpreted as what happens when one’s world is saturated with the time-like texture characteristic of the tracer pattern of either drug. The realms of experience these agents disclose are the universes that you get when the building blocks of reality are those specific time loops and attention dynamics, leaving no room for anything that does not follow those “phenomenal time constraints”. When the dose is low, this manifests as just a gloss over one’s otherwise normal experience, a mere modifier on top of one’s sober reality. But when the dose is large, these time loops and attention dynamics drive the very way one’s mind constructs our whole sense of the world.

In this light, rather than thinking of exotic states of mind as places (as the “realm” metaphor alludes to), one can imagine conceptualizing them as ways of making sense of time. When you smoke salvia, you make sense of time in a salvia kind of way, which involves looping back chaotically in a way that typically results in losing the normal plot altogether and instead exotic narratives better fitted for the salvia attentional dynamics end up dominating the world-building process of the mind. Hence you end up in “salvia land”. Which is what you remember best. But the salvia land one ends up in is only a circumstantial part of the true story. The fundamental generator that is upstream of this realm would be the overall tracer pattern, the time-like texture of the experience: the neuroacoustic effect of salvia. He who controls the time-like texture of experience, controls the world-building process of the mind. Thus the paramount importance of understanding tracer patterns.

Do you want to collaborate on this project?

For Researchers

The Tracer Replication Tool is the first of a series of research tools we are creating at QRI specifically designed with psychedelic phenomenology in mind. The spirit of this enterprise is to identify the ways in which psychedelic states of consciousness can enhance the information processing of the mind in some ways. Rather than focusing on how information processing is impaired, we develop these tools with the goal of finding the ways in which it is enhanced (cf. psychedelic cryptography (Gomez Emilsson, 2015), psychedelic problem solving (Harman, 1966)). We take very seriously high-quality trips reports from rational psychonauts, which help us ideate tasks that are likely to show large effect sizes. Thus, rather than bringing traditional psychometric tools to the psychedelic space, we think that developing the tools to assess the psychedelic state in its own terms is more likely to provide novel and significant insights. We would love to have academic researchers include some of these tasks in their own study designs. Becoming familiar with the Tracer Replication Tool takes less than 10 minutes, and based on the pilot results, operating it during a psychedelic experience is possible for a good fraction of people under the influence of these substances. It would be amazing to have tracer replications included in psychedelic studies to come. If you are involved in psychedelic research and would like to use the Tracer Replication Tool or learn more about the toolkit we are developing please reach out to us! We would love to hear from you.

For Participants and Volunteers

There are several ways you can help this project. As a beta tester participant, you can use the tracer tool to replicate tracers that you yourself have experienced. There are three categories here (which you can specify at the point of submission when using the tool):

  1. Retroactively: If you have experienced visuals tracers in the past and think you can remember them accurately (or at least recognize them when you see them), you can play with the Tracer Replication Tool and submit the parameters that best match your memory of the tracers you experienced.
  2. Post-Trip: If you are planning on taking a psychedelic in the near future* and want to submit a datapoint from your experience, open the tracer tool during the trip and look at the bouncing ball (and other animations). While staring at the center of the animation for about a minute, try to get a clear picture of what the tracers look like. We encourage you to play with the color, speed, and animation type while you are in the state so that you see how tracers react to different visual inputs. Then as soon as possible after the trip is over, come back to the tool and find the tracer parameters that best replicate what you saw.
  3. Within Trip: If you are familiar with the tracer tool parameters so that you can tell in real time whether you are experiencing strobing, replays, color pulsing, etc. then you may want to try to replicate the tracers you are seeing in real time. We recognize that this has the problem that the tracer replications will have psychedelic tracers of themselves, and that they get in the way of the tracers you are trying to reproduce. That said, the early reports we have received state that it is actually easier to do a good job at replicating the tracers while in the state than after it. So we also welcome submissions of this type.

The case of HPPD and other non-drug induced tracers could be considered in this frame as well. For instance, we have been made aware that during the meditation practice of Fire Kasina, one experiences many pronounced tracers of various kinds. Thus, if you are currently experiencing meditation-induced tracers, you can submit parameters of the within trip kind. If you saw the bouncing ball (or other animations) during the meditation but have now exited your state, then you could submit a datapoint of the post-trip kind. And if you only have the recollection of tracers but did not see the ball at the time, then submit a retroactive datapoint. Likewise, HPPD and other tracer phenomena may come and go and their intensity may wax and wane, so these categories are also useful in such cases.

Please sign up to the QRI mailing list if you want to stay informed about the development of QRI’s Psychophysics Toolkit. We also want to emphasize, as we note in the Special Thanks section below, that this tool could not have been made without our amazing QRI volunteers. We are very eager to work with anyone with technical skills useful for this and related projects. If you would like to help us build these tools and advance our collective understanding of exotic states of consciousness, please get in touch. For more QRI volunteer projects see our volunteer page.

 [1] A significant message of the book is that it is useful to conceptualize these rhythms as being the result of endogenous pattern-generating networks specialized to create specific frequencies, envelopes, and types of synchronization.

[2]  “There are only two sources that control the firing patterns of a neuron at any time: an input from outside the brain and self-organized activity. These two sources of synchronization forces often compete with each other (Cycle 9). If cognition derives from the brain, this self-organized activity is its most likely source. Ensemble synchrony of neurons should therefore reflect the combination of some selected physical features of the world and the brain’s interpretation of those features. Even if the stimulus is invariant, the brain state is not. From this perspective, the most interesting thing we can learn about the brain is how its self-generated internal states, the potential source of cognition, are brought about. Extracting the variant, that is, brain-generated features, including the temporal relation between neural assemblies and assembly members, from the invariant features evoked by the physical world might provide clues about the brain’s perspective on its environment. Yes, this is the information we routinely throw away with stimulus-locked averaging.” (Buzsáki, 2006)

*Disclaimer: We are not encouraging anyone to ingest psychoactive substances. 

Special Thanks to: Lawrence Wu for implementing the current version of the tool. To Andrew Zuckerman, Quintin Frerichs, and Mike Johnson for a lot of useful ideas, conversations, and keeping the project afloat. To Robin Goins and Alex Zhao for getting a head start in implementing an earlier version of the tool. To the QRI team for encouragement and many discussions. And to the anonymous rational psychonauts and the HPPD sufferer for contributing pilot data with visual replications of their own experiences.


Buzsáki, G. (2006). Rhythms of the Brain. Oxford University Press.

Atasoy, S., Donnelly, I., & Pearson, J. (2016). Human brain networks function in connectome-specific harmonic waves. Nature Communications, 7(1), 10340. https://doi.org/10.1038/ncomms10340

Luppi, A. I., Vohryzek, J., Kringelbach, M. L., Mediano, P. A. M., Craig, M. M., Adapa, R., Carhart-Harris, R. L., Roseman, L., Pappas, I., Finoia, P., Williams, G. B., Allanson, J., Pickard, J. D., Menon, D. K., Atasoy, S., & Stamatakis, E. A. (2020). Connectome Harmonic Decomposition of Human Brain Dynamics Reveals a Landscape of Consciousness [Preprint]. Neuroscience. https://doi.org/10.1101/2020.08.10.244459

Rudrauf, D., Lutz, A., Cosmelli, D., Lachaux, J.-P., & Le Van Quyen, M. (2003). From autopoiesis to neurophenomenology: Francisco Varela’s exploration of the biophysics of being. Biological Research, 36(1). https://doi.org/10.4067/S0716-97602003000100005

Lehar S. (1999) Harmonic Resonance Theory: An Alternative to the “Neuron Doctrine” Paradigm to Address Gestalt Properties of Perception. Available at http://slehar.com/wwwRel/webstuff/hr1/hr1.html

Lloyd, D. (2013). The Music of Consciousness: Can Musical Form Harmonize Phenomenology and the Brain?. Neurophenomenology. https://commons.trincoll.edu/dlloyd/files/2012/07/Lloyd-2013-Music-of-Consciousness.pdf

Ingram, D. (2018). Mastering the Core Teachings of the Buddha: An Unusually Hardcore Dharma Book. Newburyport: AEON Books. Available at: https://www.integrateddaniel.info/book

Dubois, J., & VanRullen, R. (2011). Visual Trails: Do the Doors of Perception Open Periodically? PLoS Biology, 9(5), e1001056. https://doi.org/10.1371/journal.pbio.1001056

Atasoy, S., Roseman, L., Kaelen, M., Kringelbach, M. L., Deco, G., & Carhart-Harris, R. L. (2017). Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Scientific Reports, 7(1), 17661. https://doi.org/10.1038/s41598-017-17546-0

Kent, J. L. (2010) Psychedelic Information Theory. PIT Press. Available at http://psychedelic-information-theory.com/pdf/PIT-Print-Web.pdf

Lehar, S. (2010). The Grand Illusion: A Psychonautical Odyssey Into the Depths of Human Experience. Available at: http://slehar.com/wwwRel/GrandIllusion.pdf

Turner, D. M. (1996). Salvinorin – The Psychedelic Essence of Salvia Divinorum. Panther Press. Available at: http://www.lavondyss.com/donut/toc.html

Leary, T. Metzner, R. Dass, R. (1964). The Psychedelic Experience: A Manual Based on the Tibetan Book of the Dead. Available at: http://www.leary.ru/download/leary/Timothy%20Leary%20-%20The%20Tibetan%20Book%20Of%20The%20Dead.pdf

Harman, W. Fadiman, J. (1996). Selective Enhancement of Specific Capacities Through Psychedelic Training. Psychedelic Reports. Available at: http://druglibrary.org/schaffer/lsd/harman.htm

Gomez Emilsson, A. (2015). How to Secretly Communicate with People on LSD. Qualia Computing. Available at: https://qualiacomputing.com/2015/05/22/how-to-secretly-communicate-with-people-on-lsd/

Gomez Emilsson, A. (2016). The Hyperbolic Geometry of DMT Experiences: Symmetries, Sheets, and Saddled Scenes. Qualia Computing. Available at: https://qualiacomputing.com/2016/12/12/the-hyperbolic-geometry-of-dmt-experiences/

Gomez Emilsson, A. (2018). The Pseudo-Time Arrow: Explaining Phenomenal Time With Implicit Causal Structures In Networks Of Local Binding. Qualia Research Institute. Available at: https://www.qualiaresearchinstitute.org/s/The-Pseduo-Time-Arrow.pdf

Gomez Emilsson, A. (2020). 5-MeO-DMT vs. N,N-DMT: The 9 Lenses. Qualia Research Institute. Available at: https://qualiacomputing.com/2020/07/01/5-meo-dmt-vs-nn-dmt-the-9-lenses/

Alexander, S. (2014) Going Loopy. Slate Star Codex. Available at: https://slatestarcodex.com/2014/04/11/going-loopy/

Johnson, M. (2018). The Neuroscience of Meditation: Four Models. Qualia Research Institute. Available at: https://opentheory.net/2018/12/the-neuroscience-of-meditation/

Johnson, M. (2019). Neural Annealing: Toward a Neural Theory of Everything. Qualia Research Institute. Available at: https://opentheory.net/2019/11/neural-annealing-toward-a-neural-theory-of-everything/

If you want to use the software, please reference it by citing it in the following way (APA style):

Wu, L., Gomez Emilsson, A., Zuckerman, A. (2020). QRI Psychophysics Toolkit, Qualia Research Institute. https://qualiaresearchinstitute.github.io/psychophysics/

And cite this article as (APA style):

Gomez Emilsson, A. (2020, October). Modeling Psychedelic Tracers with QRI’s Psychophysics Toolkit: The Tracer Replication Tool. Qualia Computing.

Psychoactive Anecdata

[Epistemic Status: anecdotal data; this is not a list of “life hacks”; it is intended as a list of interesting research leads; don’t take drugs unless you really know what you are doing!]

I’ll mark to the right of each anecdata:

  • n=x when I can remember clearly how many people have said this to me up to n = 10 (e.g. n=7 means that 7 people have told me this)
  • n=x/y when I know that y people have tried it and of those x have experienced this
  • n>1 when 1 < n < 10 but I don’t remember exactly how many people have said it, and
  • pattern if it’s a pattern I’ve observed across more than 10 people pooled from online trip reports and conversations from email exchanges, forums, group chats, private messages, and things that have come up at IRL discussions (e.g. at festivals).


The “best” phenethylamines in terms of the balance between mind expansion, euphoria, and low bodyload are:

  • 2C-B (low bodyload, high euphoria, unlikely to freak out at <25mg) [pattern]
  • 2C-C (like 2C-B but also relaxing, unlikely to freak out at <40mg) [pattern]
  • 2C-D (particularly easy on the body relative to other phenethylamines, unlikely to freak out at <30mg) [pattern]
  • 2C-I (more trippy and stimulating than the above, unlikely to freak out at <25mg) [pattern]

Among some of the worst 2Cs (but perhaps not worst phenethylamines) we find:

  • 2C-P (particularly bad bodyload, inevitable vomiting above some dose) [pattern]
  • 2C-E (“just too weird” for a lot of people, strong bodyload) [pattern]
  • 2C-T-2 (high bodyload, strangely similar to LSD in headspace) [n>1]
  • 2C-T-7 (same as 2C-T-2) [n>1]

IV Psychedelics

  • Do not ever IV 2C-E as it leads to instant extreme crams, nausea, and general bodily discomfort. [n=1]
  • The come-up of IV 2C-B is very fast relative to oral administration (5 minutes) and the peak is a lot more intense as well. 5mg results in an intensity of experience comparable to 35mg oral at its peak. [n=5]
  • Within 10 minutes of IV 2C-B one feels an intense urge to defecate. [n=4/5]
  • While IV 100μg LSD takes a full 30 minutes to show the start of effects, IV 300μg takes only 5 minutes to show pronounced effects. [n=1]
  • Ketamine is reportedly experienced as a “completely different drug” when the ROA is IV vs. IM vs. intranasal. [pattern]
  • IV Ketamine gives rise to a distinct metallic taste in one’s mouth within a few seconds of administration. [n>1]

Anti-Tolerance Drugs

In Anti-Tolerance Drugs we gave a list of drugs that, when taken in conjunction with painkillers and euphoric substances, can lessen, prevent, and even reverse tolerance. But “drug tolerance” is not a natural kind. Indeed, there are many systems of neuroadaptation that prevent drugs from exerting the same effect over time. Nothing makes this clearer than the typically life-long loss of “magic” to MDMA after a few experiences, which stands in contrast to the largely reversible tolerance to ethyl alcohol post-PAWS. Indeed, “drug tolerance” can mean tolerance to reduced action for: antidepressant effects (SSRIs), lessening chronic pain (opioids), increasing executive function (modafinil), enhancing motivation (amphetamine), “the magic” (ketamine, MDMA), the sense of unity and interconnectedness (LSD), otherworldliness (salvia), and so on. Indeed you can have a drug that generates tolerance to one of its effects but not others. For example, Slate Star Codex’s nootropic survey found that despite the common wisdom that prescription amphetamines stop generating a sense of euphoria after a while, most people who use them clinically for ADHD continue to experience an enhanced focus on the drug for many years. In this vein, the following anecdata highlights how anti-tolerance drugs have a much more subtle and multifaceted effect than just “reducing tolerance”:

  • DXM and other dissociatives seem to potentiate both the analgesic and euphoric effects from opioids, increase constipation, and leave pruritus the same. [n>1]
  • Proglumide reduces both the intensity of opioid withdrawal as well as the tolerance to their analgesic, sedative, and constipation effects. It does not affect euphoria or pruritus. [n>1]
  • Ultra-low dose naltrexone (ULDN) reduces tolerance to analgesic and sedative effects from opioids but not euphoria (“it makes opioids more sleep-inducing but a lot less fun“). Interestingly, ULDN prevents constipation from opioids. [n>1]
  • Black seed oil and ashwagandha reduce the tolerance to the analgesic, sedative, euphoric, and pruritus effects of opioids without influencing constipation. These effects are milder than all of the above. [n=1]
  • Agmatine potentiates the analgesic effects of opioids without an effect on other facets like euphoria or constipation. [n =1]
  • Turmeric primarily increases the sedative effects of opioids without changing much of anything else. [n=1]
  • Anti-histamine anti-cholinergic drugs (such as diphenhydramine) potentiate the sedative and analgesic effects, but leave constipation and euphoria the same. They can increase restlessness. [pattern]

Drug Combinations

In addition to all of what was said in Making Amazing Recreational Drug Cocktails:

  • DXM does not mix well with a bunch of things: 2C drugs [n>1], noopept [n=1], tianeptine [n=1], phenibut [n=1], ethyl alcohol [pattern], most nootropics. [n=1]
    • This seems to be especially bad for high-bodyload 2Cs as described above. [n>1]
  • Vaporizing DMT while on ketamine “slows down” and in some cases “freezes” some aspects of the hallucinations of DMT, allowing you to inspect them more closely. It also prolongs the DMT experience for a good 3 to 5 minutes. [n=3]
  • Taking 30mg of MDMA and 30μg LSD at the same time, followed by 10mg 2C-B four hours later, gives rise to a very positive synergy that allows you to maintain easy executive function while having trippy thoughts and a very high hedonic tone. It’s a smart and psychologically safe state. The combo has very mild hungover effects relative to how great it feels. [n=4]


  • Coluracetam is surprisingly psychedelic. [n=5]
  • Mixing coluracetam and weed gives rise to a mild LSD-like mindspace. [n=4]
  • Rhodiola Rosea has a distinctly “dopaminergic quality”, which is rare among nootropics other than L-tyrosine. [n=3]
  • Most racetams (piracetam, oxiracetam, aniracetam, etc.) successfully mask the verbal impairment (both comprehension and execution) caused by weed and/or alcohol (up to a point!). [pattern]
  • Agmatine (500mg) significantly blunts the intensity of orgasm. [n=1]
  • Agmatine (500mg) can be used as a replacement for NSAIDs like aspirin and ibuprofen for mild to moderate pains and aches. [n=1]

Surprising Analgesia

  • Microdosing LSD (5 to 20μg) can substantially reduce the pain of very bad premenstrual syndrome (PMS). [pattern]
  • Microdosing LSD can also reduce the pain associated with shingles. [1<n]

The Fact That We Can Smell Functional Groups is Just Such a Thing

[Excerpt from The Secret of Scent (2006) by Luca Turin, pgs 108-111]

Some Strange Clues

It has been said,* correctly in my opinion, that theories define facts as much as the other way around. Nowhere is this more true than in structure-odour relations, where all knowledge is anecdotal. Anecdotal evidence has a sort of slippery, jelly-like quality to it, and theories are needed to congeal the stuff together into single, solid facts. ‘Anecdotal’ is often used as a pejorative term in scientific circles, meaning unreliable. In practice it often means isolated, and therefore hard to assess. Think of a new field of science as a large jigsaw puzzle. Pieces are discovered one by one, and at first they are unlikely to fit together to make a picture. Things can look distinctly unpromising, sometimes for decades. But if you can bear the pain of feeling stupid and the humiliation of being wrong, anecdotal evidence is the call of the wild, the surest sign of the undiscovered. Columbus set sail on the basis of anecdotal evidence. The Mayan hieroglyphs were deciphered using anecdotal evidence. Life-saving remedies based on plants, such as aspirin and digitalis, were found by scientists who paid attention to anecdotal evidence.

Scientific problems typically go through three phases. In the first phase, a few bold explorers discover a new land and map out its basic features. In the second phase, boatloads of immigrant scientists arrive and colonize the land. In the third phase, statues are erected on town squares, sometimes to the original discoverers, more often to the able administrators who build the roads and railways. Smell, as it happens, did not follow this pattern. Scientific colonies never thrived on this particular island. Every few years, a new set of scientists claims to have cleared the jungle, but their cities are eventually overgrown and get lost in the weeds.

In smell, the difficulty is compounded by two additional factors, one obvious, the other more subtle. The first is the supposed untrustworthiness of the smell sensation I’ve mentioned earlier which makes strong men and women doubt their own noses. The second is that when facts, especially anecdotal ones, remain unexplained for long enough, a kind of question fatigue sets in, and they become accepted without being understood. The situation brings to mind a quintessentially British cartoon I saw once where a dinosaur strides past a terraced house, and a couple see it from their living room. Wife: “What was that?” Husband: “Oh, just one of those Things.” The fact that we can smell functional groups is just such a Thing.

Functional groups, as we have seen, are the specific structures of one or more atoms that are responsible for the chemical behaviour of a substance. Examples are thiols (-SH), nitriles (-CN), and aldehydes (-C(=O)H). The little hyphen indicates that these groups are, of course, attached to something and that the Something varies hugely. But the remarkable thing is that the Something matters little to the smell of the molecules. What gives the game away, especially to the casual observer, is the fact that types of smell are named after chemical groups: sulphuraceous, nitrilic, aldehydic, corresponding respectively to -SH, -CN, -(H)C=O. This is particularly clear in the case of -SH. All molecules which contain an -SH group smell (a) strong and (b) reminiscent of rotten eggs.

A word about the description ‘rotten eggs,’ since only a tiny minority of readers will be old enough to remember them. Eggs nowadays come with time stamps and serial numbers, so they seldom get a chance to rot. The rotten eggs smell is today more likely to be experienced in an oriental market (the durian fruit), by opening the gas tap on the stove (a small amount of an -SH compound is added to make sure we notice it), or best of all by going to an Indian store and asking for kala namak or ‘black salt’. Black salt, as its name does not indicate, is actually pink and is a type of rock salt that must come from Hell, as it contains ample amounts of Hell’s Kitchen smell, namely the HSH molecule. HSH is -SH repeated and smells bad twice over. Put some kala namak on your tongue and you will see what I mean. The first thing you will notice is that it reminds you mostly of a very intense hard-boiled egg smell. Clearly, eggs, even when fresh, are itching to fall apart. If you’ve done any chemistry at school, you will also recall the classroom when the teacher was making one of those stinks for which chemistry is famous. Beware though, the culinary satanism of kala namak is beguiling: a tiny amount in blackcurrant ice cream, strawberry daiquiris, coffee, and chocolate does wonders, as long as you don’t let anyone know you did it.

Do all -SH compounds smell identical then, i.e. of rotten eggs? Not a bit, actually: they smell of all manner of things, from grapefruit to garlic via blackcurrants,  but they all have this sulphuraceous (i.e. from Hell) character. The grapefruit compound is particularly instructive. It is called pinanethiol. Thiol means -SH, so pinanethiol means pinane-SH.

Remove the -SH and the rest of the molecule (pinane) smells like pine needles, as it should, since pinane is a major component of turpentine oil, itself extracted from pine. Add the -SH back and, having smelled the pinane by itself and familiarized yourself with kala namak, you can clearly smell the parts of the molecule. That is to say you smell both the pine needles and the sulphur. Smell another very strong -SH compound like H₃C-SH, or methanethiol, for a few seconds till the nose (mercifully) tires of the hideous -SH smell, then go back to pinane-SH. Surprise! The sulphur note is now almost gone and the molecule no longer smells of pinane-SH, but instead smells of pinane tout court. This means that this molecule smells like the sum of its parts. In other words, -SH is a primary, though the other smells are not. But how does that work? How do we know what parts it’s made of? This, as we shall see, is the greatest mystery of smell. Looking for an answer will take us amazingly far afield.

* Paul Feyerabend, among others, convincingly argued this view in Against Method, required reading for those who believe the scientific method is something which can be written down and followed like a recipe.


On a recent conversation I had with Luca, I shared with him the fact that there are anti-tolerance drugs that can lessen (and even reverse) the physiological tolerance to drugs such as painkillers. He was seriously surprised by this fact. Despite spending a whole career studying biological regulatory systems, he had never in his life heard of anti-tolerance drugs in academia. Upon hearing this, he shared that in his experience, most of the innovation in science comes from people who work hands-on in the field, as this exposes them to a much broader evidential base than you would encounter when doing research in a strictly theoretical way.

Thus, he has learned far more about consciousness from psychonauts than he ever has from academic psychopharmacologists, and has learned more about electronics from radio amateurs than professional electrical engineers. In other words, the people who actually tinker with the inner mechanisms of the systems they’re interested in are the people to ask for “weird and novel phenomena”, rather than (only) those who study the field academically angling for a university post or a narrow job in the industry. Same, of course, with the science of smell: actually tinkering with aromachemicals can give rise to discoveries one may never stumble upon by merely studying scent receptors in a lab. Needless to say, the best outcomes will come from seamlessly blending both worlds; but for that to happen we will have to embrace phenomenological reports as acceptable leads for research in science.

See Luca Turin’s recent series on the science of smell on youtube: The Secret of Scent (including a video on the objections to the vibrational theory of olfaction).

Qualia Research Diary: Scents

[Epistemic Status: Diary Entries]

“Fake it until you deep fake it.”

― Joscha Bach

“Break often – not like porcelain, but like waves.”

― Scherezade Siobhan

“Ideology has two meanings- actually, most social terms have two meanings, one for the traumatized and one for the non-traumatized.”

― Michael Vassar

“You know the old adage about monkeys typing into infinity, and the question about whether they would eventually produce Hamlet? I think that maybe we are those monkeys, and we’re producing countless Hamlets every single day.”

― Jacob Stephen

“Reality is very weird, no doubt. At the same time, it is easy to get wrong ‘what kind of weird’ reality is.”

― Matthew Barnett

“It is not true that suffering ennobles the character; happiness does that sometimes, but suffering, for the most part, makes men petty and vindictive.”

― W. Somerset Maugham

December 13th 2019

In a different timeline, I open a high-class experimental qualia-focused restaurant. There is only one kind of meal every month, and it is a challenge to finish it. Only 10% of people manage to do so. On March of 2022, the menu consists of:

  1. A soup. A liter of (tap) water with a single mint leaf in it. Do not be deceived, this is not “spa water”. The amount of mint in it is exactly right below the perceptual threshold for the most discerning of tasters. Hence, you are guaranteed to (a) not be able to taste anything at all, while (b) fully knowing you are indeed drinking aromatic molecules from the mint leaf. Also, they give you a spoon and a straw. If you use the straw, you are “drinking your soup” while if you use the spoon you are “eating your soup”. Up to you. It’s a conceptual piece after all. Once -and only once- you finish it, they serve you the second course…
  2. There are aromas and flavors out there in the state-space of qualia-triggering molecules that cancel each other out perfectly. The second course consists of a series of small hors d’oeuvres that are completely tasteless. If you can taste anything- e.g. a hint of garlic, or orange- it means the chef didn’t prepare it well. The flavors need to be perfectly balanced for them to be entirely tasteless. And once you are done, they bring you…
  3. This thing they left on your table is akin to a wire puzzle, or one of those Hanayama pieces. They tell you that your third course consists of a tiny cookie hidden inside it. Average solving time: 25 minutes. 50% of people can’t solve it.
  4. You are given a miniature 3D printed sugar statue reconstruction of someone who shares your name (as close as possible). Before eating it, you have to scream “There can be only one!” and consume your namesake in a single bite.
  5. Trace minerals. They bring you this large metallic bowl with a tiny little bit of powder at the bottom; certainly no more than 50 or 60 milligrams of material. It contains half of your daily recommended dose of iron, manganese, copper, iodine, zinc, cobalt, fluoride and selenium. You can now finally know what these actually taste like. It turns out that the characteristic taste of your grandma’s famous tapioca dish was zinc. Moving on…
  6. Negative food. You donate 300ml of blood.
  7. Distilled saliva. You spit in a bowl a number of times. You are then given a little shot of perfectly tasteless and clean water. The water is chemically pure. However, it is the water in the saliva of the spit of another customer.
  8. Double blind taste experiment. You are given a dish. The waiters do not know what it is. You do not know what it is. You have to write a 100-word report of what you think about this dish. This is actual science; the data is used by a research lab at some undisclosed university. There is something very Buddhist about this course – how much does your top-down model of what you are eating modify your perception of it? What if you do not assume an “essence” behind it – block that specific energy sink from robbing you of the experience of raw low-level sensation?
  9. Sound control. Did you know that food tastes different in an airplane? Many factors contribute to this, but a major one is the constant background noise you can hear inside the aircraft. Turns out tastes change with specific sounds. The Qualia restaurant spent $500,000 dollars researching this (and publishing a number of peer-reviewed papers in the process). The output of that research is that you can now make chocolate taste like vanilla, and strawberry taste like melon – if only you play the proper sound at the right volume. And finally…
  10. Stroboscopic taste – you put on a mouthpiece that entrains half of your tongue to a 30Hz electric seizure vibration while the other half is entrained to 17Hz. As you eat the Ice-cream of Victory (flavored with passionfruit, peanut, and anise) you realize that the flavors combine with the stroboscopic stimulation to create the hallucination of an entire meal replete with much more complex flavors. The beat patterns are tasty.

If you finish the entire thing (which usually takes about 5 hours total) they take a photograph of you and “keep it to themselves”. No, there is no “victory board”. They just want a picture of you.

5/5 | Would recommend.

January 6th 2020

Favorite essential oils at the moment: Freesia, Violet, and Pear. It turns out Freesia was a predominant note in Dior “Addict 2“, a perfume I fell in love with when I was a teen. Violet is “ethereal” in that it feels strangely anesthetizing (the ketamine of smells). Pear is lovely.

High Entropy Alloys (HEAs) and Scents:

  1. Some scent combinations “collapse categories” (e.g. too many flowers combined blend into “generic flowery”).
  2. Others make unstable multi-phase blends (e.g. too many categories – spicy, citrus, minty, woody all at once).
  3. Violet + Pear create a scent HEA.

An interesting blend with “emergent” characteristics: Freesia, Pear, Violet, Sunflower, Azalea, and Patchouli. Very high valence mixture that has a novel feeling that does not seem to come from the ingredients. #HighEntropyAlloy #HighEntropyScent

January 8th 2020

Careful with raising the “scent entropy” too high!

In sound and sight, it seems that there is an inverted U curve relationship between stimuli entropy and the entropy of the experiential response. White noise may be- objectively- the way to cram in as much information as possible into a waveform. But perceptually, white noise is more like its own (neutral valence, indifferent) tone. Likewise visually, if you crowd your images way too much you can’t actually understand its meaning and true complexity. Perceptual complexity response is maximized in the middle, where you achieve “peak useful entropy”.

More so, extremely entropic stimuli can be used to “mask” any input by adding a dose of white noise or visual static. That’s how you can degrade the valence of something when you don’t know what kind of unpleasant input you will get in advance. White noise drowns out both construction sounds and baby screams. It’s a “universal diluter”, so to speak.

And so it seems that this is the case with smells too. If you combine any 40 (42?) scented molecules that are as different as possible, you get as a result a generic smell with neutral valence that is not distinctive at all. If you make a different 40-scent mixture with completely different molecules, it also smells the same! They call it white noise scent, or “Laurax”*.

In other words, the “high-entropy alloys” of smell may only really pay off in the range of 5 to 15 different molecules, where (perhaps) we maximize the experiential “character” of the resulting fragrance.

Now, of course commercial perfumes in practice do have dozens if not hundreds of aromachemicals. But their absolute “scent entropy” is probably not that high. Why? First, the entropy is reduced by the fact that most perfumes do concentrate on a few core notes; the many other notes are usually small additions and tweaks. And second, the perfumes are usually made with relatively few categories of smells blended together (musky, citrus, and flower could be one, or green, ozonic, and non-citrus fruity another, and so on). Additionally, to get true white noise smell you need to also add negatively valenced scents, which are rarely used in actual perfumes. I do wonder, though, if the perfume industry has a sense of the “scent entropy” of their various perfumes, and if having a measure of it would perhaps improve their ability to hone in on blends that have unique emergent characters without relying entirely on heuristics and trial and error. Or how about a portable “scent-entropy-o-meter”? I bet it would find some very useful applications.

[Good article about it: The “white noise” of smells; *I first learned about Laurax here: The whiff of white could hide strong odours: Complex mixtures of many odours tend to smell the same.].

January 10th 2020

Of all the industries, I get the impression that the perfume industry is ahead of the curve when it comes to incorporating hedonistic utilitarian notes into its embedded ideology.

January 11th 2020

Cilantro tasting like soap to 10% of the population is just the tip of the iceberg.


January 13th 2020

What are your favorite perfumes?
(and if it’s not impossible to describe – why do you like them so much?)

I’ll start:

Addict 2 by Dior
Eros pur femme by Versace
Light Blue by Dolce & Gabbana

Oh god, what kind of person have I become?

January 14th 2020

Scent combinations with unusual emergent characters that are “more than the sum of their parts” I have discovered so far:

  1. Violet + Pear
  2. Rose + Orange
  3. Honeydew Melon + Pomegranate
  4. Freesia + Golden Hydrangea

In each of these cases, combining in roughly equivalent intensities (i.e. 50-50 ‘equipotent’ mixtures) seems to give rise to qualities that are not present in either of the two scents. This is relatively rare, IMO. If you combine, e.g. lilac and jasmine, you just get something that smells like “lilac and jasmine”. But the four combinations above seem- to me- to give rise to new exotic qualia varieties.

An accord is more about getting rid of the individually distinguishable component scents. The end result, however, is one of a “generic” scent within a given category (or subcategory). For example “white flower accord” or “citrus accord” are common. And although you can distinguish between two citrus accords, they don’t really have unique character – at least not more than e.g. various kinds of brown noise have a unique character. The combinations I’m mentioning are not just ways of creating a category blend so that other elements of the perfume can be more noticeable. Rather, they are on their own uniquely characteristic, much like other pure essential oils.

If you mix a wide enough variety of flowers you inevitably get a flower accord. To get a new qualia type emergent you need something else. (I should add I’m new to the field and have a lot to learn).

I’m developing a way of explaining what a scent is like at a glance with relatively few parameters. One of them is category entropy, meaning how close a given category in the scent is to the maximally blended version of it (i.e. a fully generic “flowery” scent has maximum category entropy).

Then another parameter is the “global entropy” which describes how close the scent is to total white noise scent.

So we start by saying e.g. perfume X is “50% of the way to white noise scent and its distribution of core categories is 30% woody, 30% floral, 20% fruity, and 20% citrus”, then we zoom in to each category and describe its category entropy and salient notes: “the floral entropy is 40%, and the 60% remaining is shared in equal measure between rose and azalea” (repeat for each category).

Additionally, another important thing to add is if there are “note to note interactions”, which in my (limited) experience happens with some pairs. Maybe 10% of them, but I don’t know for sure. But you could describe them with lines between individual notes in a diagram. To round it all out, you also would point out the note accords that work as “phases” in the overall scent (drawing inspiration from high entropy alloys – an alloy that does not make a single crystal structure is called “multiphasic”). E.g. mango + patchouli + cinnamon + jasmine tends to produce two phases, a mango + cinnamon phase that toggles in your attention with the jasmine + patchouli phase. Finally, we would also note “valence inversion” effects that happen when there are combos of scents that when placed together give rise to a flipped valence (also a rare effect, IME).

For a slightly higher level of resolution, we would break down each category into subcategories and then describe the entropy of each. E.g. a floral perfume could be 80% of the way to maximum floral entropy in the “white flower” subcategory but only 10% of the way to maximum entropy in the “powdery flower” category.

This would allow us, I think, to put our finger on many scents that are hard to describe otherwise. Indeed, a lot of sophisticated perfumes, IMO, are playing a lot with different shades of high entropy, so talking about them in terms of notes like jasmine or amber is very misleading. It’s like calling a certain kind of brown noise “closest to a guitar sound” because one lacks words for describing noise profiles.

January 23rd 2020

Scent Factorization:

So we know that we can get “white noise smell” by combining 42 scents of completely different kinds at the same time. This maxes out the “scent entropy” (aka. “Laurax”).
If you combine 42 different flower scents, however, you get a maximally generic “flowery scent”. I call this “category collapse”.

Now some scents have what I call “special effects”, which are category-neutral qualities. An example is the ‘bitterness’ of grapefruit, which although is often associated with fruits, can occur in entirely different categories too.

So I thought: what if we try to combine scents from as many categories as possible that all share the same special effects? I call this “scent factorization”. Namely, you try to get “special effect + Laurax” by canceling out everything but the special effect.

I believe this actually works. Example:

A factorization of “bitter-sweetness” can be obtained by mixing:

Grapefruit + Geranium + Bergamot + Pomegranate + Cedar-wood

In this case you will see that geranium is almost like “the grapefruit of flowers” in that it is flowery in nature but still shares the same “bitter” quality as grapefruit (albeit at a different frequency – yes scent frequencies are a thing, but that’s a story for another time). Likewise, cedar-wood is the most grapefruit-like wood I’ve smelled.

Another interesting factorization is that of “creaminess”:

Coconut + Fig + Vanilla + Almond + Sandalwood

In this case, again, you’ll see that sandalwood is the most “creamy” of all woods (as far as I have tried), fig is the most creamy of all fruits, and so on.

But this is just the start. What other scent factorizations could we try? I’d say we could aim to have the special effects of “ozonic”, “green”, “ethereal”, “powdery”, “acrid”, “cloying”, and so on factorized. Each deserves to become its own perfume in my up and coming new line of high end perfumes called “The State-Space of Scents” (for the consciousness connoisseur).

February 2nd 2020

The Qualia Review – Episode 1: Women’s Perfumes (Part 1):

The Qualia Review – Episode 1: Women’s Perfumes (Part 2)

The Qualia Review is a tongue-in-cheek program where you will get non-expert opinions about the quality of experiences by people who really care about consciousness:

In each episode, Andrés Gómez Emilsson (qualiacomputing.com) reviews a particular qualia variety (i.e. category of experience) with a co-host (in this episode Victor Ochikubo).

In this first episode we review women’s perfumes. In particular, we review (from worst to best):

La Panthére by Cartiere (EDT)
By Invitation by Michael Bublé (EDP)
Guilty by Gucci (EDT)
Brit Rhythm by Burberry (EDT)
Jolie Fleur Bleue by Tory Burch (EDP)
Rose Goldea by Bvlgari (EDP)
Daisy Love by Marc Jacobs (EDT)
Valentino by Valentino (EDP)
Amazing Grace Ballet Rose by Philosophy (EDT)
Light Blue by Dolce & Gabbana (EDT)
Eros by Versace (EDT)

You will notice that this is unlike any other review of perfumes. This is because the review here provided addresses the following three aspects of scents:

  1. A qualia-focused account (i.e. entropy, categories, special effects, etc.)
  2. What kind of person would enjoy wearing this perfume (mood-congruence, personality, etc.)
  3. The social signaling that the perfume entails (sexual signaling, genetic fitness signaling, etc.)

In particular, (1) describes scents in terms of:

  • A) The global entropy (e.g. 40% of the way to white noise scent)
  • B) The within-category entropy (e.g. 70% of the way into ‘generic flowery’)
  • C) The individual notes that can be detected within each category (e.g. non-generic jasmine note being 30% of the flowery category)
  • D) Lines connecting notes that have non-linear interactions (e.g. pear & violet, rose & orange, pomegranate & honeydew make unique blends that have phenomenal properties unlike those of the individual ingredients)
  • E) Lines connecting notes that form separate “phases” across categories (e.g. with a mixture of mango, sandalwood, rose, lemon, and cinnamon you get three phases rather than a global consistent smell – mango + cinnamon, and lemon + sandalwood, with rose staying its own distinct scent)
  • F) Lines connecting “valence inversion” effects (some notes simply don’t seem to go together even though they are pleasant individually)
  • G) Special effects (e.g. “powdery”, “ethereal”, “acrid”, “creamy”, etc.)

Thus, we share an entirely new angle on how to describe the ineffable. Namely, the hard-to-put-your-finger-on elusive subjective quality of scents can finally be grounded in terms we can all understand (with a modicum of shared background assumptions).

Hope you enjoy! Happy scent qualia!

~Infinite Bliss~

February 5th 2020

Three scents that are surprisingly similar to strawberry (based on my personal experience with essential oils):

  1. Fig
  2. Freesia
  3. Peony

In fact, following the “scent factorization” concept – if you make a mixture of these three scents the resulting oil smells almost exactly like strawberry cake. Strange!

February 9th 2020

I love this video! The idea that the information content in a perfume could possibly fit so much phenomenal detail is enticing, albeit perhaps a bit optimistic.

In the interest of honesty, out of the 15 or so women’s perfumes I’ve experienced deeply so far, La Panthere by Cartier is the worst by quite a long shot.

I don’t mean this to troll! I am serious. I still don’t quite know why I feel it as so unpleasant. I think it has to do with its very high entropy quotient, and the fact that it centers around gardenia, which is my least favorite flower. It feels predatory – and perhaps the perfumist did succeed at telling a story. Too bad I aim to reprogram the biosphere so that predation is a long-forgotten nightmare of our ancestral Darwinian environment of adaptedness. So long! We should aim to transform scent exploration from its current state of commercialism mixed in with weapons of sexual conquest, and push it into new frontiers… the exploration of the state-space of consciousness, valence research, perhaps even energy parameter modulation! The future of scent qualia research is wide open.

The Qualia Review – Episode 2: Men’s Perfumes

The Qualia Review is a tongue-in-cheek program where you will get non-expert opinions about the quality of experiences by people who really care about consciousness:

In each episode, Andrés Gómez Emilsson (qualiacomputing.com) reviews a particular qualia variety (i.e. category of experience) with a co-host (in this episode Victor Ochikubo).

In this second episode we review men’s perfumes. In particular, we review (by order of appearance):

CK2 by Calvin Klein (EDT)
Pasha de Cartier Edition Noir by Cartier (EDT)
Virtu by Vince Camuto (EDT)
21 Le Fou by Dolce & Gabbana (EDT)
Le Male by Jean Paul Gaultier (EDT)
Scuderia Ferrari Light Essence Bright by Ferrari (EDT)
Jimmy Choo Man Blue by Jimmy Choo (EDT)
1 Million by Paco Rabanne (EDT)
Terre D’Hermes by Hermes (EDT)
Invictus by Paco Rabanne (EDT)
Bleu De Chanel by Chanel (EDP)

In this episode we also discuss the way in which an enriched conception of art could helps us reformulate the artistic potential of perfumes. We make allusions to the 8 models of art discussed in a previous video:

Harmonic Society: 8 Models of Art of a Scientific Paradigm of Aesthetic Qualia

See also:

Harmonic Society

Hope you enjoy! Happy scent qualia!

~Infinite Bliss~

February 10th 2020

Top 5 Male Perfumes:

  1. Bleu de Chanel (EDP)
  2. Scuderia Ferrari Light Essence Bright (EDT)
  3. Le Male by JPG (EDT)
  4. Nautica Voyage (EDT)
  5. 21 Le Fou by D&G (EDT)

It’s very sad that there is a huge paywall for scent qualia. It’s your birthright to know what they smell like!

February 11th 202084357695_2785896804835792_4296261472725499904_o

~120 essential oils and ~40 perfumes (ordered by categories and general character).

This is the dataset my brain has been training over to interpret the state-space of scent qualia for the last month and a half. This is still amateur level – but I can nonetheless confidently say that I now understand scent qualia at least 50% better than I did last year.

I would still appreciate specific suggestions for essential oils or perfumes to get that are very unusual or characteristic. I continue to be surprised by the uniqueness of oils, fragrances, and mixtures I haven’t tried before.

Also: drastic income inequality is a massive tragedy, no doubt. But why are people not talking about qualia inequality? I wish everyone was as qualia-rich as I am right now. I’m happy to share some scents with people who feel qualia-deprived; just come to the Bay and give me a call. 🙂

Ps. Peony is an incredibly versatile low-entropy flower scent with a creamy strawberry-like effect. I kept reading about how this or that perfume has peony in it, but it really took me owning an essential oil of it to grok the type of qualia peony is all about. Someday there will be a monument built to celebrate the qualia variety disclosed by peony formulas. I’m pretty sure of this.

February 14th 2020

People say “a blind buy” when they talk of buying a perfume they haven’t smelled. Shouldn’t it be more appropriate to say an “anosmic buy”?

February 18th 2020

In order to survive the apocalypse, having a “blue” fragrance on hand will become very useful. I suggest “Nautica Voyage“.

You can thank me later!

February 21st 2020

Sense of Smell is Linked to Sexual Orientation, Study Reveals

Very interesting! Two followup questions: (1) does it replicate on a larger sample size? and (2) is the baserate of different sexual orientations of anosmic people statistically different than those of the general population?

Gay men showed a strong preference for the body odour of other gay men in the scientific test of how the natural scent of someone’s body can contribute to the choice of a partner.


Although previous studies have shown that body odour plays a role in making heterosexual men or women attractive to members of the opposite sex, this is the first study that has investigated its role in sexual orientation. Charles Wysocki of the Monell Chemical Senses Centre in Philadelphia, a non-profit research institute, said the findings underline the importance of natural odours in determining a sexual partner whatever the sexual orientation of the person involved.


“Our findings support the contention that gender preference has a biological component that is reflected in both the production of different body odours and in the perception of and response to body odours,” Dr Wysocki said.

February 25th 2020

Review of Shalimar Eau de Parfum by Guerlain for women:


February 27th 2020

Jasmine, Tuberose, and Gardenia: the Dark Triad of White Flowers. Beware! They are treacherous, envious, and guileful. DO NOT TRUST. They will ruin your perfume with their high-entropy indolic ‘broad spectrum scent noise’. Deranged, distracting, and disingenuous. #FlowerProblems

March 12th 2020

Why you should not insufflate ketamine: (1) it can irreversibly damage your bladder and cause very serious untreatable chronic pain, (2) it can damage your liver, also very painful, but above all (3) it will slowly degrade your ability to experience scents! Not worth it IMO!

Cocaine is well known for causing anosmia in regular users. I suspect we are going to see a wave of anosmic people as ketamine becomes more popular. Don’t be a victim. “Remember kids, don’t insufflate drugs – either eat them or inject them” would be my DARE go-to phrase.

March 16th 2020

Running out of hand sanitizer but you are fab and have a perfume collection? Use some cheap perfume instead! It’s usually 70+% alcohol.


March 22nd 2020

There’s An Unexpected Loss Of Smell And Taste In Coronavirus Patients

Factoring in the loss of precious qualia would make this epidemic even worse. This year I’ve finally begun appreciating the state-space of scents. I’m heartbroken to learn about this effect. So much qualia in potentia that might be lost!

March 23rd 2020

We should emphasize the possibly of life-long loss of smell in order to get more young adults onboard with strict social distancing measures. A 20-something person might not fear a fever, but they may fear “having less sexy sex and enjoying food less for the rest of their lives”.

March 26th 2020EUF6KWvUEAIAbO5

Sense of smell over the years. People under 40: please do yourself a favor and get some nice scents so you enjoy them while you are still sensitive to them. It’s always a tragedy not to use a qualia variety and then lose it. #qualia #scent #aging #valence #bliss #WeAreTheQualia

March 29th 2020EUQLBqVUEAA3Nwh

This is the future – in 2010 I was saying that in the long run humanity will need to adopt entirely new and seemingly extreme measures against contagious diseases.

Nasal filters (aka. “nose condoms”) were one of the ideas I was considering at the time. Reality is now catching up with fiction.

Why adopt extreme measures? Because we haven’t seen anything yet. The possibility of rational virus design and the political will to invest in innovative weapons means that sooner or later we will encounter things with a case fatality rate > 80% and R0 > 4. Nothing short of large-scale contact network engineering and the widespread use of tech like nasal filters can really work against those long-tail risks.

Perhaps in the future going out without nasal filters will be considered as reckless as today it’s considered having unprotected sex with a random stranger. #NasalFilter #TheNewMask #PM2point5

April 8th 2020


Bright Neroli

Summer 2020 Unisex Perfume Recommendations:

1. Bright Neroli – Ferrari (amazing sharpness and cute Sicilian dry-down)

2. Monserrat – Bruno Fazzolari (incredible grapefruit punch and bitter-sweet resonance)

3. Born – Adidas (a cheap but highly rewarding lavender rhubarb scent).

April 21st 2020

Haven’t posted about scents in a while; I’m still actively researching this fascinating qualia variety (better do so while I still have scent qualia, which may of course go away if/when I acquire COVID-19).

I’ve developed a lot of new vocabulary to talk about scents. In particular, I like to break down a scent in terms of entropy (how close to ‘white noise scent’ it is), category distribution (% woody, citric, fruity, etc.), category-specific entropy (e.g. 70% of the way to ‘generic flowery’), specific notes (e.g. 10% rose), and of course, “special effects” (such as “creamy”, “powdery”, “bitter”, etc.).

A recent “special effect” I’ve explored is the rather peculiar feeling that the scent is “flammable”. For example, gasoline has it, and so does ethanol. It is similar to the feeling you get when you inhale nitrous oxide. A kind of fascinating gas-like intoxicated state that produces spatiotemporal confusion and a sense of resonance. Of the scents I currently have access to, 100% pure Neroli essential oil strongly triggers this particular special effect. Neroli has that strange “flammable” quality, perhaps an octave or two in pitch higher relative to gasoline. It’s equally enthralling as the smell of gasoline (for those who like it) but much more dinner-party-friendly.

Anyway, with this “flammable” special effect in mind, I’ve been exploring what can be added to it in order to create beautiful scents. Last night I found a combination that made me really happy. It consists of equal (intensity-adjusted) parts of:

  1. Neroli oil
  2. Orange essential oil
  3. Lime essential oil
  4. Pear essential oil

It is sweet, sour, and gasoline-like in an unexpectedly euphoric way. I highly recommend this quale. I very much like its vibe. Meet me there.

April 28th 2020



First I tried essential oils. Then I tried perfumes. Now I’m entering a third phase in my “scent literacy” journey: pure molecules.

I have 50 pure perfume ingredients in an air-tight container now. And I have been trying out a couple each day in a systematic way in order to map out the state-space of scents.
One core insight so far:

Essential oils are extremely rough approximations for “building blocks” of scents. Perfume notes are often described in terms of fruits, woods, flowers, animalic sources, etc. But “apple” is not a natural unit of scent qualia. Although there is a general “apple vibe”, in reality that vibe can come from any of 20 or so different molecules. Additionally, many molecules that have an apple vibe do not even appear in biological apples (and vice versa). I’ve so far tried two apple-vibe molecules:

  1. Alpha Damascone: The smell of a dried out green apple, slightly past its prime, unsweetened and with trace amounts of beeswax wrapper stuck to its skin.
  2. 5-octen-1-ol: The smell of extremely mild refrigerated apple sauce, slightly waxy, reminiscent of sandalwood, and at a slightly higher “phenomenal frequency” than damascone.

In other words, I’m learning that pure molecules are indeed more “simple” than essential oils by far. They feel very specific and low-dimensional rather than voluptuous and scenic. But despite their relative simplicity, they are still not “categorically pure”. A single molecule can smell woody, fruity, and camphorous all at the same time. Part of the story is likely that a single molecule can have a broad spectrum of receptor affinities. But even if only one scent receptor were to be activated, perhaps the resulting experience would also not be uni-categorical.

The fascinating implication here is that scents that feel very uni-categorical (e.g. pear essential oil being unequivocally “fruity” with no hint of floral or woody) are more likely to be compositions of many molecules!

Each uni-categorical accord is made by mixing many molecules that all share the same “main vibe” but have different “secondary traits”. This way the accord lets the secondary traits “cancel out in white noise scent” while the main vibe is additively compounded into a broad-spectrum power-punch of a single category, like fruity (reminiscent of “scent factorization”, which I’ve described in previous posts).

May 2nd 2020

You don’t need to be phenomenally rich in order to be phenomenally rich!

I’m an advocate of high-dose behavioral enrichment (I talk about it at 22:16):

May 3rd 2020

The Perfect Scent excerpt:

Ellena will dip a touche into a molecule called isobutyl phenylacetate, which smells vaguely chemical and nothing else, and another into a synthetic molecule whose common chemical name is ethyl vanillin. (A rich gourmandy vanilla molecule, its IUPAC name is 3-methoxy-4-hydroxy benzaldehyde, and it is the heart of Shalimar.) He puts the touches together and hands them to you. Chocolate appears in the air. “My métier is to find shortcuts to express as strongly as possible a smell. For chocolate, nature uses 800 molecules, minimum. I use two.” He hands you four touches, vanillin + natural essences of cinnamon, orange, and lime—each of these has the full olfactory range of the original material—and you smell an utterly realistic Coca-Cola. “With me,” says Ellena, “one plus one equals three. When I add two things, you get much more than two things.”


He will hand you a touche that he has sprayed with a molecule called nonenol cis-6, which by itself smells of honeydew melon or fresh water from a stream. He’ll then hand you a second touche with a natural lemon on it, direct you to hold them together now, and suddenly before you appears an olfactory hologram of an absolutely mesmerizing lemon sorbet.


The explicit point was not to create a thing but an illusion of that thing, an olfactory alchemy. The point of Nil was not to create a green mango but the illusion of a green mango.




Junior perfumers discover that Vetiver Huile Essentielle from Haiti smells like a Third World dirt floor and Vetiver Bourbon from Isle de la Réunion smells like a Third World dirt floor with cigar butts. (They hope to do something wonderful with the cigar butts.) They learn, as Ellena knew from decades of work, how to create the illusion of the scent of freesia with two simple molecules, both synthetics: ionone beta + linalool. And orange blossom: linalool + anthranylate de methyl, which by itself smells like aspirin. The classic Guerlain perfumes often used a molecule called styrex, which smells of olive oil pooled on a table in a chemical factory. Add phenylethylic alcohol and you get lilac. Add the smell of corpse (indoles), you get a much richer lilac. And you can give your lilac, freesia, and orange blossom a variety of metallic edges: Add allyl amyl glycolate, you get a cold metal freesia. Add amyl salycilate, and you get a freesia with the smell of a metal kitchen sink dusted with Ajax powder. Aldehyde C-12 lauric adds an iron with a bit of starch still on it.

May 8th 2020

Excerpt from Luca Turin and Tania Sanchez’s 2008 perfume guide:

Sports Fragrances:


The last decade has seen the unfortunate flourishing of a dismal genre, the fragrances for men and women who do not like fragrance and suspect that none of their friends do either. The result has been a slew of apologetic, bloodless, gray, whippet-like, shivering little things that are probably impossible, and certainly pointless, to tell apart. All fragrances whose name involves the words energy, blue, sport, turbo, fresh, or acier in any order or combination belong to this genre. This is stuff for the generic guy wishing to meet a generic girl to have generic offspring. It has nothing to do with any other pleasure than that of merging with the crowd. My fondest hope is everyone will stop buying them and the genre will perish. Just say no.


Lastly, and by way of contrast, remember that perfume is foremost a luxury, among the cheapest, comparable to a taxi ride or a glass of bubbly in its power to lift the mood without causing subsidence the morning after. Wear it for yourself.


– Luca Turin in PERFUMES: THE A-Z GUIDE (2008)

May 13th 2020

The perfume Tommy Girl just registered as an outlier to my nose. It registers as high in valence as Bleu de Chanel and Bright Neroli by Ferrari. Extraordinary perfume. 10/10 #ScentQualia

May 27th 2020

The Rainbow God Experience

One of the most interesting lines of evidence pointing in the direction of the Symmetry Theory of Valence is how in the neighborhood of the peak of high-energy neural annealing events one can often glimpse states of consciousness with a characteristic “full-spectrum of qualia” property.

This may happen nearing the peak of a strong LSD trip, during intense Jhanic concentration, Fire Kasina practice, or even just spontaneously (though extremely rarely).

At the actual peak of the annealing process you are likely to arrive at a “moment of eternity“- itself extremely high-valence- where the symmetry is so complete that it becomes impossible to distinguish between self and other, before and after, or even left and right (this is a phenomenal property of peak valence states, and not proof of Open Individualism and non-duality per se, even though most people tend to interpret such experiences that way).

The “Rainbow God” phenomena lives at the edge of such peak valence states.

Timothy Leary in “The Psychedelic Experience” says that as you approach the highest bardo you are given the choice between “tasting sugar” and “being the sugar”.

The former is close to the peak of the annealing process, where there is enough asymmetry in the state for you to be able to encode information and distinguish between past and future, self and other, etc. and thus able to experience a projective world-simulation and the illusion of a self that “experiences it”. At the top of the annealing process, however, the extreme symmetry does not allow you to do that. The valence is almost certainly higher, though the degree of consciousness is arguably lower. You are “the sugar” rather than “tasting the sugar” (i.e. you are luminosity rather than a constructed world-simulation “experiencing luminosity”).

Stunningly, this edge between perfect symmetry and its surroundings in configuration space often shows extreme levels of qualia diversity. This is an empirical observation you can verify for yourself (or you can trust me, find others who have experienced it, or derive it from first principles).

What is it like? At this boundary between quasi-perfect symmetry and perfect symmetry you experience rainbows with all the phenomenal colors in the CIELAB color space (and perhaps some other colors that you only see in heaven, like blue-yellow and red-green, which require enough energy to overcome the lateral-inhibition opponent process going on in the cortex at all other times). You experience a sense of “all possible temporalities”. A sense of “all possible scents”. And a sense of all possible spatial relationships at once.
If you get any closer to the peak of annealing, the rainbows collapse into luminosity, the scents into a sense of presence, the temporalities into a sense of eternal now, and the possible feelings of space into a projective-less “view from nowhere”. The combination of all qualia values of each qualia variety somehow, incredibly, seem to add to zero. But not any kind of zero. A special “Zero” perhaps equivalent to “no information but awake”. (Cf. David Pearce’s Zero Ontology for a possible grounding of this state in fundamental physics.)

Yes, this is very much a real state of consciousness. It is profound, and extremely important.

I call it the “Rainbow God” state of mind. I do not know how to reliably induce it, but I do know that it is likely to have extremely deep computational, ethical, and experiential properties capable of advancing our understanding of the nature of the state-space of consciousness. I just figured you should know this exists.

June 2nd 2020

Andreas Keller • Olfaction and Experiential Authenticity:scent_presentation

Really excellent presentation about the biological and physical underpinnings of scent. It’s a bit on the long end (50 minutes) but you can get 80% of it by just watching the first 12 minutes. It’s really good! So much information…

For instance: did you know there are about 400,000 scented flower species in the world? I struggle to come up with more than 30 flowers off the top of my head (up from 5 just less than a year ago). The remaining 399,970? Who knows what they smell like. We don’t have words for these smells… is it “rose” or “jasmine” smell? Good luck using that kind of ontology describing the space of possible flower smells.

Also: it turns out that volatile molecules don’t diffuse very effectively. So that’s why you get “whiffs” of scents – for the most part, in the wild, air is a very non-homogeneous gas, with all kinds of pockets with specific linear combinations of aromachemicals. Hence why holding two essential oils side by side doesn’t give rise to a proper mixture between them. You need to literally mix the oils and then smell the mixed result if you want to actually know what the combination is like. Otherwise you will get a whiff of one, a whiff of the other, etc. with a Poisson-like distribution. This also reminds me that: we have an olfactory bulb in each nostril! So if you apply one scent in one nostril and another scent in the other nostril, you will get a kind of “bi-scent rivalry” [binosmic?] similar to what you get when you see one image with the left eye and one image with the right eye (i.e. “binocular rivalry”).

I do think that “digital smell” is possible (unlike the presenter). But it will require us to describe each molecule in terms of their ADSR patterns for each of the basic scent qualities (that is, to describe how the sweetness develops across time – its attack, decay, sustain, and release – and do the same for each core qualia scent dimension). Without taking into account the ADSR envelope for each molecule, the mixtures will be uneven.

The lowest-hanging fruit would be to use a non-negative least squares regression that minimizes the error for the envelope of each of the core qualia scent dimensions. Hence, the molecular spectrum is not enough – the non-negative least squares requires pattern-matching across the entire temporal envelope of each dimension. IF we do this – then digital smells might be possible after all (IMO!).

June 3rd 2020

There are a TON of questions whose real answer is: “Bleu De Chanel”. Think about it.

That’s how VAST the multiverse is.

“Bleu De Chanel” spans eons and eons of subjective time – the grapefruit/incense/amber vibe ringing on and on throughout eternity. That’s how large it ALL is.


You can get a powerfully believable Smirnoff Lime impression with as little as a few drops of citral and aldehyde C-12 in an ethanol + water mixture. Amazing what passes as a “fine drink” these days.

“At least add some linalool to make it worth it” – would be my recommendation.


Note to self: by virtue of their sharp smell, aldehydes are powerful high-frequency psychoactives.

June 6th 2020

Note to self: Smelling a bunch of aldehydes over and over for several days in a row causes bad headaches. Use them only occasionally from now on.

June 13th 2020

I asked a DMT being about the nature of scent qualia. Its response: “One hint: are you sure it’s only one kind of qualia?”

An insight came like a lightning bolt. Yes! Two types:

  1. Aromachemicals that are “character impact”
  2. Flavor-like vibes

Totally different state-spaces!

Luca Turin, the quantum neurobiologist who has done research on the vibration theory of olfaction (showing “we can smell functional groups”) told me that if perfumes are tomato soups, the money is in “making the best cream” rather than in the “tomatoes”. Character impact!

Examples of character impact molecules:

  1. Beta-ionone
  2. Iso-E-Super
  3. Ambroxan
  4. Hedione
  5. Helional

Examples of flavor-like vibe molecules:

  1. Alpha-damascone (beautiful!)
  2. Aldehyde C-12
  3. Citral
  4. Cis-3-hexanyl-benxoate (yuk!)
  5. Verdalia

June 20th 2020


Magenta: The Non-Spectral Color

An important point of confusion about qualia to which I offer a clarification:

The qualia you experience as a result of light coming into your eyes can be logically and empirically dissociated from physical light. Color qualia, just as much as visual texture qualia, can be triggered by auditory stimuli in people with synesthesia, or people tripping. More so, you don’t even need light to ‘see’ in your dreams. Visual qualia is ultimately not intrinsically tied to physical light. Phenomenal light, as it were, is a particular spatial qualia that we use to ‘illuminate’ our inner world simulations. Yet this illumination is not based on photons.

Hence the mystery of magenta: phenomenal colors don’t always map on to frequencies of light. Even leaving aside the issue of metamerism, magenta itself is a ‘non-spectral color’ because you need to combine at minimum two frequencies of light to trigger that color qualia in your visual field (namely, a combination of the upper and lower frequencies you can detect).

Why do we experience color qualia from light, then? This is not out of logical necessity, but rather, because it happens to have the appropriate information processing properties for the mapping to be evolutionarily advantageous. The state-space of color and visual texture happen to have useful isomorphisms to the structure of visual data. But there is nothing to suggest they are the best at representing ‘projective data-structures’.

In fact, I strongly suspect that once we master free-wheeling hallucinations and qualia control techniques, we will discover new applications of exotic qualia varieties for information processing purposes. Such as, for instance, using complex synesthetic representations of natural numbers that make it easy to ‘feel’ whether a 10-digit number is prime or not.

Anyhow, this all informs the kind of answer I might give to the question “what is it like to be a bat?”. In particular, it compels me to say that for all we know echolocation information is represented with scent qualia. We simply don’t know enough about the information-theoretic properties of state-spaces of qualia varieties to make an educated guess for what kind of qualia is best at representing echolocation information.

And more so, even if you were to train a human to use echolocation from birth, there is no guarantee that the qualia varieties and the associated state-spaces their brain would recruit for that task would have anything to do with bat echolocation qualia. So the problem has more moving parts than is usually assumed.

June 28th 2020

“Son, there is something I’ve been meaning to tell you for a long time, but only now I’m brave enough to do so: I just don’t think aromatic Fougères are a good fit for you. Based on my experience, I think Chypres would fit you better. Or even some woody citruses. Not Fougères.”

July 16th 2020

I love smelling dirty every once in a while.Photo on 7-16-20 at 3.59 PM

July 19th 2020

If you have a prejudice against the smell of single molecules because they are “too simple” and you need some “entourage effect” balanced blend “only nature can provide”… try smelling Agrumen Aldehyde Light. A single molecule that smells like a full perfume!

Soapy lime herbal!

July 22nd 2020

Freesia is 90% linalool and 3% beta-ionol. I suppose that’s why my 50%/50% mixtures weren’t quite Freesia-like.

July 24th 2020

Vimalakīrti then asked the bodhisattvas from the Host of Fragrances [world], “How does Accumulation of Fragrances Tathāgata explain the Dharma?”


Those bodhisattvas said, “In our land the Tathāgata* explains [the Dharma] without words. He simply uses the host of fragrances to make the gods and humans enter into the practice of the Vinaya. The bodhisattvas each sit beneath fragrant trees, smelling such wondrous fragrances, from which they attain the ‘samādhi of the repository of all virtues.’ Those who attain this samādhi all become replete in the merits of the bodhisattva.”


– Chapter X – The Buddha Accumulation Of Fragrances

[*Tathāgata is an honorable name for the Buddha of a realm.]

July 30th 2020

Emergent scents – when you combine two or more aromachemical cocktails and you get as a result a scent that is different than the sum of its parts.

I have in the past found a number of essential oil combinations that do this (pear + violet, pomegranate + honeydew, lemon + lavender). But I figured that it’s much better to try to identify clear cases of this phenomenon by combining pure molecules.

So this little “research program” I have going on is to find pairs of aromachemicals and then mix them in many different ratios and smell the results (usually dissolved in ethanol at a concentration of ~20%). So far, it seems that about ~25% of pairs of molecules I’ve tried result in emergent scents. Here are some specific examples (please feel free to try at home and verify!!):

1) Humulene + d-limonene: Humulene smells herbal and earthy, d-limonene smells like orange or mandarin. When the ratio is ~4:1 I get an emergent scent that I can only describe as “classic chewing gum flavor”, completely distinct and phenomenally richer than the ingredients alone.

2) Linalool + beta-ionone: linalool smells like a very gasoline-like volatile version of a flower scent, beta-ionone is the classic “violet scent” molecule. When combined in 9:1 ratio I get an emergent scent that is like that of a citrus version of freesia or peony.

3) Humulene + vanillin: vanillin is the smell of vanilla, which is watery at the onset (attack and decay) and creamy on the second half (sustain and release). When combined in 1:1 ratio you get a completely new scent that feels close to a dried out old tobacco Cuban cigar blended with coffee liqueur.

That last one is also relatively close to the classic combination of vanilla + vetiver. Luca Turin told me that the perfume called Habanita is precisely playing with a vanilla/vetiver combo, which at first sniff comes across as a completely new and unrecognizable (yet very pleasant) scent. He said that a wonderful metaphor for this phenomenon is like the song Loro by Gismonti, where in the second half the piano and the flute play in such a synchronized fashion that you get the impression that there’s a new instrument involved. I’ve been smelling vanilla/vetiver while listening to this song. It’s quite beautiful.


Humulene combined with d-limonene create an emergent “missing fundamental” type olfactory illusion of classical chewing gum flavor. It only works when Humulene is between 70% and 90% of the mixture (before adding ethyl alcohol). Cleanest example of “emergent scent” I’ve found.

Humulene is a simple scent of the category “earthy”, roughly similar to a vetiver essential oil but “one octave higher”. It also has a very mild musky undertone.

D-limonene is an orange/lemon-like scent. Extremely common in perfumery. Chances are something you ate today has it.

July 31st 2020

The simplest example I can think of to illustrate what an “emergent scent” is comes from the auditory illusion called “the missing fundamental”.

If you play 200 hertz together with 300 hertz and 400 hertz you will hallucinate an emergent 100 hertz tone.

The 100 Hz tone is not there! But it is quite real in your experience.

Of course if you are very acquainted with this auditory effect, you might notice the fundamental (100hz) is a bit fainter than expected, and infer it’s an illusion. But it is nonetheless very much present in your experience.

Likewise, when you smell Humulene + Vanillin at a 1:1 ratio you will get a third smell that emerges as a sort of gestalt that “bridges together” the two underlying notes.

You can probably infer the input scent is made up of two notes if you are really experienced with this kind of phenomenon. But the third note, the gestalt, does not disappear when you have “reduced” it to the two underlying notes. It’s still there. Thus, really, the whole is greater than the sum of its parts.


Hear the effect yourself: Missing fundamentals. Periodicity and Pitch

August 1st 2020

I like my coffee how I like my perfumes: with the fewest chemicals needed to cause the desired effect.

As an aside, learning about emergent effects in low-entropy perfume recipes makes me think that there could probably be a job for “scent simplification”. Namely, take something like cacao, with hundreds of molecules contributing to its characteristic scent. The question is: what is the minimum viable number of aromachemicals you can use to replicate it (within a Just Noticeable Difference unit)?

I suspect most natural scents that come from a complex entourage effect have relatively minimalistic reconstructions. A question that also emerges is: what is the most complex scent? I.e. what is the smell whose minimum reconstruction has the maximum number of molecular diversity?

[It’s important to distinguish between molecular entropy and phenomenal entropy. A solution of Agrumen Aldehyde Light and ethanol has low molecular entropy but pretty high phenomenal entropy, whereas a “lime accord” made of tens of molecules could be high in molecular entropy yet low in phenomenal entropy because it smells very cleanly like a ‘single note’]


A master perfumer like Ellena has memorized hundreds, if not thousands, of recipes for manufacturing smells. Many complex natural scents can be conjured with only a few ingredients. The scent of freesia, he explained, is created by combining two simple molecules: beta-ionone and linalool, both synthetics. (To give freesia a cold, metallic edge, a touch of allyl amyl glycolate is added.) The smell of orange blossom is made by combining linalool and methyl anthranilate, which smells like Concord grapes.


In my presence, Ellena once dipped a touche into a molecule called isobutyl phenal acetate, which has a purely chemical smell, and another touche into vanillin, a synthetic version of vanilla. He placed the two paper strips together, waved them, and chocolate appeared in the air. “My métier is to find shortcuts to express as strongly as possible a smell,” he explained. “For chocolate, nature uses eight hundred molecules. I use two.” He handed me four touches—vanillin plus the natural essences of cinnamon, orange, and lime. The combined smell was a precise simulation of Coca-Cola. “With me, one plus one equals three,” Ellena said. “When I add two things, you get much more than two things.”


The Scent of the Nile: Jean-Claude Ellena creates a new perfume.
– By Chandler Burr

August 5th 2020

Imagine you have been a musician for your village all your life. You play drums and acoustic guitar and you have never heard modern music. One day you are gifted an iPod and you listen for the first time to the crazy sounds of psychedelic trance. For the first time in your life you experience the wonders of reverb, flanging, distortions, and FM-synthesis. Surely this gives you a sense that your conception of music only tapped into a tiny fraction of what had always been possible.

An analogy could be made with smells: having tried essential oils one gets the impression of understanding what is possible in the realm of scents. But one day you discover Galaxolide, hedione, and eso E super. Like reverb and FM-synthesis in sound, these compounds are capable of giving surreal, unexpected, and space-warping properties to scents (much like reverb in sound, they are character impact molecules, meaning that they modify the presentation of other scents more than contributing a ‘flavor’ of their own).

Galaxolide in particular is something you have probably smelled, either in perfumes or detergents, but it really only becomes clear just how insane of a substance it is when you smell it raw. I associate it with “DMT Realm Aesthetics” – like a smell coming from another planet where hyperdimensional experiences are common everyday events, and the world of the arts uses exotic phenomenal time routinely. It has a vibe I can only describe as “having already always been here yet just arrived”. It’s probably what traveling in time feels like when you are in a transcendent Bardo between lifetimes.


Pellwall describes galaxolide thus: “Galaxolide is an isochroman musk, that has an odour profile that is liked by most people and is similar to a macrocyclic musk. It is strong, clean smelling and a good fixative. It combines well with other musks and is often used in combinations.”

In wikipedia, they describe the scent as: “a synthetic musk with a clean sweet musky floral woody odor”.

I think the musk-like quality accounts for maybe 60% of its effect. But I swear there is something much more special about it than just a clean musk. It has a kind of time-dilation effect, and it seems to my nose as a “musk but high-dimensional”. Perhaps it’s musk + the harmonics of musk. So while other musks are just a single note, galaxolide is like the feeling of a musky accordion.


I’ll write about my setup for doing this kind of research, but suffice to say that it’s super cheap if you know what you are doing. Each experiment (i.e. a little bottle with a few ml of a new combination in precise proportions) costs me about ~30 cents to make, all things considered (the cost of the materials, the ethanol, the pipettes, the bottle).

I highly recommend just getting a 2ml sample vial. It can cost as little as $2.16 (plus shipment) here: Galaxolide.

Other stellar molecules to try out to expand your conception of what’s possible:

Linalool, dihydro linalool, alpha-damascone, damascenone, helional, C-16 aldehyde (strawberry), agrumen aldehyde light, farnesene, nerolione, and alpha-ionone. All of that can cost you as little as $30. Not a bad price for expanding your “sense of what’s possible”.


I so wish I had a “DMT-smell accord” to use as a note in perfume compositions.

There is this one here meant to evoke the hallucinogenic state, but reportedly it has nothing to do with the actual scent of DMT, which I find very disappointing. I will try to find the way to emulate the scent of it – I suspect that linalyl acetate and coranol could be part of the compounds making up that accord. I’ll let you know if I manage to make anything vaguely resemblant of that scent.375x500.59536

August 14th 2020

Lemon Lavender World

One of the first essential oil combinations I fixated upon was that of lemon plus lavender. You could say it is the “speedball” equivalent of essential oil combos, for it relaxes and excites at the same time. I figured that trying to “understand” the “lemon-lavender world” would be a good exercise in the quest of mapping out the state-space of scents.


Lemon Lavender experiments

I currently have six different lemon essential oils from different brands and places, and seven lavender essential oils. To my surprise, the variability is very substantial. The lemon essential oils range from extremely sour and astringent to sweet and waxy. The lavenders I have also have many different qualities: some are very oily and flavorful, while others are particularly camphorous. Which of the qualities are “essential” for lemon and lavender is surely a matter of convention, though I also think they point to roughly objective attractors – the citrus sharpness of lemon rings high and has a cascading sourness that can be used for waking up the senses, whereas lavender has a narcotic entrancing reverb effect. My quest to understand, and ultimately create, lemon lavender smells was not defined in terms of merely reconstructing the standard natural smells, but as an attempt at understanding how these two qualities interact at the phenomenal level.

The diversity of lemon and lavender oils means that the space of possible combinations is even larger. Of the 42 possible combinations of one lavender oil and one lemon oil I have some are far more blissful and rich than others. I picked a few of my favorite ones to use as “model lemon-lavenders” to try to emulate.

Starting in the spirit that in order to deeply understand a scent I have to be able to construct it from scratch- so that I understand how each piece contributes to the whole- I set myself the goal of creating both lemon and lavender accords and then exploring their combinations. All starting from raw aromachemical ingredients, of course:

Making a Lemon Accord

I have always wanted to know what makes citrus fruits smell the way they do. Empirically, both isomers of limonene are a key piece of the puzzle. For instance, both lemon and mandarin oil have upwards of 80% limonene. Alas, if you smell limonene alone, you will notice it is somewhat one-dimensional in character. It IS pointing in the direction of “citrus” quite clearly, but on its own is indisputably too simple to evoke a real lemon scent.

I had a false start: aldehydes. Aldehyde C-8 through C-15 are all “extremely high-pitch scents”. They give a sharp edge to perfumes like Chanel No. 5 and the like. But they are very hard to use – partly because they are extremely potent. So for a couple of days I worked with combinations of citral and aldehydes that had, though a somewhat citric quality, mostly headache-inducing effects. I ended this series of experiments when I got a headache that lasted 24 hours (this goes to show how far I am willing to go to understand that sweet, sweet lemon qualia).

Taking a step back, I decided to explore a different angle. Valencene (note the great name) is very similar to limonene, except slightly lower in pitch. When mixed in equal proportions with limonene one gets a richer, more believable citrus scent – both molecules seem to say the same thing but in a slightly different voice, which results in a kind of chorus effect (unlike merely doubling the volume of a single voice). Alas, at this point the scent is still a bit flat, and not particularly lemon-like relative to near-enemy citrus fruits like the good old orange, mandarin, or grapefruit.

I recall being very puzzled by the scent of lime, as it seems like a kind of “super lemon” when it comes to its high-pitched sour and astringent character. And no matter how much I tried mixing citrus-like aromachemicals, I found it hard to get any hint of lime in the results. That is until I discovered that lime oil has a great deal of alpha- and beta-pinene. These are molecules that are primarily found in trees (in pines!) and smell very woody. As it turns out, to turn a citrus smell into an outright lime scent you need to add woody molecules. In retrospect, this was always hidden in the name: Lemon + Pine = Lime. After having this insight, I realized that even lemon requires a bit of alpha- and beta-pinene to distinguish it from orange scent.

After a lot of trial and error, the most convincing minimalistic lemon scent I identified is (numbers represent parts):

3 D-Limonene
3 Valencene
1 Citral
2 Linalool
1 Alpha-Pinene
1 Beta-Pinene
1 Nerolione (optional; for a rindy effect)

Making a Lavender Accord

This turned out to be more difficult than making a lemon accord. I think this is not only me: I also own two “fragrance oils” (those products that are advertised in the same context as essential oils, yet in the fine print reveal they are not at all natural, and instead are synthetic reconstructions) of lavender, and neither of the two smell anything like lavender. So I wouldn’t be the first to fail.



Linalool is a key ingredient of lavender, making up about 30% to 50% of most lavender essential oils. This is a very powerful aromachemical that seems to work as a gasoline-like fuel amplifier and modifier for any other scent (“there is no boring ten-carbon alcohol” – Luca Turin). It is also one of the things that makes lavender so narcotic and entrancing. On its own it is already quite interesting. But it is only one of the voices in lavender.

Then you have linalyl acetate, which makes up between 0% and 30% of lavender oil, depending on the species, place of origin, and time of harvest. Linalyl acetate has a “dry” quality, which I associate with “salt” (in fact if you just add this to the lemon accord above you get a smell I would describe as “salted margarita cocktail”). Alpha and beta pinene also play a role in lavender.

Interestingly, a lot of lavender oils also have up to 10% of camphor, which contributes to its narcotic get-well-soon cozy quality. Alas, it is hard to work with this material, and it always smells too synthetic to me. I found that instead I could double-down on beta-pinene, which is more camphorous than alpha-pinene (which is more earthy), and does the job quite nicely.

Finally, centifoleather, farnesene, and various alcohols like coranol can give “flavor” to the accord. In the end, I’ve settled on a minimalistic (but I think effective) arrangement. It does not quite hit the flavor of lavender, but I think does a good job at evoking its “character impact”:

4 Linalool
1 Alpha-Pinene
4 Beta-Pinene
2 Linalyl Acetate
3 Farnesene

Putting It All Together

Ultimately, adding these two accords (and their variations) together does not always produce the best results, as some aromachemicals are repeated and the proportions that give rise to the desired interactions can be scrambled by the combination. This, by the way, is a general reason why synthetic combinations span a much larger space of possible scents. In brief, because to make reconstructions with natural oils you are constrained by non-negative least squares methods, and many combinations may simply be inaccessible that way.