Video description: How can we bring back information from conscious states, especially from exotic and altered states of consciousness? This talk covers Qualia Research Institute’s tracer replication tool and how we can turn what until now has been qualitative descriptions and informal approximations of the psychedelic tracer phenomenon into concrete quantitative replications.
I think that Zuck does a great job at walking you through the features of the tool. If you watch the video you will understand the difference between trails, replays, and strobes. You will get an intuitive feel for what color pulsing means. It will teach you how ADSR envelopes affect tracer effects. And it will give you a sense of how we can use the Tracer Tool to quantify how high you are, how synergistic drugs are, and how valenced a given tracer pattern is. Of course this is explained in the original writeup (linked above), but Zuck’s presentation might be more appropriate if you don’t have the time to read 10,000 words. I recommend it highly.
Qualia Souvenirs
One of the concepts that Zuck introduces in his presentation is that of a qualia souvenir. Just like how it is very nice to bring back a keychain with a picture of the place of your vacation as a souvenir, perhaps we could generalize this notion to include experiences as a whole. That is, how do we create a souvenir for an experience? As Zuck points out, taking a picture while on a psychedelic simply won’t do. You need to capture the quality of your experience, rather than merely the content of the inputs at the time.
With the Tracer Tool (and tools we will be sharing in the future) you can do just that. Well, you can at least replicate a component of your experience. And little by little, as we develop the tools to replicate more and more such components, we will slowly get to the point where you can genuinely recreate a snapshot of your psychedelic experience (or at least to the extent that images and sounds can evoke its nature).
Make It Social
One of the features of the Tracer Tool that I failed to emphasize in the original writeup was that we put a lot of effort into making the submissions shareable. There are several ways you could do this, in fact. The simplest is to fiddle with the parameters until you get an accurate tracer replication and then click on “Start Recording Video” and then click “Stop Recording Video” when you have captured what you want. Then it’s as simple as clicking on “View/Download Video” and then on “Download”. You’ll get a .webm file, which is supported by most large image-sharing sites (e.g gfycat.com). And if you want or need it in a .gif format (e.g. to share it on Facebook), you can use a free online converter.
Alternatively, you can click “Share Parameters” and copy the JSON that is displayed. You can then share it with your friends, who will click on “Import Parameters” and paste the JSON you gave them. The advantage of this method versus the previous one is that you can edit others’ qualia souvenirs and work together to create specific effects. It is also a way for you to “save” your work if you are not quite done and want to continue fiddling with the parameters later on, but don’t want to lose the work you have already put into it.
This is all to say: Make it social! It’s easy! Add tracer replications to your trip reports. Share them in social media. Use them to help your doctor understand the severity of your HPPD. Share them with friends and family (well, maybe not family, lest you want Grandma to know intimate phenomenological details of your LSD trip – there’s every kind of family, you know?). And so on. Let’s normalize psychedelic tracers!
Side-By-Side
A recent improvement to the tool that Zuck mentions in the video is the fact that we now display two bouncing balls rather than just one. This is in order to mitigate the problem that when you are tripping, the simulated tracers will get in the way of the actual tracers. And while this is still a bit of a problem, having one bouncing ball without simulated tracers can be really helpful when fiddling with the parameters on psychedelics:
Side-by-side: left side with tracers, right side without tracers.
We got a trip report from someone who took 100μg LSD who used the tool once we had added the second ball. This person said that the second ball was extremely helpful and that it allowed them to confidently estimate the replay frequency (14.5Hz):
100μg LSD 4 hours after dosing
It’s satisfying to see someone being confident about the replay frequency. The 14.5Hz in this case is not too far off from the 15-20Hz range previously estimated for LSD. And the best part is that this was done during the trip and in real time. The person who submitted this datapoint specifically said that it was very clear that the effect was one of replay rather than strobe, and that they were able to accurately estimate the replay frequency by adjusting the spacing so that there would be a match between the simulated trail effects on the left with the real trail effects on the right. We expect this to be a skill very amenable to training and we hope the psychonautic community starts paying attention to it.
Tracer Tool on Psychedelic YouTube
I recently found a really interesting YouTube channel: Junk Bond Trader (JBT for short). I found it by looking for quality5-MeO-DMT trip reports and I thought that his video about it was good enough for me to look deeper into his work.
One of the things I really enjoy about his style is that he describes the quality of his altered states in a very matter-of-fact way without taking the experience at face value. He also has a chill demeanor, epistemologically optimistic and curious rather than stuck in a wall of confusion or vibing in mysterianism. This is quite rare in Psychedelic YouTube. Exaggerating a little, I find that psychedelic-adjacent personalities tend to undergo changes that end up being difficult to square with the sort of slow and humble attention to detail needed for science and serious phenomenology. Perhaps we can think of this in terms of archetypes. When someone starts to explore psychedelics they often begin by embodying the archetype of the explorer. Namely, being driven by curiosity about what’s out there in the state-space of consciousness. After a number of powerful experiences, the driving archetype often shifts. The direct exposure to high-energy high-integration states of mind tends to anneal a new self-concept. The archetype they embody tends to drift to things like the psychedelic mystic, priest, educator, messiah, warrior, evangelist, shaman, prophet, counselor, or healer. It is rare to see someone who after many such exposures remains in the explorer wavelength; undoubtedly one of the most useful archetypes for science. In addition to an explorer, JBT is also a synthesizer in that he makes detailed analyses pointing out the common features across many experiences. For instance, I loved his retrospective analysis of about 40 DMT trips (see: part 1, 2, 3, & 4).
Steven Lehar is right, psychedelic experiences are harder to dissect when one is young and impressionable. It is quite likely that the best phenomenological reports will come from people who are at least 30 years old and who have a wealth of crystallized knowledge to use in order to describe their experiences. Speaking of which, I would say that Steven is also someone who successfully maintained the archetype of explorer throughout his psychedelic explorations without lapsing into any other less helpful archetype. But more than that, Lehar is also a synthesizer, and above all a scientist. At QRI we very much value his contributions and, contra modern academia, take seriously the sort of epistemology he employed. Namely, investigating the phenomenal character of (exotic) experiences in order to probe the principles by which perception operates. More generally, the psychedelic archetypes we consider to be priceless for qualia research are those of the explorer, synthesizer, philosopher, scientist, and engineer. Let’s get more of those and less shamans, evangelists, prophets, etc.
Back to JBT, I would highly recommend his Coffee Trip Report video on the basis that… it is really funny. But perhaps most relevant for our purposes at the moment, he recorded a video while on 200μg + 36mg 2C-B (warning: for most people this would be a very strong combined dose) and at 45:40 he started talking about the nature of the tracer effects of this combo:
“These trails are no fucking joke you guys. Some of the coolest visuals I’ve ever had in my life. […] Can I see through my eyelids? I can see around me, what the fuck? Dude, that’s freaking me out. [Waves hand in front of face with eyes closed]. There it is again! Wow. How does that work? […] These visuals are awesome, you’ll have to take my word for it. […] Everything looks alive, you know? It is not so much morphy as with mushrooms, but everything is jumpy, it’s got an energy to it. It’s all pulsing at the same frequency. These trails are… they honestly last two or three seconds. It’s not even funny at this point. It’s ridiculous. I thought I knew trails… I thought I knew trails! I didn’t know fucking trails. I’m afraid to do this again. I was seeing through my eyelids earlier… I’ve gotta look back at that footage. I mean, I obviously wasn’t looking through my eyelids, I know that. But I thought I was, I thought I was, I was that convinced. It’s weird, you go in and out of confusion, and it coincides with the intensity of the hallucinations. It’s like the more confused I get, the more intense the visuals get. So just when things start going good I can’t articulate it. I’m very conscious and lucid during all of this experience, and I’ll be able to recall it all. […] These trails are so over the top. Every little movement stains the air forever. […] Really weird, really strong visuals. Everything looks alive. Which is really cool. I feel like my ceiling is wet. That popcorn ceiling looks wet. It has this weird gloss over it. It looks cool. What can I say, it looks awesome. I could sit here all night staring at my fucking ceiling.”
Given these comments about the trail effects he was experiencing I decided to reach out to him to congratulate him for the quality psychedelic content and also ask him if he would be kind enough to try to replicate the tracers he saw using the Tracer Tool. And he did! He can now share with us a qualia souvenir from his trip! Here is what the tracers looked like:
He left this comment on the submission: “Though it was 5 weeks later, I made a specific note of the tracers in a live trip report video, and committed it to memory at that point because they were so unusually vivid. I chose black because the trail was specifically dark black.” – Junk Bond Trader (see the parameters[3]).
Just a few days ago, JBT gave a shoutout to QRI, my channel, and the Tracer Tool in a video (between 2:35 and 5:20). Thank you JBT! I particularly liked that he remarks on the fact that we use Shia LaBeouf’s “Just Do It!” green screen as the default animation for our custom tracer editor.[4]
An important note is that in his shoutout JBT makes it sound like this is all just me, but in reality what is going on at QRI is a huge team effort. In the psychophysics front in particular I would like to mention that Lawrence Wu and Zuck are the main people pushing the envelope and I am immensely grateful for all the hard work they are doing for this project. This also wouldn’t be possible without the many discussions with people at QRI and the broader community of friends of the organization.
I believe that Adeptus Psychonautica, whom I also like and respect, will give the Tracer Tool a try and discuss it in his channel soon! He interviewed me over a year ago and I think that he is also very much of an explorer. A particularly nice thing about his channel is that he reviews psychedelic retreat and healing centers. This is unusual; most people find it psychologically difficult to say anything bad about the place or the people who facilitated an e.g. ayahuasca ceremony for them. The perceived sacredness of the ritual makes any review other than a glowing recommendation feel sacrilegious. Adeptus Psychonautica has been around the psychedelic retreat block enough that he can really map out all the ways in which specific psychedelic retreat centers fail to meet their full potential. This is highly appreciated. I personally would take my sweet time in selecting the right place to experience something as valenced as an ayahuasca trip, so his reviews add a lot of value on that front. Thank you Adeptus!
Akin to these two YouTubers, if you have the ability to promote the Tracer Tool to audiences that are likely to try it, please be our guest! We would love to get more data so we can share the results with the world.
From Psychedelic Renaissance to Psychedelic Enlightenment
One of the things that I love about the fact that JBT tried the tool and talked about it on his channel is that it shows that research feedback loops can be closed online and in places as distracted and unfocused as YouTube. It hints at a new possible model for decentralized scientific research of exotic states of consciousness. Even if small in percentage, a dedicated group of online rational psychonauts able and willing to try each other’s experiments and discuss them openly might very well accelerate our understanding of these states at a pace that is faster than academia or the R&D departments of relevant industries (such as pharma). How many potential Steven Lehars are out there just waiting for the right legal landscape to share their experiences and analyses with others alike? I am excited to see how the online rational psychonautic community evolves in the coming years. I anticipate substantial paradigmatic developments, and we hope that QRI contributes to this process. In the long term, it is still unclear where most of the discoveries in this field will take place. On one extreme a hyper-centralized Manhattan Project of Consciousness could leapfrog all current research, and on the other extreme we have anonymous and decentralized Psychedelic Turk scenarios where access to exotic states of mind (both from the inside and the outside) is a sort of utility at the mercy of market forces. In the middle, perhaps we have semi-decentralized conglomerates of researchers building on each other’s work. If so, I look forward to an emergent science-oriented psychedelic intelligentsia of excellent trip reporters on YouTube in the next few years.
What Data Are We Most Interested In?
The combinatorial space of possible drug cocktails is really large and poorly mapped out. Of particular note, however, is the exotic effects caused by mixing psychedelics and dissociatives. Given the reports that there is a profound synergy between psychedelics and dissociatives (and that this combination is not generally particularly unsafe), we expect there to be really interesting tracers to report and we have no submissions of the sort so far. In particular, we expect to find synergy (rather than orthogonality or suppression) between these classes of drugs, and we would love to quantify the extent of this synergy (anecdotally it is really strong). If you are the sort of person who does not get noticeable tracers on LSD, perhaps try adding a little ketamine and see if that helps. Chances are, you will be like JBT, saying something along the lines of “I thought I knew tracers… I didn’t know **** tracers!”.
It would also be really good to see tracer data for candy-flipping (and MDMA combinations more broadly). We suspect that MDMA will generally have interesting ADSR envelopes. So if you have candy-flipped in the past or you intend do to so in the future please consider donating a couple minutes of your time to submit a datapoint! Remember, you can share it with your friends as a qualia souvenir!
Finally, we would love to have more DMT and 5-MeO-DMT submissions. We are interested in checking if the differences we have found between them can be replicated. In particular, we are told that 5-MeO-DMT produces monochromatic tracers whereas DMT produces richly-colored tracers that flicker between positive and negative after-images. If this turns out to be true, it would be really significant from a scientific point of view:
5-MeO-DMT
DMT
Apropos Psychedelic YouTube
With over a quarter million views as of March of 2021, The Hyperbolic Geometry of DMT Experiences (@Harvard Science of Psychedelics Club) is perhaps the most viewed piece of QRI content. Thus, the comment section perhaps gives us a snapshot of how the existing (pre-Galilean!) memes surrounding the psychedelic community make sense of this work. Doing a cursory semantic clustering analysis, I would say that most of the comments tend to fit into one of the following groups:
Comments from people who admit to having tried DMT tend to say that “this is the best description of DMT phenomenology I have ever seen”.
Comments complaining about the poor audio quality.
Comments saying I should go on Joe Rogan (e.g. “Very captivating and well formulated. We need to have jamie pull this up.” is the most upvoted comment, with 1.7K upvotes).
Comments stating that the DMT entities are real and that I should take higher doses to confirm that.
Comments complaining that “visuals are not what matters about the experience” and that I’m “missing the point” for paying attention to them.
Weird miscellaneous comments like claiming that the video is a proof that there is a conspiracy from Harvard trying to convince the world that DMT is not a true spiritual molecule.
Fun one-liners (my favorite is “Massachusetts Institute of Tryptamines”).
Let me briefly comment on each of these clusters:
For (1): I am always happy to hear from psychonauts that our work at QRI is clarifying and illuminating. I get a lot of emails and messages saying this, and it honestly makes me happy and keeps me motivated to go on. An example of this would be one of the most upvoted comments:
This video combined with the article probably explained more of the dmt trip than all the trip reports I’ve read which is a lot. The levels, with the doses! Now I know I landed squarely in the Magic Eye. The symmetry hotel is a great explanation too. I find it interesting that I had an experience of divine consciousness on level three rather than level six; perhaps it was just a foretaste? Truly informative, this is what psychonauts need to hear.
YouTube user johnnysandiegoable
For (2): Yes, we know, sorry! We did what we could to stitch together the audio from my phone and the audio from the camera (which was way in the back). The wireless mic we had planned to use malfunctioned at the last minute and I wasn’t very mindful about the fact that the phone would produce the best audio. I know I should have stayed closer to the podium for most of the talk. That said, if you hear the presentation with headphones and are willing to increase the volume for the quiet parts, you can still make out every word. So, admittedly, the comments are exaggerating a bit just how unlistenable it is. ^_^
For (3): Joe, if you are reading this, I’m game! Bring it on! I think that it is entirely possible that we will have a great conversation.
For (4): I have indeed said before that we think it is unlikely that one makes true contact with mind-independent entities while tripping on DMT. Of course we welcome evidence to the contrary, and we have even suggested novelmethods by which this could be tested. But I do want to say that unlike other accounts of the DMT phenomenology, the way we argue for the likely internal (“fully in your head”) interpretation does not in any way dismiss the specific reasons why such experiences are so compelling. It is not only that the experience feels very real (indeed, what does that even mean?) but that it has a series of properties that makes the hallucinations stand out as uniquely believable relative to other psychedelics. In the Harvard presentation I mention the idea that the dimensionality of the experience is so high that in a way one does experience a sort of superintelligence while on DMT. In such states, we genuinely get to experience much more information at once and render intricate connections in ways that would make connoisseurs of complex thoughts extremely jealous. Alas, this has yet to be fine-tuned for any kind of useful computational purpose. Yet, in terms of raw information bandwidth, the state has tremendous potential. So we could say, that on DMT you do get to experience a sort of higher intelligence; it is just that it is a higher intelligence of your own making, and we lack an adequate narrative within sober states of mind to make sense of what this experience means. Hence we tend to converge on easy-to-explain and relatable metaphors. Saying that one met with an advanced alien intelligence is somehow easier to convey than describing in detail the sequence of point-of-view fragmentation operations that bootstrapped the multi-perspectival state of mind you experienced. More so, in a recent video, I explained that DMT has some additional properties that make the hallucinations it induces extremely believable. Of particular note I point out that on DMT one experiences:
Multi-modal coherence where touch, sight, and sound hallucinations are synchronized,
An extremely high temperature parameter leading to the melting of the phenomenal self, and
Tactile hallucinations, which add a layer of “reality” to the experience.
These and other features are the reason why DMT experiences feel so “real” and hard to dismiss as mere hallucinations. Rational psychonauts are advised to pay close attention to this in order to avoid developing delusions with repeated administrations.
For (5): Look, we understand. It is obviously the case that the visual effects are a tiny component of the experience, but consider just how difficult it is going to be to describe every single aspect of the experience. I am sure you have heard the expression “learn to walk before you learn to run” (or in this case, learn to walk before you learn to fly, or perhaps more appropriately, to learn to walk before you learn how to operate an alien spaceship with sixteen thousand levers interlinked in unknown ways). In brief, the path that will take us to the point where we can fully characterize a DMT trip will start with developing an extremely crisp and precise vocabulary and research methodology to describe the simplest low-level effects. It is surprising how much we can in fact say about a DMT trip by allusions to attractors in feedback systems and hyperbolic symmetry groups even if this turns out to only get at a small fraction of what makes such experiences interesting. We have to start with the basics; that is what we are doing here.
For (6): This is at least somewhat expected. Recall that DMT tends to make you overfit data. Conspiratorial thinking is a classic form of overfitting. Without a rational framework and grounding exercises, DMT users will generally develop increasingly overfit models of reality.
For (7): Well, keep them coming!
Future Developments
I want to conclude by mentioning that we have ambitious plans for QRI’s Psychophysics Toolkit (of which the Tracer Tool is but the first of many tools to come). We are in the process of developing many more experimental tools and paradigms specifically designed to rigorously quantify and characterize the information-processing features of exotic states of mind. Fancifully, imagine an “experience editor” where you can recreate arbitrary experiences from first principles. To name one possibility here, consider Distill’s Self-Organizing Textures: visual textures are hard to put into words, but easy to tell apart. Hence, odd-one-out paradigms in conjunction with generative methods (i.e. texture synthesis) can allow us to pin-point exactly how psychedelics affect our perception of mongrels. In the long run, we want to characterize the circuit motifs emergent out of the neural architecture of the human brain, and we expect this work to be extremely useful for that pursuit. Stay tuned!
[1] From their website: The Intercollegiate Psychedelics Network (IPN) is a youth-led garden organization dedicated to the development of students into the next generation of diverse and interdisciplinary leaders in the field of psychedelics. We envision a future where safe, legal, and equitable access to psychedelic healing creates a more just, peaceful and connected world. [e.g. see PennPsychedelics].
[2] From their website: PsychedelX is a student talk program featuring 20 minute talks from students around the globe with novel, impactful, and interdisciplinary ideas that will shake up the psychedelic discourse. From February 22nd – 27th [2021], watch their presentations on YouTube to expand your understanding of psychedelics and their role in our world today.
[3] If you want to see Junk Bond Trader’s tracer go to the Tracer Tool, click “Import Paramters”, and then paste: {“animation”:”unlitBallGravity”,”speed”:”1.65″,”trailOn”:true,”trailIntensity”:”70″,”trailTimeFactor”:”78″,”trailExponential”:true,”strobeOn”:true,”strobeFrequency”:”14.7″,”strobeIntensity”:”83″,”strobeTimeFactor”:”76″,”strobeExponential”:true,”strobeAdsr”:false,”replayOn”:false,”replayFrequency”:”11″,”replayIntensity”:”68″,”replayTimeFactor”:”75″,”replayExponential”:true,”replayAdsr”:false,”pulseOn”:false,”pulseFrequency”:”1.6″,”pulseAmplitude”:”50″,”pulseColor”:false,”pulseColorAmplitude”:”100″,”maxTracers”:”154″,”color”:”#000000″}
We developed a new method for replicating psychedelic tracer effects in detail: the Tracer Replication Tool. This tool gives us a window into how the time-like texture of experience determines the state of consciousness we find ourselves in, which clarifies what makes both meditating and taking psychedelics such powerful state-switching activities. We discuss how the technique of using the tracer tool may find useful applications, such as allowing us to describe exotic “ineffable” experiences in clear language, standardize a scale of intensity of psychedelic drug effects (a.k.a. a “High-O-Meter”), help us quantify the synergy between different drugs, and test theories for what makes an experience feel good or bad such as the Symmetry Theory of Valence. The pilot data collected with this tool so far is suggestive of the following patterns: (1) THC and HPPD result in a smooth and faint trail effect. (2) The characteristic frequencies of the strobe and replay effects for 2C-B are slower than those of either DMT or 5-MeO-DMT. And, (3) whereas DMT comes with a strong color pulsing effect leading to very colorful visuals, 5-MeO-DMT gives rise to monochromatic tracer effects. We conclude by discussing the implications of these patterns in light of an analysis of experience that allows for a varying time-like texture. We hope to inspire the scientific community and curious psychonauts to use this tool to help us uncover more patterns.
Introduction
Rhythmic activity in the brain is a staple of neuroscience. It shows up in spiking neurons, synchronous oscillations at the level of networks, global patterns of resonance and coherence in EEG recordings, and in many other places. The book Rhythms of the Brain by György Buzsáki is a systematic review of what was known about these rhythms back in 2006.[1] One of the things György talks about in this book is how a lot of neuroscience techniques focused on finding the neural correlates of perception tend to consider the variable activation of neurons from one trial to the next as noise. In experiments that look into how neurons respond to a specific stimulus, datasets are constructed that track the neuronal activity that stays the same across trials. That which changes is discarded as noise, and György argues that such “noise” is really where the information about the internal rhythms is to be found.[2] We concur with the assessment that understanding these native rhythms is key for making sense of how the brain works. Perhaps one of the most exciting developments in this space is the method of Connectome-Specific Harmonic Wave analysis (Atasoy et al., 2016). This way of analyzing fMRI data describes a “brain state” as, at least partly, consisting of a weighted sum of its resonant modes. This paradigm has been used with success for comparing brain states across widely different categories of experience: LSD, ketamine, and anesthesia, among others (Luppi et al., 2020).
These are exciting times for exploring the native rhythms of nervous systems in neuroscience. But what about their subjective quality? One would hope that we could connect a formal third-person view of these rhythms with their experiential component. Alas, at this point in time the behavioral and physiological component of brain rhythms is far better understood than the way in which they cash out in subjective qualities.
Could there be a way to make these rhythms easily visible to ourselves as scientists? One interesting lens through which to see psychedelics is in terms of the way they excite specific rhythm-generating networks. This lens would present psychedelic states as giving you a sense of what it feels like to have many of these rhythms simultaneously activated, thus having access to a wider repertoire of brain states (Atasoy et al., 2017).
But you don’t need psychedelics to realize there’s something fishy about the solidity of our perception. Intuitively, one may get the impression that normal everyday states of consciousness do not show the signatures of being the result of ensembles of rhythmic activity. That said, some would affirm that paying attention to the artifacts of our perception may in fact be a window into these rhythms. For example, Lehar’s Harmonic Resonance Theory of the gestalt properties of perception (Lehar, 1999) attempts to explain the characteristics of well known visual illusions (such as the Kanizsa triangle) with principles derived from the superposition of rhythmic activity.
Kanizsa Triangles
Paying close attention to the act of observing an object over time has led some researchers to play with the idea that our experience of the world is best understood as music (Lloyd, 2013), for our feeling of a solid surrounding results from the interplay between finely coordinated sensations and acts of interpretation. Indeed, the fluidity of sensory impressions betrays our common-sense notion that we experience a solid and stable world. It often takes a perturbation out of our normal everyday state of consciousness to notice this. As an example here, we can point out that insight meditation practices peer into the illusion of solidity and continuity of our experience, whereas concentration meditation enhances these illusions (Ingram, 2018).
Arguably, like a fish who cannot notice water until it’s taken out of it, the stitching process by which our brain constructs reality is usually hidden from view. To be taken out of the water in this context would be to be in a state that allows you to notice the seams of one’s experience. To the extent that this normal stitching process breaks down in exotic states of consciousness, they are clearly useful for research in this domain. Thus we argue that the artifacts of perception in alien states of consciousness are not noise; they provide hints for how normal experience is constructed. In particular, we posit that “psychedelic tracers” (i.e. the cluster of persisting visual phenomena caused by hallucinogens) may be a window into how rhythmic feedback dynamics are used to control the content of our experience. For this reason, we have been interested in turning what until now has been qualitative descriptions and informal approximations of this phenomenon into concrete quantitative replications.
In what follows we will showcase the value of a psychophysics toolkit we developed at the Qualia Research Institute called the Tracer Replication Tool for modeling psychedelic tracer phenomenology. Although we will focus on psychedelic experiences, this tool can have a much broader set of applications. For example, we show how the tool can be used to visualize and quantify the severity of HPPD, which currently has a very qualitative, and imprecise at best, diagnostic criteria. Likewise, the tool has the potential to bring together the complex clinical presentation of visual disturbances such as palinopsia, photopsia, oscillopsia, visual snow, and other conditions, into a coherent framework. Perhaps, speculatively, the connection between all these visual disturbances is to be found in the dysregulation of the rhythms of the visual control systems, which is what the tracer tool sets out to quantify.
The only attempt of arriving at quantitative replications of psychedelic tracers in the scientific literature we are aware of is by (Dubois & VanRullen, 2011). They used multiple-exposure stroboscopic photography in order to depict video scenes. They then asked many people who have had LSD experiences to identify the strobe frequency that best approximated their tracers (which on average was in the 15-20 Hz range).
As we will see, our model for psychedelic tracers is more detailed: it has multiple persistence of vision effects that combine together into a complex tracer. For this reason, the kind of tracers used in Dubois & VanRullen turn out to be a special case of our tool, which we call the strobeeffect:
LSD users perceive a series of discrete positive afterimages in the wake of moving objects, a percept that has been likened to a multiple-exposure stroboscopic photograph, somewhat akin to Etienne-Jules Marey’s chronophotographs [5] from 1880, or to more recent digital art produced in a few clicks (Figure 1).
By using a wider set of effects, the Tracer Replication Tool might give us hints about how psychedelics disrupt native rhythms given how they affect the processing of perceptual information at a granular level.
Before we provide the full set of tracer effects along with their associated vocabulary, let us jump into the preliminary psychedelic replications we have obtained thanks to this tool.
Psychedelic Replications
Over the years since I’ve run the Qualia Computing blog, I’ve received many messages from people who, for lack of a better term, we could call rational psychonauts. This should not be too surprising, with pieces like “How to Secretly Communicate with People on LSD” and “5-MeO-DMT vs. N,N-DMT: The 9 Lenses”, the site has become a bit of a Schelling point for people who like to blend computational reasoning and the study of exotic states of consciousness. These rational psychonauts are people who not only are well acquainted with exotic states of consciousness, but also like to use a scientific and rational lens to make sense of such states. In particular, people in this cluster often ask me to send them experiments to try out next time they take a psychedelic substance. I certainly never encourage them to take drugs, but under the assumption they will do so anyway, I sometimes send them tasks to do. Thus, once we had a prototype for the tracer tool, I already had a set of more than willing anonymous pilot participants. I sent them the link to the tool along with some brief instructions. Namely:
Look at the ball for a few minutes in state X (where X can be any substance, meditation, etc.). Then as soon as you come down, try to fiddle with the parameters on the left until the simulated tracer looks as close as possible to how you experienced it in the state. When you are ready, simply click “submit parameters” and add info about what the state you were in was at the time. In the case of HPPD, just try your best to replicate the tracer (I know it gets confusing when we talk about the tracers of the simulated tracers, but try to ignore those and just replicate the tracer of the original input).
Without further ado, here are the resulting replications I received:
HPPD
Mild HPPD (participant said it was strongest on color red)
THC
12.5mg edible, 60 minutes post-ingestion
15mg edible, 90 minutes post-ingestion
2C-B
20mg orally ingested
12mg “gummed”
Notice how although the replication of the higher dosage is more mild in a way, they both share the presence of a strobe effect at roughly 5.5 Hz!
DMT
5mg vaped
10mg vaped
20mg vaped
The higher dose has a complex mixture of effects, including 40 Hz color pulsing (positive and negative afterimages mixed together), 22 Hz replay, and 27 Hz strobe. I’ll note that the participant included the following comment: “Aside from extremely fast tracers, the white space consisted of pixelated fractals. Color was abundant.”
5-MeO-DMT
5mg vaped
10mg vaped
As we will discuss further below, it is worth noting that at least in this sample, there are no color pulsing effects present (which is unlike “regular” DMT).
Drug Combination: Mescaline + ETH-LAD
125μg ETH-LAD + 2 teaspoons of San Pedro powder
The above is the only datapoint we have so far from the combination of psychoactive substances. The participant took 125μg of ETH-LAD, and then two and a half hours later 2 teaspoons of San Pedro powder. The replication is of the way the ball looked like 5 hours after taking the first drug.
Definitions
Let us now look into the specifics of the tracer tool:
Core Effects
Core effects are pillars of the tracer tool where a particular feedback dynamic is used. The core effects include trails, strobe, and replay.
Modifiers
A modifier effect is one that plays with a core effect and alters it in some way. We will talk along the way about the modifying effects of persistence, intensity, and frequency, and then have a separate section to talk in more detail about the modifier effects of envelope (ADSR), pulse, and color pulse.
Trails (Core Effect)
This is perhaps the most basic effect. Making an analogy with sound, trails are akin to a soft reverb with no delay:
The three settings for trails are: persistence, intensity, and exponential decay (which is binary in the current implementation and otherwise takes on the value of linear decay). Persistence determines how quickly the tracer vanishes, whereas intensity is a constant multiplier for the entire trail. Thus, by changing those parameters you can choose between e.g. a long but dim trail or a short but bright trail.
High persistence / low intensity
Low persistence / high intensity
The exponential decay parameter slightly changes how quickly the brightness goes down; when it’s on, the trails go down more smoothly (cf. gamma correction).
Without exponential decay
With exponential decay
Strobe (Core Effect)
The strobe effect takes snapshots of the input at regular intervals. It works like chronophotography, and it is perhaps what most people think about when you first talk about visual tracers. It is the effect that Dubois & VanRullen used to find that LSD produces visual tracers at ~15-20 Hz.
Strobe effect at 16.4 Hz
The strobe effect, just as the traileffect, also has intensity, persistence, and exponential decay modifiers. In addition, it also has frequency, which encodes how many snapshots per second are being taken.
5 Hz Strobe
10 Hz Strobe
20 Hz Strobe
Note: The current implementation of the trails feature is done with a very fast strobe. In this way, when you set the strobe frequency to the maximum you get something that starts to look a little like the trails effect.
Replay (Core Effect)
With an analogy to sound, replay would be akin to adding an echo or delay to a signal. Replay adds to the raw signal a copy of the output from a fraction of a second into the past. The result is a current output that contains a sequence of increasingly dimmer video replays of itself at regular time intervals into the past.
6 Hz Replay
As with strobe, replay has intensity, persistence, exponential decay, and frequency as its modifying effects.
3 Hz Replay
12 Hz Replay
Note: the replay effect is difficult to distinguish from the strobe effect with only still images
Pulse (Modifier)
This is a modifier effect that can apply to trails, strobes, and replays (right now the implementation only applies to strobe, but we may change that in the future). It takes a fraction of the input and modulates it with a sine wave at a given frequency. This way the trails, strobes, and replays can come and go (either in part or in full) at a given frequency. This adds sparkle to the experience, and it can plausibly help create a sense of reality or object-permanence for the hallucinations as they “vibrate at their own frequency”.
Compare the difference between a strobe at 4 Hz vs. a strobe at 4 Hz with a pulse at 2 Hz:
4 Hz Strobe
4 Hz Strobe + 2 Hz Pulse at 50% amplitude
As you can see, the pulsing effect makes the strobes look like they have a sort of life of their own.
Using control interrupts as the source of hallucinogenesis, we can model hallucinogenic frame distortion of multisensory perception the same way we model sound waves produced by synthesizers; by plotting the attack, decay, sustain, and release (ADSR envelope) of the hallucinogenic interrupt as it effects consciousness. (Fig. 2)3,4 For example, nitrous oxide (N20) inhalation alters consciousness in such a way that all perceptual frames arise and fall with a predictable “wah-wah-wah” time signature. The throbbing “wah-wha-wah” of the N20 experience is a stable standing wave formation that begins when the molecule hits the neural network and ends when it is metabolized, but for the duration of N20 action the “wah-wah-wah” completely penetrates all modes of sensory awareness with a strobe-like intensity. The periodic interrupt of N20 can be modeled as a perceptual wave ambiguity that toggles back and forth between consciousness and unconsciousness at roughly 8 to 11 frames-per-second, or @8-11hz.5 Consciousness rises at the peak of each “wah” and diminishes in the valleys in between. On sub-anesthetic doses, N20 creates a looping effect where frame content overlaps into the following frame, causing a perceptual cascade similar to fractal regression. We can thus model the interrupt envelope of N20 as having a rounded attack, fast decay, low sustain, medium release, with an interrupt frequency of @8-11hz. Any psychoactive substance with a similar interrupt envelope will produce results that feel similar to the N20 experience. (Fig. 3) For instance, Smoked Salvia divinorum (vaporized Salvinorin A&B, or Salvia) has an interrupt envelope similar to N20, except Salvia has a harder attack, a slightly longer decay, a more intense sustain, a slightly longer release, and a slightly faster interrupt frequency (@12-15hz).6 These slight changes in the frequency and shape of interrupt envelope cause Salvia to feel more physically intense, more hallucinatory, and more disorienting than N20, even though they share a similar throbbing or tingling sensation along the same frequency range.
This actually seems to be important for showcasing what makes drugs with similar characteristic frequencies capable of feeling so different.
2 Hz Strobe
2 Hz Strobe + soft ADSR pattern
A really interesting research lead that is connected to the ADSR envelope of psychedelic tracers can be found in The Grand Illusion (Lehar, 2010), where cognitive scientist Steven Lehar narrates some of his experiences with LSD vs. LSD + MDMA. One of the things he discusses is the way that MDMA makes the experience jitter in a pleasant way that results in the LSD visuals becoming smoother (emphasis mine):
Under LSD and ecstasy I could see the flickering blur of visual generation most clearly. And I saw peculiar ornamental artifacts on all perceived objects, like a Fourier representation with the higher harmonics chopped off. LSD by itself creates sharply detailed ornamental artifacts, like a transparent overlay of an ornamental lattice or filigree pattern superimposed on the visual scene, especially in darkness. Ecstasy smooths out those sharp edges and blurs them into a creamy smooth rolling experience.
I would suspect that this distinction will become legible with the judicious use of ADSR envelopes. Below you will find a possible rendition of this effect:
As we will discuss further below, a more creamy ADSR envelope may cash out in a more pleasant experience, whereas a sharper or spikier envelope may in turn create more harsh experiences.
Color Pulse/Negative After Images (Modifier)
The color pulse effect transforms the image’s color towards its opposite in the CIELAB color space with a given frequency. It modifies strobe, replay, and trails (in principle, there can be a different color pulse for each effect, but for now it modifies all three simultaneously).
23.6 Hz Strobe
23.6 Hz Strobe + 2 Hz Color Pulse
Unlike pulse, color pulse modulates the color rather than the brightness of the input. The way we determine what color to transform into is by going to the opposite side of the CIELAB color space. This accurately approximates the negative afterimage of any phenomenal color (such as yellow being the negative afterimage of blue, and green being the negative afterimage of red). In our current implementation, color pulsing affects strobe and replay quite differently. For replay, the effect is one where there are now versions of the ball (or image, more generally) that have the opposite color that are chasing the original ball, whereas for strobe the effect is that of giving a seizure to each of the recent snapshots of experience! See for yourself:
26 Hz Replay + 13 Hz Color Pulse
26 Hz Strobe + 13 Hz Color Pulse
In a future version of the tracer tool, color pulse may become a sub-property of each main tracer layer in the same way ADSR is a sub-property of the strobe and replay layers.
Color pulsing may be an important piece of the puzzle for understanding how otherwise similar drugs can have such dramatically different effects. Tentatively, color pulsing showed up as a distinction between DMT and 5-MeO-DMT according to one of the persons who submitted parameters (as you can see above in the replication section). For that person, DMT produced color pulses while 5-MeO-DMT did not. Of course this is just a sample size of N=1. But it seems like an important research lead if true! After all, DMT trip reports do talk of highly colorful hallucinations that typically involve the combination of colors and their opposites (e.g. “The wall looked like a Persian carpet with an alternating checkerboard pattern design of neon green and magenta light” – anonymous 10mg DMT), whereas most 5-MeO-DMT trip reports don’t feature color very much. In fact, 5-MeO-DMT trips are often in black and white, pure white, pure black, or “nothingness color”. We discuss the implications of this in more detail in the last section of this piece (GettingRealms from Time-Like Textures).
Face Value vs. Dynamic Feedback Model
It is important to point out that the tracer tool works under the assumption of linearity between the effects it models. In other words, each effect modifies the input in its own way, and the corresponding modifications are added linearly at the end. This does not need to be the case. And in fact, we must expect the brain to have a lot of complex non-linearities where e.g. the pulsing effect is then used in a replay loop which entrains a strobing pattern which focuses your attention and so on. This complication aside, there is a lot of value in postulating the simple model first, and then adjusting accordingly when it fails to model the more complex phenomena. When we get there, once we have identified particular drugs, doses, and combinations that produce strange nonlinearities, we can then build tracer tools that explore how the parameters of particular dynamic systems can best explain the empirical data. Until then, let us start mapping out the space with this (relatively) simple linear model.
Useful Vocabulary
I would like to highlight the fact that using the tracer tool can be very educational. Familiarizing yourself with the effects and their modifications will allow you to be able to describe in detail psychedelic tracers even without having to use the tool again. For instance, I find myself now able to describe what kind of tracer effect appears on any given replication or trippy video. For example, now that you have read about them, can you tell us what is going on in the following gifs?:
The Explanatory Power of the Time-Like Texture of Experience
Exotic Phenomenal Time
We have previously suggested that tracers in the most general sense (i.e. including tracers for emotions, thoughts, and all sensory modalities in addition to visual experience) are very important for understanding the time distortions one experiences in exotic states of consciousness. The overall idea is that the aspect of our experience that gives rise to the feeling of time passing is the result of implicit causality in the network of local binding connections, which we call the pseudo-time arrow (see a recent presentation about it). Don’t worry about the details, though. All you need to know is that here we model phenomenal time as the direction along which causality flows within one’s experience. And because this is a statistical property of our experience, it turns out that phenomenal time ends up being very malleable; it admits of “exotic phenomenal time” variants:
This framework can articulate what is going on when you experience crazy psychedelic states such as moments of eternity, time branching, time looping, and so on. Now, even these are just some of the possible ways in which the network of local binding connections can give rise to exotic phenomenal time experiences. In reality, because the pseudo-time arrow emerges at a statistical level in the network, one can have all manners of local pseudo-time arrows nested in complex ways, as briefly discussed in the presentation:
I will end by speculating: I just walked you through seven types of exotic phenomenal time, but if indeed [the experience of time] can be explained in terms of causality in a graph, then there are many other exotic phenomenal times we can construct. This is especially so when we consider the space of possible hybrid phenomenal times. For instance, where in some regions in the network we may find time looping, some other region might be a moment of eternity, and perhaps another region is branching, and you know, if you have a very big experience, there is no reason why you wouldn’t be able to segment different regions of it for different types of phenomenal time. This is not unlike, perhaps, how we think of Feynman diagrams, where this part of it here is moving forwards in time, this part here is doing a loop, this part here is branching… I think a lot of the topologies we see here could be used to represent completely new [hybrid] exotic phenomenal times.
Given the diversity of ways in which phenomenal time can be expressed in an experience, I will start talking about the patterns encoded in the pseudo-time arrow as the time-like texture of experience. This way, rather than assuming that one’s sense of time is globally consistent in a given way (e.g. as in “I am fully inside a time-loop”), we can discuss how various patches and components of one’s experience have this or that time-like texture (e.g. “my visual field was looping, but my proprioception was strobing and my thoughts felt timeless”).
Drugs
As a generic effect, all psychedelics seem to increase the duration of qualia in one’s experiential field, leading to a buildup of energy. But the precise shape this takes matters a lot, and it is certainly different between drugs. An example pointed above is how LSD and DMT seem to produce strobe and replay patterns of markedly different frequencies. For DMT, the spatial and temporal frequency of the visual hallucinations is usually described as “very high”. Based on the replications thus far, along with personal reports from a musician I trust, DMT’s “characteristic frequency” seems to be in the 25 to 30 Hz range. In contrast, LSD’s frequency is more in the range of 15 to 20 Hz: both Dubois & VanRullen’s LSD tracer study and subjective reports I’ve gathered over the years point to the hallucinations of acid having this rough frequency. Hence, the very building blocks of reality of a high-dose DMT breakthrough experience consist of tiny time-loops and strobe effects interacting with one another, weaving together a hallucinated world with surprising levels of detail and intense freshness of experience (as all the time loops are “young” due to their short duration). Really, when you take a small dose of DMT and you see the walls tessellating into wallpaper groups, notice how each of the tiny “bricks” that make up the tessellation is itself a time loop of sorts! It is not a stretch to describe a DMT experience as a kind of complex Darwinian ecosystem of tiny coalition-based time loop clusters bidding for your attention (cf. Hyperbolic Geometry of DMT Experiences).
Taking this paradigm seriously allows us to interpret psychoactive effects at a high level in novel ways. For example, these are some of the general patterns we have identified so far:
Psychedelics tend to have strong replay and strobe effects
HPPD, cannabis, and dissociatives seem to have a much smoother trail effect
MDMA and 5-MeO-DMT have characteristically creamy ADSR envelope effects
Using the sound metaphor to restate the above, psychedelics introduce beats and recursion, dissociatives introduce reverb, and empathogens/valence drugs may affect the temporal blur of one’s experience. Thus, we arrive at a model of psychoactive substances that makes sense of their effects in the language of signal processing rather than neurotransmitters and functional localization. This sheds a lot of clarity on the mysterious and bizarre state-spaces of consciousness disclosed by psychoactive drugs and paves the way for a principled way of predicting the way drug combinations may give rise to synergistic effects (more on that below). More so, it lends credence to the patternceutical paradigm of drug effects.
Meditation: Insight and Concentration Practices
The pseudo-time arrow paradigm suggests that one of the ways in which meditative practices can switch one’s state of consciousness is by disrupting sober time-like textures and enabling exotic time-like textures not available to the sober mind (see also: The Neuroscience of Meditation: Four Models (Johnson, 2018)). My personal experience with meditative practices is limited, but I’ve had the pleasure of experiencing some strange effects so far. In particular, I would say that concentration practices seem to give rise to experiences with long and stable pseudo-time arrows – a peacefulness in which nothing is happening yet the flow of time is constant and rather uneventful. The phenomenal time of highly focused states of mind may be full of reverb, but I do not think it has crazy time loops. Moments of eternity and timelessness may be present at the limit here (e.g. moments of eternity and Jhanas may be deeply connected), though I will need more personal experience to say this with confidence.
On the other hand, insight practices such as noting meditation may have more of a replay and strobe effect. In particular, this may happen as a result of three core effects from this kind of meditation: (1) it stops you from dissipating energy across long narratives, (2) it recaptures the energy you were going to use for a longer narrative to feed the noting process instead, and (3) it entrains the rhythm of noting. This in turn (a) energizes a regular constant-frequency pattern (the frequency of noting) and (b) reduces the energy of every other rhythm, which in turn (c) canalizes sensory stimulation energy towards the brain’s noting frequency and all of its harmonics, which eventually leads to a high-frequency energized state of consciousness whose building blocks are tiny time-loops. These can synchronize and create experiences with characteristic time-like textures made up of such tiny energized loops. Hence, noting practice above some level of skill (e.g. with a noting frequency above 3 Hz) can be DMT-like to an extent (in light of thinking of DMT realms as made up of energized high-frequency mini-time-loops).
These experiences characterized by intense tracer effects are in a similar space as the strange temporal distortions that happen when you are dizzy (like when you stand up too fast or hyperventilate). The “loss of context” that results from this effect is due to the longest replay loops becoming too short to contain the necessary information to “keep you in the loop about what is going on”. Hence the confusion about who or what you are, what you are doing, and how you got here that happens when you are near passing out from standing up too quickly. That confusion takes place in an otherwise highly detailed and intense high-energy and high-frequency “rush” made of tiny time loops.
Thus, one of the gateways into altered states of consciousness via meditation with noting can be summarized as what happens when you induce a self-reinforcing pattern of strobing, replay, and pulsing that fully captures your attention. This process builds up a lot of energy, which one can only wield up to a point. When one fails to control it, the state decays into a series of tracer patterns that use the clean loop as its background reference. As this happens, one experiences a world whose building blocks are beautiful tiny jewels of attention, slowly decaying as one loses the ability to stay focused. The decay process also seems to do something good when properly orchestrated. Namely, as the decay process begins, one naturally experiences a Cambrian explosion of qualia critters eager to feed off of the negentropy generated, as thought-forms need attention to survive. This whole process, one could argue, lends phenomenological credence to the paradigm of neural annealing, where one’s brain uses a heating and cooling schedule to entrain brain-wide harmony.
In other words, with something like a noting practice, one ends up creating a world simulation whose building blocks are all embedded in a very tight time-loop, a wind-up universe of concentrated awareness. Perhaps we are going too far with this explanation. Either way, we really feel that thinking in terms of these generalized tracer dynamic patterns is an exciting new conceptual toolkit that allows us to describe the quality of exotic experiences that were hard to pinpoint before.
Three Exciting Possible Applications of the Tracer Tool: High-O-Meter, Synergy Quotient, and Harmonic World-Building
(1) High-O-Meter
How high are you? It is often difficult to put a number on this question. But once we have established the parameters for different drugs (e.g. characterized DMT as living in a region of the parameter-space that is of higher frequency than LSD, etc.) we can show a series of gifs to someone and ask them to point at the one that best shows what tracers looked like at the peak of their experience. This way we can quickly estimate how high they got (at least visually) with a very simple question.
For example, we may find that the “modal response” to 50, 100, 200, and 300 micrograms of LSD looks as follow:
Simulated tracer for 50 μg of LSD
Simulated tracer for 100 μg of LSD
Simulated tracer for 200 μg of LSD
Simulated tracer for 300 μg of LSD
If this works, we would be able to sort research participants into one of these ranges just by asking them to point at the image that best captures their experience. Similar tools for other modalities could be used to obtain a global “highness score” meaningful across people.
(2) Synergy Quotient (orthogonality vs. synergy vs. suppression vs. harmonization)
What happens when you combine psychoactive drugs together? We have previously discussed in great detail what happens when you take combos of drugs from various categories (see: Making Amazing Recreational Drug Cocktails), but admit that there are huge puzzles and unknowns in this space. Of note is that some combinations give rise to synergistic effects (e.g. psychedelics and dissociatives), others blunt each other’s action (e.g. agmatine and nootropics), while yet others seem to create competing effects due to some kind of mutually-exclusive qualities of experience (e.g. salvia and DMT, a.k.a. “drugfights”). For an illustrative example of the third category, famous psychonaut D. M. Turner reports:
I smoked 30 mg. of DMT in three tokes, followed immediately by 650 mcg. of Salvinorin that I had preloaded in a separate pipe.
The effects were felt almost immediately. The first thing I noticed was a grid of crosshatch patterns. I had perceived something similar when using 2C-B with mushrooms, which I believed to be the result of using two psychedelics that were not compatible with each other. However, in this case the patterns were defined to a much sharper degree, and it seemed apparent that these two substances affect consciousness in differing ways that are not synchronistic when used together. Both the Salvia and DMT entities seemed to have been taken entirely off guard and had not been expecting this confrontation. These entities seemingly paid no attention to me as their attention was entirely fixed on each other. It soon became apparent that the two were going to battle, vying to determine who would have control of my consciousness.
We think that the tracer tool can be useful to quantify the degree of interaction between two drugs. For instance, say that drug A produces a robust 10 Hz replay effect, whereas drug B produces a 7 Hz Strobing effect. Would drug A + drug B cause a tracer that blends these two facets, or does it produce something different? If the combination’s tracers are different than the sum of its parts, how large is this difference? And can this difference be identified with a particular recursive stacking of effects, or as the result of a nonlinear interaction between dynamic systems? We believe that this line of research may be very illuminating.
Drug A
Drug B
Drug A + Drug B (“orthogonal”)
Drug A + Drug B (“suppression”)
Drug A + Drug B (“synergy”)
Drug A + Drug B (“harmonization”)
In the above example, we show what various possibilities for the result of drug combos may be. “Orthogonal” effects mean that the resulting tracer is the sum of the tracers of each drug, “suppression” means that one drug’s effect reduces the effect of the other, “synergy” means that the resulting effects are stronger than you’d expect by just linearly adding the effects of each drug, and “harmonization” refers to the possible slight-retuning of the characteristic frequency of each drug’s effect that allows for a consonant blending. How strongly the combo is from the predicted effect based on each drug would determine the synergy quotient of the pair.
A few possible (tentative) examples: alcohol + psychedelics give rise to orthogonal effects, opiates and psychedelics result in effect suppression, dissociatives and psychedelics result in strong synergy (not unlike what you get when you stack reverb and looping in music), and MDMA and psychedelics might result in harmonized tracers (hence the creamy and harmonious visuals of candy-flipping). We would love to see research tackling this question.
(3) Harmonic World-Building
Tinnitus is usually loud and distracting, but in addition, it can also be annoying and unpleasant. At QRI, we posit that the precise pattern of tinnitus—not only its loudness—has implications for how bad it is for someone’s mental health: dissonant and chaotic tinnitus might be worse than consonant and harmonious patterns, for instance.
In a similar vein, we think that the particular tracer patterns, over and above just their intensity, of perceptual conditions like HPPD probably matter for how the condition affects you at a cognitive, perceptual, and emotional level. Concretely, we would like to study how valence is related to one’s particular tracer patterns: we think that when psychedelic tracers feel good, that such positive valence may show up in the form of (a) harmonious relationships between the components of the effects, and (b) a sort of creaminness in the way the tracers come over time (as shown in the MDMA + LSD trip report by Steven Lehar).
We take seriously the possibility that something akin to the rules of harmony in music (see: Tuning Timbre Spectrum Scale by William Sethares) will have a showing in the way resonance in any experiential field cashes out into valence. In other words, the way patterns of resonance in the brain combine might be responsible for whether the experience feels good or bad. In particular, under psychedelics and other high-energy states of consciousness, one’s visual field is capable of instantiating visions of both tremendous beauty and tremendous terror. It is as if in high-energy regimes, one’s visual field acquires the capacity for creating pleasure and pain of its own (albeit “visual” in flavor!). While sober, one can get something akin to this effect, though only mildly in comparison: you can experience beautiful patterns by staring at a smooth strobe with eyes closed, or experience unpleasant reactions when the strobe shines at irregular intervals. The quality of the self-generated light-show in energized states of consciousness (such as a psychedelic experience) will likely have an impact on one’s sense of wellbeing. Is one’s inner light show all irregular, uncoordinated, sharp, and jarring? Or is it smooth, clean, robust, and soft? Based on the Symmetry Theory of Valence, one can anticipate that one’s tracer phenomenology feels good when it expresses or approximates regular geometries and bad when the implied geometries are irregular or disjointed.
Dissonant emergent pattern
Consonant emergent pattern
The creaminess of smooth ADSR envelopes would likewise prevent sensory and emotional dissonance by virtue of softening spikes of sensations. This, of course, is ultimately an empirical question. Let’s investigate it!
Final Thoughts: Getting Realms from Time-Like Textures
The complexity and information content of one’s state of consciousness as induced by a substance may depend on what fits in the repertoire of time-like textures of the state. For example, some states might be much more prone to generate quasi-crystals as opposed to crystals, as we argued in DMT vs. 5-MeO-DMT (Gomez Emilsson, 2020).
What are these crystals? One of the characteristic spatial effects of psychedelics is that they lower the symmetry detection threshold. This gives rise to the beautiful tessellations (at times Euclidean, at times hyperbolic (Gomez Emilsson, 2016)) everyone talks about. Analogously in time, psychedelics are notorious for creating time loops (cf. Going Loopy (Alexander, 2014)). In a deeper sense these are, we might argue, two facets of the same underlying effect. Namely, the creation of, for lack of a better term, qualia crystals. We can be cautious about assigning an ontological interpretation to qualia crystals; all we are proposing here is to accept them as phenomenological artifacts that tie together a lot of these experiential qualities. These gems of qualia come in many flavors, but they all express at least one symmetry in a clean and deep way. Whereas our experience of the world is usually made of a complex distribution of (tiny) qualia crystals which form the macroscopic time-like texture of our mind, we find in exotic states of consciousness the possibility of experiencing the refined, pure version. Timothy Leary in The Psychedelic Experience describes what he believes is the key existential conundrum close to the peak of an ecstatic trip:
Is it better to be part of the sugar or to taste the sugar?
In line with the neural annealing frame (Johnson, 2019), there is a very real sense in which slightly past the peak of a psychedelic experience you will find some of the largest, purest, most refined qualia crystals (at least relative to the human norm). And what this looks like will depend a lot on what the available building blocks are! The diversity of these building blocks makes the time-like texture of experience triggered by different drugs dramatically variable.
Some of the realms of experience are made with a time-like texture of interlocking time loops of different frequencies allowing you to experience the sense of “a big other”. In some other realms, the time loops are all aligned with each other, which makes self-other distinctions hard to represent and reason about. The various flavors for the felt sense of non-duality, for example, may correspond to different ways in which strobes, replays, pulse, etc. align perfectly to dissolve the internal boundaries used as building blocks to represent duality. At the extreme of “unification”, such as the state found in the 5-MeO-DMT breakthrough, one “becomes” a metronome whose tune is reflected faithfully everywhere in one’s experience, such that there is nothing else to interface with. Hence, one becomes “invisible to oneself”. To be in a state of near total oneness may entail the feeling of nothingness for this reason (thus the highest Jhanas being “nothingness” and “neither nothing nor something”).
This overall interpretative frame of exotic states as the result of time-like textures may show up empirically, too. One of the exciting early results, as mentioned above, is the report that while DMT creates complex positive and negative after-image dynamics full of color and polarity, the tracers on 5-MeO-DMT are monochromatic, meaning that one only experiences their positive after-image.
This alone may go a long way in explaining why the visual character of these two drugs is so distinct at their upper ranges. Namely, because DMT gives rise to complex checkerboard grid-patterns of overly-saturated colors intermingling with their polar opposites, whereas on 5-MeO-DMT, one often experiences an incredibly bright white light, or even a sense of translucid empty space, but no colors! The paradigm of using tracer patterns to make sense of states of consciousness would here suggest that a “breakthrough” experience can be interpreted as what happens when one’s world is saturated with the time-like texture characteristic of the tracer pattern of either drug. The realms of experience these agents disclose are the universes that you get when the building blocks of reality are those specific time loops and attention dynamics, leaving no room for anything that does not follow those “phenomenal time constraints”. When the dose is low, this manifests as just a gloss over one’s otherwise normal experience, a mere modifier on top of one’s sober reality. But when the dose is large, these time loops and attention dynamics drive the very way one’s mind constructs our whole sense of the world.
In this light, rather than thinking of exotic states of mind as places (as the “realm” metaphor alludes to), one can imagine conceptualizing them as ways of making sense of time. When you smoke salvia, you make sense of time in a salvia kind of way, which involves looping back chaotically in a way that typically results in losing the normal plot altogether and instead exotic narratives better fitted for the salvia attentional dynamics end up dominating the world-building process of the mind. Hence you end up in “salvia land”. Which is what you remember best. But the salvia land one ends up in is only a circumstantial part of the true story. The fundamental generator that is upstream of this realm would be the overall tracer pattern, the time-like texture of the experience: the neuroacoustic effect of salvia. He who controls the time-like texture of experience, controls the world-building process of the mind. Thus the paramount importance of understanding tracer patterns.
Do you want to collaborate on this project?
For Researchers
The Tracer Replication Tool is the first of a series of research tools we are creating at QRI specifically designed with psychedelic phenomenology in mind. The spirit of this enterprise is to identify the ways in which psychedelic states of consciousness can enhance the information processing of the mind in some ways. Rather than focusing on how information processing is impaired, we develop these tools with the goal of finding the ways in which it is enhanced (cf. psychedelic cryptography (Gomez Emilsson, 2015), psychedelic problem solving (Harman, 1966)). We take very seriously high-quality trips reports from rational psychonauts, which help us ideate tasks that are likely to show large effect sizes. Thus, rather than bringing traditional psychometric tools to the psychedelic space, we think that developing the tools to assess the psychedelic state in its own terms is more likely to provide novel and significant insights. We would love to have academic researchers include some of these tasks in their own study designs. Becoming familiar with the Tracer Replication Tool takes less than 10 minutes, and based on the pilot results, operating it during a psychedelic experience is possible for a good fraction of people under the influence of these substances. It would be amazing to have tracer replications included in psychedelic studies to come. If you are involved in psychedelic research and would like to use the Tracer Replication Tool or learn more about the toolkit we are developing please reach out to us! We would love to hear from you.
For Participants and Volunteers
There are several ways you can help this project. As a beta tester participant, you can use the tracer tool to replicate tracers that you yourself have experienced. There are three categories here (which you can specify at the point of submission when using the tool):
Retroactively: If you have experienced visuals tracers in the past and think you can remember them accurately (or at least recognize them when you see them), you can play with the Tracer Replication Tool and submit the parameters that best match your memory of the tracers you experienced.
Post-Trip: If you are planning on taking a psychedelic in the near future* and want to submit a datapoint from your experience, open the tracer tool during the trip and look at the bouncing ball (and other animations). While staring at the center of the animation for about a minute, try to get a clear picture of what the tracers look like. We encourage you to play with the color, speed, and animation type while you are in the state so that you see how tracers react to different visual inputs. Then as soon as possible after the trip is over, come back to the tool and find the tracer parameters that best replicate what you saw.
Within Trip: If you are familiar with the tracer tool parameters so that you can tell in real time whether you are experiencing strobing, replays, color pulsing, etc. then you may want to try to replicate the tracers you are seeing in real time. We recognize that this has the problem that the tracer replications will have psychedelic tracers of themselves, and that they get in the way of the tracers you are trying to reproduce. That said, the early reports we have received state that it is actually easier to do a good job at replicating the tracers while in the state than after it. So we also welcome submissions of this type.
The case of HPPD and other non-drug induced tracers could be considered in this frame as well. For instance, we have been made aware that during the meditation practice of Fire Kasina, one experiences many pronounced tracers of various kinds. Thus, if you are currently experiencing meditation-induced tracers, you can submit parameters of the within trip kind. If you saw the bouncing ball (or other animations) during the meditation but have now exited your state, then you could submit a datapoint of the post-trip kind. And if you only have the recollection of tracers but did not see the ball at the time, then submit a retroactive datapoint. Likewise, HPPD and other tracer phenomena may come and go and their intensity may wax and wane, so these categories are also useful in such cases.
Please sign up to the QRI mailing list if you want to stay informed about the development of QRI’s Psychophysics Toolkit. We also want to emphasize, as we note in the Special Thanks section below, that this tool could not have been made without our amazing QRI volunteers. We are very eager to work with anyone with technical skills useful for this and related projects. If you would like to help us build these tools and advance our collective understanding of exotic states of consciousness, please get in touch. For more QRI volunteer projects see our volunteer page.
[1] A significant message of the book is that it is useful to conceptualize these rhythms as being the result of endogenous pattern-generating networks specialized to create specific frequencies, envelopes, and types of synchronization.
[2] “There are only two sources that control the firing patterns of a neuron at any time: an input from outside the brain and self-organized activity. These two sources of synchronization forces often compete with each other (Cycle 9). If cognition derives from the brain, this self-organized activity is its most likely source. Ensemble synchrony of neurons should therefore reflect the combination of some selected physical features of the world and the brain’s interpretation of those features. Even if the stimulus is invariant, the brain state is not. From this perspective, the most interesting thing we can learn about the brain is how its self-generated internal states, the potential source of cognition, are brought about. Extracting the variant, that is, brain-generated features, including the temporal relation between neural assemblies and assembly members, from the invariant features evoked by the physical world might provide clues about the brain’s perspective on its environment. Yes, this is the information we routinely throw away with stimulus-locked averaging.” (Buzsáki, 2006)
*Disclaimer: We are not encouraging anyone to ingest psychoactive substances.
Special Thanks to: Lawrence Wu for implementing the current version of the tool. To Andrew Zuckerman, Quintin Frerichs, and Mike Johnson for a lot of useful ideas, conversations, and keeping the project afloat. To Robin Goins and Alex Zhao for getting a head start in implementing an earlier version of the tool. To the QRI team for encouragement and many discussions. And to the anonymous rational psychonauts and the HPPD sufferer for contributing pilot data with visual replications of their own experiences.
Bibliography
Buzsáki, G. (2006). Rhythms of the Brain. Oxford University Press.
Atasoy, S., Donnelly, I., & Pearson, J. (2016). Human brain networks function in connectome-specific harmonic waves. Nature Communications, 7(1), 10340. https://doi.org/10.1038/ncomms10340
Luppi, A. I., Vohryzek, J., Kringelbach, M. L., Mediano, P. A. M., Craig, M. M., Adapa, R., Carhart-Harris, R. L., Roseman, L., Pappas, I., Finoia, P., Williams, G. B., Allanson, J., Pickard, J. D., Menon, D. K., Atasoy, S., & Stamatakis, E. A. (2020). Connectome Harmonic Decomposition of Human Brain Dynamics Reveals a Landscape of Consciousness [Preprint]. Neuroscience. https://doi.org/10.1101/2020.08.10.244459
Rudrauf, D., Lutz, A., Cosmelli, D., Lachaux, J.-P., & Le Van Quyen, M. (2003). From autopoiesis to neurophenomenology: Francisco Varela’s exploration of the biophysics of being. Biological Research, 36(1). https://doi.org/10.4067/S0716-97602003000100005
Lehar S. (1999) Harmonic Resonance Theory: An Alternative to the “Neuron Doctrine” Paradigm to Address Gestalt Properties of Perception. Available at http://slehar.com/wwwRel/webstuff/hr1/hr1.html
Ingram, D. (2018). Mastering the Core Teachings of the Buddha: An Unusually Hardcore Dharma Book. Newburyport: AEON Books. Available at: https://www.integrateddaniel.info/book
Atasoy, S., Roseman, L., Kaelen, M., Kringelbach, M. L., Deco, G., & Carhart-Harris, R. L. (2017). Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Scientific Reports, 7(1), 17661. https://doi.org/10.1038/s41598-017-17546-0
Harman, W. Fadiman, J. (1996). Selective Enhancement of Specific Capacities Through Psychedelic Training. Psychedelic Reports. Available at: http://druglibrary.org/schaffer/lsd/harman.htm
Yesterday I took about 30mg of 2C-B. In my experience, the “peak” of 2C-B is rather short-lived, so I decided to divide my dose in half so that I could have time to examine the effects over the course of a prolonged plateau. I took 15mg at 2:15pm and then another 15mg at 4:00pm. The whole experience lasted around seven hours, with residual effects for about two more hours. I was just about back to baseline by 11pm. Today, I woke up hangover-free and quite happy and refreshed. I love 2C-B for this reason; unlike MDMA, it does not feel like it taxes the body very much, and unlike LSD, it does not seem to be a completely unpredictable trip with the potential for undesirably deep existential worries – “ontological paranoia”, as a friend once put it. And unlike 2C-I, 2C-E, or 2C-T-2, it is relatively nausea-free and very upbeat. I think that the quasi-entactogenic boost in mood provided by 2C-B, more so than its trippy, psychedelic effects, may be the reason why it feels “psychologically safer” than acid. I’ve never had a bad time on 2C-B- only somewhat uncomfortable- but it never gets worse than a -2 on a sadness-happiness scale from -10 to +10, whereas acid can take you all the way down to -6 or -7 if you are really unlucky and you let it happen. Anyway- I am very happy I did it and I wanted to share some observations about my experience.
From a third person point of view, I’m sure my behavior wasn’t too out of the ordinary. I laughed harder than I usually laugh, and I was clearly giggly and arousable. But I wasn’t slurring my speech, speaking slowly, or making nonsense sounds. I am reasonably certain that for most of the experience, I could have spoken to a sober person without them realizing I was on anything. They might have thought that I was in a very open-minded mood, perhaps, but I don’t think it would have been obvious that I was tripping. Time-wise, I spent the first two hours or so listening to music, looking at patterns that I had saved for just this occasion, and staring at the ceiling. From the time I re-dosed (4pm) until about 7pm, I spent a lot of that time chatting online with a friend, smelling scented objects I was able to find in my house, and trying to test some hypotheses about the state I was in. From 7pm to about 9:30pm, I danced, chatted a bit with a different friend, and tried to take some notes- but I had trouble staying on track due to my short attention span. And from 9:30pm and onwards I mostly just laid back, got sucked into a rabbit hole learning about the Unarius religion, and played chill music.
For context, I should add that I’ve read a good number of Qualia Computing articles and I like to follow the links I find in them. I may get something wrong- please forgive me if I botch any specific reference. But I do think that this analysis of my experience might be helpful for the project of consciousness research. That being said, here are some highlights of the thoughts and observations that I gathered from my trip:
Key Signatures and Atasoy’s Work
In a presentation about brain harmonics (link), Selen Atasoy described how the “repertoire of brain states increases” on LSD. But she also mentioned that LSD has the general effect of (1) increasing the amplitude of brain harmonics across the spectrum, and (2) increasing the amplitude of high-frequency harmonics more so than that of low-frequency harmonics. I remember that the first time I read about brain harmonics, I thought it was some kind of hippie fantasy, or like some sort of 19th century model of how the brain works (e.g. Atasoy quotes Tesla in her presentation). But thinking about it while coming up on a psychedelic is quite revealing. The first thing I noticed was that at the 40 minute mark, I felt an overall amplification of the energy of my consciousness. I know this sounds crazy- especially if you’ve never tried a psychedelic- but there is a global increase in the intensity of your experience. It’s very much true that when you start coming up on psychedelics, it feels like someone is turning up the volume of your experience overall. This is not only true for every sensory modality of your experience (visual, sound, tactile, etc.), but also true for the affective (emotional) and cognitive (thought) components!
On a low dose, or at the beginning of the come-up on a medium or large dose, all you really notice is this global amplification across the board. But then it gets more interesting. I realized yesterday that the mild background noise that I can hear in my head when things are silent kept changing as I was coming up. At first, the noise kept slightly increasing in amplitude. There was a certain mixture of ringings (I don’t really have tinnitus, but I hope you see what I mean… I think weed and dissociatives amplify this noise too, but in a different way), and what I noticed was the way that the mixture of components that make up this subtle background noise started changing and shifting upwards in frequency. The thing is, this didn’t happen in a simple linear progression. I paid attention to how this happened, and I noticed that at around the 50 minute mark, I experienced perfect silence. It was like all of that background noise was gone (apparently MDMA does this to people who suffer from tinnitus). But then, at around the 55 minute mark, other sounds started to appear. It was a new mixture, but the overall spectrum of frequencies was now higher than before- like a higher-pitched mixture of subtle ringings. Then, at the 1 hour mark, I heard silence again! And then another episode of ringing, but higher still- then it switched to silence again, and then it mostly stayed that way. It felt like there were several phase-changes; it seemed like mixtures of brain harmonics can sometimes cancel each other out, but at other times they leave a residue. And the higher the overall spectrum of your brain state in frequency, the higher the pitch of the residue- unless it is silence, which feels the same at any level.
While I was noticing these qualitative changes happening in the background noise that I can hear in my head, I was also paying attention to my visual field. I noticed that something quite similar was happening there too. There were several phases that I would cycle between depending on how high I was. Usually, there is a little bit of “static” random noise in my vision. And on the 2C-B, I noticed that at first, this noise diminished and my vision felt like it was perfectly clear. But then, I would see criss-crossing patterns across my visual field. They were very subtle at first, and then grew more and more noticeable over time. Then the criss-crossing patterns would get higher in their spatial frequency (lines with less space between them), up to the point where they started to saturate my visual field. And then, the whole thing would break into a visual noise pattern similar to where I started from, except that now, it seemed both brighter and more defined than before. Then, again, my visual field would go clear and crisp, like the air was being sucked out of the room. And then again, subtle criss-crossing would start overlaying it, and the entire process would repeat. It repeated itself about four times during the first hour and a half of coming up, and it ended up in the criss-crossing region, now at fairly high frequencies.
Beat
Beat
I spent some time during the trip wondering how this could happen. It reminded me of a few concepts which I had studied previously: aliasing, beats, and Moiré patterns. I’ll leave some pictures here (courtesy of Google Images) that do a good job of replicating some of the elements of the transitions:
This one in particular, but imagine time flows upwards
I like the one on the left in particular, in which the concentric circles increase in their spatial frequency as you go up. You can imagine that going up that image is how it felt coming up on 2C-B. The thing is, at any given point, I was experiencing an overlap of many different frequencies, but the most dominant ones would interfere with each other- sometimes generating a single, clear, strong beat pattern when superimposed, sometimes generating silence/crisp images, and sometimes making a strange mesh of noisy, grainy, superpositions. But one thing is for certain- the frequency of the underlying components, both temporally and spatially, seemed to go up as a function of how high I was on the 2C-B.
I suppose that many people would read Atasoy’s work and Andres’s speculation about how it could be extended to quantify how happy you are (ref) to mean that in any given moment, you are experiencing just one frequency- or maybe two or three. But I think it’s more like you have a broad range of frequencies active at any point in time, and on psychedelics, the range of possible combinations explodes. At any single point in time, they are both superimposed on and interfere with each other. I guess I thought this was very abstract before the trip, but now I think I was able to feel that process from the inside and know what brain harmonics refer to. The mesh of increasingly high-frequency Moiré patterns is how it looks and sounds like- how it feels like- from the inside, to retune your connectome-harmonics upward.
Sober affective keyboard
2C-B affective keyboard
LSD affective keyboard
At the time, I thought that this could potentially be explained by making an analogy to keyboards, where each brain harmonic is like a musical note on a keyboard. On 2C-B, you get a double keyboard, with a wider range of possible notes. And perhaps LSD would be not only giving you more possible notes, but also providing you with additional features- like, for example, a general synthesizer that can apply distortions to the sounds. 2C-B has some other effects in addition to increasing the range of available notes, but they are hard to describe. Reverb and delays are there for sure, but not crazy things like on-the-fly timbre modifications, which are more akin to the weirdness of LSD. More generally, my experience has been that phenethylamines have fewer features than lysergamides and tryptamines. On the other hand, when it comes to establishing an emotional base, phenethylamines have a certain “loving” frequency that persists throughout the experience, and I think that makes them better in many contexts.
Emotion
This train of thought led me to consider my experience in light of something that Mike Johnson recently blogged about: the view that our moods are the result of the key signature of our brain state:
This is not to say our key signatures are completely static, however: an interesting thread to pull here may be that some brains seem to flip between a major key and a minor key, with these keys being local maximas of harmony. I suspect each is better at certain kinds of processing, and although parts of each can be compatible with the other, each has elements that present as defection to the internal logic of the other and so these attractors can be ‘sticky’.
With respect to emotion, the things I experienced are very hard to describe, but I’ll give it a go. I think, on average, if you aggregated all the micro-moods of the experience, it would come out to be fairly positive overall- maybe a +3 on the -10 to +10 scale. But the mood would fluctuate in peculiar ways over a period of just fractions of a second. There was an underlying low-frequency tonality to the experience- which was very pleasant- that I think may be the result of the mildly euphoric, stimulant-like effect which 2C-B has. This was a strong base for the overall quality of the total mood, and it made the experience very pleasant for the most part. But there was another big component of mood, that could switch from pleasant to worried and back in the span of about half a second. It didn’t sway the base euphoria very much, and I was actually able to appreciate the switching quality. All in all, I mostly stayed on the positive side, and the negative moods were very fleeting (seconds at most). But I was amazed at how little stability there was, and how the buzzing of various frequencies didn’t settle into a particular coherent emotionalimpression. It certainly felt like the mood was directly connected to the buzzing of notes, which were creating a complex, chaotic symphony made up of meshes of brain harmonics. Thankfully, it was certainly biased towards positive and awe-inspiring moods. My self-model was also disassembled and reassembled with constantly shifting emotional tones. The come-up in particular had a certain anxious edge, and the semantic content of that anxiety seemed to be connected to particular things I’ve done in the past which have embarrassed me. Undergoing those emotions was intense, but it also felt somehow cleansing. It’s like- once you fully see the consequences of your embarrassing actions (or at least imagine them), you don’t worry about it as much. You get used to it and move on.
High-Energy Consciousness
As I approached the moment I would finally plateau, I experienced many different philosophical views of reality as distinct, short, intense bursts of existential feelings. In these states, one “realizes” that particular philosophical views must be true by the sheer fact of how intense they feel. I can certainly recall having believed in such intense feelings in the past, especially when I was in my early twenties and trying psychedelics for the first time. This time, the images were still as intense as they had been before in similar levels of alteration, but they were about different topics (it’s been a while since I’ve experimented with psychedelics). I recognize that these experiences have a powerful capacity to shake up your pre-existing model of the world. You either cling to your previous models and suffer, or you let go and get brainwashed into having new metaphysical views of reality. I don’t know… Over the years, the content of those feelings has changed, and I’ve seen contradictory things which seemed like the final truth at the time. I think I now interpret these intense bursts of philosophically-flavored experiences as being instances of some kind of “energetically super-charged, super-coherent state of consciousness”. I can see how many people could arrive at the conclusion that these bursts of intense consciousness are messages from aliens, or perhaps psychic laser beams coming from a secret organization, or whatnot. God, the divine, infinite life, now-ness, Buddha nature, awakening, etc. are all suitably grandiose concepts that sort of provide a conceptual framework to make sense of these super-high-energy states of consciousness. Alternatively, we just haven’t figured out how to harness these unusual state-spaces of consciousness for information-processing purposes, or even for non-brainwashy aesthetic experiences… they confuse the heck out of us.
We currently lack the conceptual frameworks and adequate techniques to make sense of, and make use of, super-high-energy states of consciousness.
Anyhow, in this particular case, the intense flashes of super-energetic consciousness seemed to be about the reality of the present moment on the one hand, and the way in which scent is related tofeeling alive on the other. It sounds arbitrary, but it didn’t feel arbitrary at the time. I remember looking for things to smell in my house and finding an essential oil of orange (as well as cinnamon powder, mint tea, ground coffee, and nutmeg). The particular orange smell of that essential oil really seemed to resonate with my state. How should I put it? It was an intense feeling of awake effervescence, youthful reality, and spacious energy. The scent seemed to be a key for a lock, that when turned, would bring all the channels of my experiential field into contact and into a unified expression of “presence/aliveness”. Ok, this is word salad. I’m not going to pretend this is anything but poetic allusion. Here is a concrete, logical-sounding insight instead: I felt like I was finally able to make sense of what scent qualia is getting at. Scent qualia is the phenomenological expression of the resonant signature that is produced in a high-dimensional manifold as a result of energizing it with a certain combination of frequencies. Sorry, word salad again. Let’s try once more…
Orange essential oil seemed like the olfactory equivalent of playing all the notes of a major chord at once. In fact, every scent felt like it had an equivalent in auditory qualia, and that we could describe a scent as presenting you with every note in a key signature all at once. It gave me the impression that perhaps scent is a qualia that can be experienced in a much more general way. Imagine that, all your life, you’ve only ever listened to music made by playing all the notes of certain keys at the same time. I’m sure you could make compelling music that way, and if our brains didn’t separate the notes, we might get the impression that that is all there is to music. Perhaps we are restricted in this way for scents, and the scent of lavender is, in fact, decomposable into a whole number of notes. And I don’t mean chemically purifying the product, because I think that even pure chemicals have complex smells. During the experience, I kept coming back to the orange scent to try to capture the overall emotional key signature of my state. Warm, loving, intense, bright, surprising, flickering, effervescent, citric. Make of this what you will.
State-space of scent qualia (adapted from: Categorical Dimensions of Human Odor Descriptor Space Revealed by Non-Negative Matrix Factorization; Castro, Ramanathan, Chennubhotla. 2013; link)
Many of the “moments of experience” (ref) of high energy I experienced seemed to be half-posed questions and lack semantic content in the conventional sense. I assume that they could be co-opted by beliefs that say “that’s your karma” and “that’s God” or “that’s a vision of the future”, but honestly, all of those interpretations fall short of the actual thing- which, at the time, seemed more like random snippets of hyper-associations in a super-energized form, akin to a high-dimensional neuronal resonance box, if that makes any sense.
Sometimes the powerful bursts of high-energy consciousness were about the concept of now, and its connection to Open and Empty Individualism, and also the way it connects to the concept of “pure awareness”. I’ve explored these threads before, and it’s always startling when you get these flashes that feel like they mean something and yet contain almost no information. To extend the analogy with musical key signatures, it occurs to me that these states are in fact important nodal points in high-energy state-spaces of consciousness, but we don’t understand either their context or the way in which they fit together with all other possible experiences. I got the impression that these states have their own unique grammatical, syntactic, and semantic structure that is ultimately closed and self-consistent. I’m sure you’ve had the experience of recognizing a song by hearing one brief sub-second fragment of it. You realize there is more, much more, to it, and that the little fragment you heard is meaningless out of context. Yet the fragment is compelling in that it evokes and suggests a whole world of experience. These states feel like that- a high-energy fragment of something that seems completely genuine, whose level of structure and emotional depth is just complete enough to be highly suggestive of a higher world of organization into which such fragments could fit perfectly. From a secular point of view, one could perhaps describe this as the first glimpses of an art form that will be accessible to transhumans and posthumans, once the underlying laws that rule the emotional character of such experiences are understood and mastered.
Existential Humor and Semantic Nihilism
At the conceptual level, I remember that my mind latched onto two related themes: existential humor and semantic nihilism. For reference, I Heart Huckabees would be an example of a movie that plays with existential humor. The movie touches on existential crisis and absence of meaning; and it manages to be funny not despite it but because of it.
Existential humor is humor in the face of unresolved existential questions. Part of what makes this humor work is its self-reflective nature. It’s the humor of the fact that humor is possible in such circumstances. I think that the unresolved mood of the 2C-B state didn’t allow for an over-arching gestalt to form, and one could say it kept being a sort of affective pastiche. Like musical improvisation without a central theme. The deep philosophical questions that were posed didn’t produce deep undertones, like they usually do on LSD. Perhaps this makes it a more friendly state in a way… the buzzing of competing moods protects you from going too deep into some existential crisis, and allows you to sort of have some distance from any particularly unpleasant impression. The only somewhat constant feature here was giddiness, which probably explains why humor was present even though deep existential questions seemed to be both posed and left unresolved.
In turn, I also gained a new appreciation of the general idea of semantic nihilism (which I saw mentioned here). I once took a philosophy of language class in which we discussed Frege, Quine, and Wittgenstein. I was impressed by the fact that these authors would suggest that the semantic content of words was in some way completely relative. I may be misremembering, but I have the image in my mind of a text by Quine where he talks about how meaning is the result of a network of references and has no fundamental grounding (ref). He claimed that analytic and synthetic statements weren’t truly different- at least, not out of context. I didn’t know how to respond to this at the time, but over the years, I’ve thought about it now and then. It’s not like I’ve had the time to sit down and read that philosophy of language textbook again- and maybe I should- but I get the sense that one could, in principle, reformulate meaning by grounding it in qualia. These “no ground of reference” ideas fly in the face of felt-sense and my ability to use attentional attractors as designators. [Edit after writing this – turns out Andres has already discussed something along these lines in an article]. But what if someone claims that qualia is not enough to ground meaning? I think that hearing a strong argument against the view that qualia and meaning are connected would be very interesting. This is what my mind came up with during the trip- the view that not even feelings can be used as the source of meaning. The existential humor seemed to play very well with semantic nihilism. After all, isn’t it funny if nothing means anything and you are still laughing about it? It’s contagious laughter, that’s why. The thought that there was no true reason for why the laughter was appropriate was itself very funny. And then I’d apply the same mental move to this meta-funny layer, and so on. It was hilarious- in a niche philosophical sort of way- which only certain people who are obsessed with understanding reality could probably relate to.
As an aside, I think that if we look at it from a cultural point of view, most people would have a bad time if they were to experience a high-energy state of consciousness that does not reach a conclusion. The abstract expressionism of felt-sense, meaning, and audio-visual qualia is alarming without a framework to make sense of it. I realized that applying semantic nihilism to these experiences made me feel comfortable with them not actually meaning anything specific. It seemed okay that they would stay as they were: existential feelings with no resolution. I think that perhaps some aesthetics could really turn this into an art form. Perhaps Buddhist Vipassana meditation is trying to get at this.
Symmetry Groups
I paid a lot of attention to the visual textures I saw during the relatively long plateau. The textures that I had saved to look at were a bit enhanced, but they were not as interesting, I found, as the textures of the wall, ceiling, carpet, and blankets. The key difference was the fact that the live textures had actual depth. Although subtle, it still gave rise to interesting effects. I started the journey with the intention of examining the symmetrical structures of the textures I saw. I was impressed by the idea that a mathematician who experimented with LSD was able to catalogue each of the 17 wallpaper groups in his visual hallucinations (ref). I, on the other hand, was only able to see a few. Sadly, I didn’t practice naming the symmetries before going into the trip. But I can say that I noted mirror symmetry was rarely involved, and that the simplest, the one called “o”, was the one I saw the most frequently. By looking at the table now, I can definitely say that I also saw “2222”. I did see a lot of rotational symmetry elements, and they would click together to form larger symmetrical bundles. It was very interesting to watch.
o
2222
I tried to really pay close attention to how the visuals were formed. It was very fascinating. I recall that there are many “subtypes” of visual effects, and they’ve been catalogued to some extent (ref). But what I noted this time was how they are all interconnected. Here is the story: first, the texture would appear relatively normal, just slightly brighter than normal. Then the positive after-image of the texture would linger for long enough to start overlaying onto itself. Then there would be a critical moment where that positive after-image would flip into a negative after-image (e.g. from orange to aqua, green to magenta, white to black, etc.). My brain would then try to deal with the presence of the negative after-image, and somehow fit it discreetly into the texture, in order to preserve as much information as possible from the “real texture”. Here is where the depth comes into play. For whatever reason, the negative after-image would tend to find its place in the crevices of the texture. There, it would form wavy patterns that seemed to self-organize in parallel lines. Once parallel, the patterns would lock into symmetrical shapes and dance together in synchrony. So now I had this two-layered texture that behaved as a unified wave pattern, and after a little while that would form a positive after-image, which in time would start to overlay onto itself- and then my mind would have to find a way to deal with that. With each iteration, my mind would find new ways to fit all of that residual after-image bundle together, and this would often look like some kind of surface trying to be shaped into something recognizable. I got the distinct feeling that whenever I could see somethingin the texture (cf. apophenia), the overall amount of after-image to deal with would be drastically reduced. I remember an article where the concept of energy sinks was discussed, and I think that both symmetrical re-arrangements of the residual after-image bundles and semantically-meaningful re-arrangements of them both seemed to work as energy sinks. Hence, the symmetrical texture repetition is a way by which the energy of these after-image bundles gets dissipated (and the surface gets locked in the shape that sucked out its energy). I remember thinking how the entire process somehow encapsulates many of the classic visual effect categories; tracers, drifting, pattern recognition, and symmetrical texture repetition all fit together in a continuous sequence of unfolding re-arrangements of an after-image bundle surface. Perhaps some trippers will relate to this description.
Visual Tracers
I also spent some time trying to figure out how to describe the tracers. I probably spent about 10 minutes doing this, and got to a fairly satisfying account, I think. The tracers were mostly composed of “echoes” rather than being the result of applying just a smooth and long decay function. Based on playing with GIFs, I estimated that the first visual echo lagged behind the original stimulation by about 200ms. Then there was another echo (the echo of the echo) which happened roughly 400ms afterwards. I took some time to look at the pictures in How to secretly communicate with people on LSD, and the GIFs seemed to work, but not exactly as the text describes it. It was really cool, though. During the plateau, I found it hard to tell which of the images had the artificial tracer on top (see the article’s “Secret C” GIFs for reference).
(notice the double echo)
Music
I will conclude by mentioning that music was very intense and interesting in this state. I specifically noted that music with reverb sounded massively amplified (example). With the appropriate combination of meditation and reverb-rich sounds, I could experience very pleasant states of equanimity that I don’t usually experience sober. I tried playing pulses of sound and seeing if I could experience “auditory tracers”, but it didn’t seem to work. That is, there wasn’t a clear analogue to the trace structure in the auditory domain. Rather, it’s less that “sound itself sounded like it had more reverb”, and more that “for the sound that already does have reverb, such reverb seemed amplified”. Why would the reverb itself sound amplified? And what is the reverb signature of such amplification? I don’t know! These seem like fertile grounds for novel research.
And that’s about it. I hope you find these observations useful, and if not, at least interesting to read. Peace! 🙂
About this time I had the good fortune of locating a supply of ecstasy. True to its name, ecstasy promotes a kind of euphoric jitteryness, in which it is just a thrill to be alive! Every fiber of your being is just quivering with energy. But ecstasy also has some interesting perceptual manifestations. In the first place there is a kind of jitteryness across the whole visual field. And this jitteryness is so pronounced that it can manifest itself in your eyeballs, that jitter back and forth at a blinding speed. If you relax, and just let the jitters take over, the oscillations of your eyes will blur the whole scene into a peculiar double image. But if you concentrate, and focus, the ocular jitter can be made to subside, and thus become less noticeable or bothersome. One of my friends got the ocular jitters so bad that he could not control them, and that prevented him from having a good time. That was the last time he took ecstasy. I however found it enchanting. And I analyzed that subtle jitteryness more carefully. It was not caused exclusively by jittering of the eyeball, but different objects in the perceived world also seemed to jitter endlessly between alternate states. In fact, all perceived objects jittered in this manner, creating a fuzzy blur between alternate states. This was interesting for a psychonaut! It seemed to me that I could see the mechanism of my visual brain sweeping out the image of my experience right before my eyes, like the flying spot of light that paints the television picture on the glowing phosphor screen. The refresh rate of my visual mechanism had slowed to such a point as to make this sweep visible to me. Very interesting indeed!
Candy-Flipping
Having access simultaneously to ecstasy and LSD, I tried my hand at the practice known in the drug literature as “candy flipping”, that is, taking ecstasy and LSD in combination. The combination is so unique and different from the experience of either drug in isolation, that it has earned its own unique name. Under LSD and ecstasy I could see the flickering blur of visual generation most clearly. And I saw peculiar ornamental artifacts on all perceived objects, like a Fourier representation with the higher harmonics chopped off. LSD by itself creates sharply detailed ornamental artifacts, like a transparent overlay of an ornamental lattice or filigree pattern superimposed on the visual scene, especially in darkness. Ecstasy smooths out those sharp edges and blurs them into a creamy smooth rolling experience. I would sometimes feel some part of my world suddenly bulging out to greater magnification, like a fish-eye lens distortion appearing randomly in space, stretching everything in that portion of space like a reflection in a funhouse mirror. But it was not an actual bulging that changed the shape of the visual world, but more of a seeming bulging, that was perceived in an invisible sense without actual distortion of the world. For example one time I was putting on my boots to go outside, and as I reached down to pull on a boot, I suddenly got the impression that my leg grew to ten times its normal length, but I could still reach my boot because my arms had also grown by the same proportion, as had the whole space in that part of the room. Nothing actually looked any different after this expansion, it was just my sense of the scale of the world that had undergone this transformation, and even as I contemplated this, and finished securing my boot, the world shrank down gradually back to its normal scale again and the distortion vanished.
I have theorized that the way that ecstasy achieved its creamy smoothness is by dithering or alternating so fast between perceptual alternatives as to blur them together, like a spinning propellor that appears as a semi-transparent disc. At this level of observation I was unable to get my co-trippers to see the features that I was seeing. I would ask them when they saw that line of trees, did they not see illusory projections, like a transparent overlay of vectors projecting up from the trees into the blue sky that I could see? They did not see these things. So don’t expect to see what I see when I take LSD and ecstasy. I report my observations as I experience them, but observation of the psychedelic experience is every bit as subjective and variable as any phenomenological observation of our own experience. What stands out for one observer might remain completely obscure to another.
But the features I observed in my psychedelic experience all pointed toward a single self-consistent explanation of the mechanism of experience. It appears that the spatial structure of visual experience is swept out by some kind of volumetric imaging mechanism with a periodic refresh scan, not unlike the principle of television imagery, but extended into three dimensions. This was interesting indeed!
Related Articles:
Quantifying Bliss – which proposes a model from first principles to explain the structural properties of an experience that makes it feel good, bad, mixed, or neutral (i.e. valence). It then derives from this model precise, empirically testable predictions for what really good experiences should look like. Specifically, MDMA euphoria is postulated to be the result of a high level of consonance between connectome-specific harmonic waves.
A Future for Neuroscience – which discusses the broad implications of a harmonic resonance theory of brain function for neuroscience, including new ways to conceptualize personality, and exotic states of consciousness.
The Pseudo-Time Arrow – which discusses a particular physicalist model to explain the experience of time by examining the patterns of *implicit causality* in networks of local binding (these terms are defined there). The bottom line being: each moment of experience contains time implicitly embedded in its geometric structure. Psychedelics, MDMA, and their combination would each have unique signature structural effects along the arrow of pseudo-time.
Taken together, these articles would provide an explanation for why MDMA has a uniquely euphoric effect. In particular, Lehar’s point that MDMA’s generalized jitteryness/dithering smooths out the sharp edges of an LSD experience would show up as the harmonization/regularization of the relationship between time-slices along the pseudo-time arrow of experience. The Symmetry Theory of Valence can then be applied in the resulting network of local binding after MDMA’s smoothing effect, leading to the peculiar insight that MDMA’s euphoric effects come from the symmetrification of experience along the axis of experiential time. The creaminess of experience produced by MDMDA that Lehar talks about feels very good precisely because it is the phenomenal character of a dissonance-free state of consciousness. Hence, the fundamental nature of pleasure is not behavioral reinforcement, the maximization of utility according to one’s utility function, or expected surprise minimization; pleasure is more fundamental and low-level than any of those properties. Pleasure, we predict, shall correspond to the degree and intensity of energized symmetries present in a bound moment of experience, and MDMA phenomenology is a clear example of what it looks like to optimize for this property.
At this point in the trip I became something that I can not put into words… I became atemporal. I existed without time… I existed through an infinite amount of time. This concept is impossible to comprehend without having actually perceived it. Even now in retrospect it is hard to comprehend it. But I do know that I lived an eternity that night…
What is time? When people ask this question it is often hard to tell what they are talking about. Indeed, without making explicit one’s background philosophical assumptions this question will usually suffer from a lot of ambiguity. Is one talking about the experience of time? Or is one talking about the physical nature of time? What sort of answer would satisfy the listener? Oftentimes this implicit ambiguity is a source of tremendous confusion. Time distortion experiences deepen the mystery; the existence of exotic ways of experiencing time challenges the view that we perceive the passage of physical time directly. How to disentangle this conundrum?
Modern physics has made enormous strides in pinning down what physical time is. As we will see, one can reduce time to causality networks, and causality to patterns of conditional statistical independence. Yet in the realm of experience the issue of time remains much more elusive.
In this article we provide a simple explanatory framework that accounts for both the experience of time and its relation to physical time. We then sketch out how this framework can be used to account for exotic experiences of time. We end with some thoughts pertaining the connection between the experience of time and valence (the pleasure-pain axis), which may explain why exotic experiences of the passage of time are frequently intensely emotional in nature.
To get there, let us first lay out some key definitions and background philosophical assumptions:
Key Terminology: Physical vs. Phenomenal Time
Physical Time: This is the physical property that corresponds to what a clock measures. In philosophy of time we can distinguish between eternalism and presentism. Eternalism postulate that time is a geometric feature of the universe, best exemplified with “block universe” metaphor (i.e. where time is another dimension alongside our three spatial dimensions). Presentism, instead, postulates that only the present moment is real; the past and the future are abstractions derived from the way we experience patterns in sequences of events. The present is gone, and the future has yet to come.
Now, it used to be thought that there was a universal metronome that dictated “what time it is” in the universe. With this view one could reasonably support presentism as a viable account of time. However, ever since Einstein’s theory of relativity was empirically demonstrated we now know that there is no absolute frame of reference. Based on the fundamental unity of space and time as presented by general relativity, and the absence of an absolute frame of reference, we find novel interesting arguments in favor of eternalism and against presentism (e.g. the Rietdijk–Putnam argument). On the other hand, presentists have rightly argued that the ephemeral nature of the present is self-revealing to any subject of experience. Indeed, how can we explain the feeling of the passage of time if reality is in fact a large geometric “static” structure? While this article does not need to take sides between eternalism and presentism, we will point out that the way we explain the experience of time will in turn diminish the power of presentist arguments based on the temporal character of our experience.
Phenomenal Time: This is the way in which the passing of time feels like. Even drug naïve individuals can relate to the fact that the passage of time feels different depending on one’s state of mind. The felt sense of time depends on one’s level of arousal (deeply asleep, dreaming, tired, relaxed, alert, wide awake, etc.) and hedonic tone (depressed, anxious, joyful, relaxed, etc.). Indeed, time hangs heavy when one is in pain, and seems to run through one’s fingers when one is having a great time. More generally, when taking into account altered states of consciousness (e.g. meditation, yoga, psychedelics) we see that there is a wider range of experiential phenomena than is usually assumed. Indeed, one can see that there are strange generalizations to phenomenal time. Examples of exotic phenomenal temporalities include: tachypsychia (aka. time dilation), time reversal, short-term memory tracers, looping, “moments of eternity“, temporal branching, temporal synchronicities, timelessness, and so on. We suggest that any full account of consciousness ought to be able to explain all of these variants of phenomenal time (among other key features of consciousness).
Key Background Assumptions
We shall work under three key assumptions. First, we have indirect realism about perception. Second, we have mereological nihilism in the context of consciousness, meaning that one’s stream of consciousness is composed of discrete “moments of experience”. And third, Qualia Formalism, a view that states that each moment of experience has a mathematical structure whose features are isomorphic to the features of the experience. Let us unpack these assumptions:
1. Indirect Realism About Perception
This view also goes by the name of representationalism or simulationism (not to be confused with the simulation hypothesis). In this account, perception as a concept is shown to be muddled and confused. We do not really perceive the world per se. Rather, our brains instantiate a world-simulation that tracks fitness-relevant features of our environment. Our sensory apparatus merely selects which specific world-simulation our brain instantiates. In turn, our world-simulations causally covaries with the input our senses receive and the motor responses it elicits. Furthermore, evolutionary selection pressures, in some cases, work against accurate representations of one’s environment (so long as these are not fitness-enhancing). Hence, we could say that our perception of the world is an adaptive illusion more than an accurate depiction of our surroundings.
A great expositor of this view is Steve Lehar. We recommend his book about how psychonautical experience make clear the fact that we inhabit (and in some sense are) a world-simulation created by our brain. Below you can find some pictures from his “Cartoon Epistemology“, which narrates a dialogue between a direct and an indirect realist about perception:
This slideshow requires JavaScript.
Steve Lehar also points out that the very geometry of our world-simulation is that of a diorama. We evolved to believe that we can experience the world directly, and the geometry of our world-simulation is very well crafted to keep us under the influence of a sort of spell to makes us believe we are the little person watching the diorama. This world-simulation has a geometry that is capable of representing both nearby regions and far-away objects (and even points-at-infinity), and it represents the subject of experience with a self-model at its projective center.
We think that an account of how we experience time is possible under the assumption that experiential time is a structural feature of this world-simulation. In turn, we would argue that implicit direct realism about perception irrevocably confuses physical time and phenomenal time. For if one assumes that one somehow directly perceives the physical world, doesn’t that mean that one also perceives time? But in this case, what to make of exotic time experiences? With indirect realism we realize that we inhabit an inner world-simulation that causally co-varies with features of the environment and hence resolve to find the experience of time within the confines of one’s own skull.
2. Discrete Moments of Experience
A second key assumptions is that experiences are ontologically unitary rather than merely functionally unitary. The philosophy of mind involved in this key assumption is unfortunately rather complex and easy to misunderstand, but we can at least say the following. Intuitively, as long as one is awake an alert, it feels like one’s so-called “stream of consciousness” is an uninterrupted and continuous experience. Indeed, at the limit, some philosophers have even argued that one is a different person each day; subjects of experience are, as it were, delimited by periods of unconsciousness. We instead postulate that the continuity of experience from one moment to the next is an illusion caused be the way experience is constructed. In reality, our brains generate countless “moments of experience” every second, each with its own internal representation of the passage of time and the illusion of a continuous diachronic self.
Contrast this discretized view of experience with deflationary accounts of consciousness (which insist that there is no objective boundary that delimits a given moment of experience) and functionlist accounts of consciousness (which would postulate that experience is smeared across time over the span of hundreds of milliseconds).
The precise physical underpinnings of a moment of experience have yet to be discovered, but if monistic physicalism is to survive, it is likely that the (physical) temporal extension that a single moment of experience spans is incredibly thin (possibly no more than 10^-13 seconds). In this article we make no assumptions about the actual physical temporal extension of a moment of experience. All we need to say is that it is “short” (most likely under a millisecond).
It is worth noting that the existence of discrete moments of experience supports an Empty Individualist account of personal identity. That is, a person’s brain works as an experience machine that generates many conscious events every second, each with its own distinct coordinates in physical space-time and unique identity. We would also argue that this ontology may be compatible with Open Individualism, but the argument for this shall be left to a future article.
3. Qualia Formalism
This third key assumption states that the quality of all experiences can be modeled mathematically. More precisely, for any given moment of experience, there exists a mathematical object whose mathematical features are isomorphic the the features of the experience. At the Qualia Research Institute we take this view and run with it to see where it takes us. Which mathematical object can fully account for the myriad structural relationships between experiences is currently unknown. Yet, we think that we do not need to find the One True Mathematical Object in order to make progress in formalizing the structure of subjective experience. In this article we will simply invoke the mathematical object of directed graphs in order to encode the structure of local binding of a given experience. But first, what is “local binding”? I will borrow David Pearce’s explanation of the terms involved:
The “binding problem”, also called the “combination problem”, refers to the mystery of how the micro-experiences mediated by supposedly discrete and distributed neuronal edge-detectors, motion-detectors, shape-detectors, colour-detectors, etc., can be “bound” into unitary experiential objects (“local” binding) apprehended by a unitary experiential self (“global” binding). Neuroelectrode studies using awake, verbally competent human subjects confirm that neuronal micro-experiences exist. Classical neuroscience cannot explain how they could ever be phenomenally bound. As normally posed, the binding problem assumes rather than derives the emergence of classicality.
In other words, “local binding” refers to the way in which the features of our experience seem to be connected and interwoven into complex phenomenal objects. We do not see a chair as merely a disparate set of colors, edges, textures, etc. Rather, we see it as an integrated whole with fine compositional structure. Its colors are “bound” to its edges which are “bound” to its immediate surrounding space and so forth.
A simple toy model for the structure of an experience can be made by saying that there are “simple qualia” such as color and edges, and “complex qualia” formed by the binding of simple qualia. In turn, we can represent an experience as a graph where each node is a simple quale and each edge is a local binding connection. The resulting globally connected graph corresponds to the “globally bound” experience. Each “moment of experience” is, thus, coarsely at any rate, a network.
While this toy model is almost certainly incomplete (indeed some features of experience may require much more sophisticated mathematical objects to be represented properly), it is fair to say that the rough outline of our experience can be represented with a network-like skeleton encoding the local binding connections. More so, as we will see, this model will suffice to account for many of the surprising features of phenomenal time (and its exotic variants).
Each layer is connected itself in a geometric way, and connected to the previous and next layer with directed edges.
While both physical and phenomenal time pose profound philosophical conundrums, it is important to denote that science has made a lot of progress providing formal accounts of physical time. Confusingly, even Einstein’s theory of general relativity is time-symmetric, meaning that the universe would behave the same whether time was moving forwards or backwards. Hence relativity does not provide, on its own, a direction to time. What does provide a direction to time are properties like the entropy gradient (i.e. the direction along which disorder is globally increasing) and, the focus of this article, causality as encoded in the network of statistical conditional independence. This is a mouthful, let us tackle it in more detail.
In Timeless CausalityYudkowsky argues one can tell the direction of causality, (and hence of the arrow of time) by examining how conditioning on events inform us about other events. We recommend reading the linked article for details (and for a formal account read SEP’s entry on the matter).
In the image above we have a schematic representation of two measurables (1 & 2) at several times (L, M, and R). The core idea is that we can determine the flow of causality by examining the patterns of statistical conditional independence, with questions like “if I’ve observed L1 and L2, do I gain information about M1 by learning about M2?” an so on*.
Along the same lines Wolfram has done research on how time may emerge in rule-based network modifications automata:
Intriguingly, these models of time and causality are tenseless and hence eternalist. The whole universe works as a unified system in which time appears as an axis rather than a metaphysical universal metronome. But if eternalism is true, how come we can feel the passage of time? If moments of experience exist, how come we seem to experience movement and action? Shouldn’t we experience just a single static “image”, like seeing a single movie frame without being aware of the previous ones? We are now finally ready tackle these questions and explain how time may be encoded in the structure of one’s experience.
In the image above we contrast physical and phenomenal time explicitly. The top layer shows the physical state of a scene in which a ball is moving along a free-falling parabolic trajectory. In turn, a number of these states are aggregated by a process of layering (second row) into a unified “moment of experience”. As seen on the third row, each moment of experience represents the “present scene” as the composition of three slices of sensory input with a time-dependent dimming factor. Namely, the scene experienced is approximated with a weighted sum of three scenes with the most recent one being weighted the highest and the oldest the least.
In other words, at the coarsest level of organization time is encoded by layering the current input scene with faint after-images of very recent input scenes. In healthy people this process is rather subtle yet always present. Indeed, after-images are an omnipresent feature of sensory modalities (beyond sight).
A simple model to describe how after-images are layered on top of each other to generate a scene with temporal depth involves what we call “time-dependent qualia decay functions”. This function determines how quickly sensory (and internal) impressions fade over time. With e.g. psychedelics making this decay function significantly fatter (long-tailed) and stimulants making it slightly shorter (i.e. higher signal-to-noise ratio at the cost of reduced complex image formation).
With this layering process going on, and the Qualia Formalist model of experience as a network of local binding, we can further find a causal structure in experience akin to that in physical time (as explained in Timeless Causality):
Again, each node of the network represents a simple quale and each edge represents a local binding relationship between the nodes it connects. Then, we can describe the time-dependent qualia decay function as the probability that a node or an edge will vanish at each (physical) time step.
The rightmost nodes and edges are the most recent qualia triggered by sensory input. Notice how the nodes and edges vanish probabilistically with each time step, making the old layers sparsely populated.
With a sufficiently large network one would be able to decode the direction of causality (and hence of time) using the same principles of statistical conditional independence used to account for physical time. What we are proposing is that this underlies what time feels like.
Now that we understand what the pseudo-time arrow is, what can we do with it?
Explanatory Power: How the Pseudo-Time Arrow Explains Exotic Phenomenal Time
Let us use this explanatory framework on exotic experiences of time. That is, let us see how the network of local binding and its associated pseudo-time arrows can explain unusual experiences of time perception.
To start we should address the fact that tachypsychia (i.e. time dilation) could either mean (a) that “one experiences time passing at the same rate but that this rate moves at a different speed relative to the way clocks tick compared to typical perception” or, more intriguingly, (b) that “time itself feels slower, stretched, elongated, etc.”.
The former (a) is very easy to explain, while the latter requires more work. Namely, time dilation of the former variety can be explained by an accelerated or slowed down sensory sampling rate in such a way that the (physical) temporal interval between each layer is either longer or shorter than usual. In this case the structure of the network does not change; what is different is how it maps to physical time. If one were on a sensory deprivation chamber and this type of time dilation was going on one would not be able to say so since the quality of phenomenal time (as encoded in the network of local binding) remains the same as before. Perhaps compare how it feels like to see a movie in slow-motion relative to seeing it at its original speed while being perfectly sober. Since one is sober either way, what changes is how quickly the world seems to move, not how one feels inside.
The latter (b) is a lot more interesting. In particular, phenomenal time is often incredibly distorted when taking psychedelics in a way that is noticeable even in sensory deprivation chambers. In other words, it is the internal experience of the passage of time that changes rather than the layering rate relative to the external world. So how can we explain that kind of phenomenal time dilation?
Psychedelics
The most straightforward effect of psychedelics one can point out with regards to the structure of one’s experience is the fact that qualia seems to last for much longer than usual. This manifests as “tracers” in all sensory modalities. Using the vocabulary introduced above, we would say that psychedelics change the time-dependent qualia decay function by making it significantly “fatter”. While in sober conditions the positive after-image of a lamp will last between 0.2 and 1 second, on psychedelics it will last anywhere between 2 and 15 seconds. This results in a much more pronounced and perceptible change in the layering process of experience. Using Lehar’s diorama model of phenomenal space, we could represent various degrees of psychedelic intoxication with the following progression:
Strong dose (overwhelming layering/confusion between layers)
The first image is what one experiences while sober. The second is what one experiences if one takes, e.g. 10 micrograms of LSD (i.e. microdosing), where there is a very faint additional layer but is at times indistinguishable from sober states. The third, fourth, and fifth image represent what tracers may feel like on ~50, ~150, and ~300 micrograms of LSD, respectively. The last image is perhaps most reminiscent of DMT experiences, which provide a uniquely powerful and intense high-frequency layering at the onset of the trip.
In the graphical model of time we could say that the structure of the network changes by (1) a lower probability for each node to vanish in each (physical) time step, and (2) an even lower probability for each edge to vanish after each (physical) time step. The tracers experienced on psychedelics are more than just a layering process; the density of connections also increases. That is to say, while simple qualia lasts for longer, the connections between them are even longer-lasting. The inter-connectivity of experience is enhanced.
A low dose of a psychedelic will lead to a slow decay of simple qualia (colors, edges, etc.) and an even slower decay of connections (local binding), resulting in an elongated and densified pseudo-time arrow.
This explains why time seems to move much more slowly on psychedelics. Namely, each moment of experience has significantly more temporal depth than a corresponding sober state. To illustrate this point, here is a first-person account of this effect:
A high dose of LSD seems to distort time for me the worst… maybe in part because it simply lasts so long. At the end of an LSD trip when i’m thinking back on everything that happened my memories of the trip feel ancient.
When you’re experiencing the trip it’s possible to feel time slowing down, but more commonly for me I get this feeling when I think back on things i’ve done that day. Like “woah, remember when I was doing this. That feels like it was an eternity ago” when in reality it’s been an hour.
On low doses of psychedelics, phenomenal time may seem to acquire a sort of high definition unusual for sober states. The incredible (and accurate) visual acuity of threshold DMT experiences is a testament to this effect, and it exemplifies what a densified pseudo-time arrow feels like:
Just as small doses of DMT enhance the definition of spatial structures, so is the pseudo-time arrow made more regular and detailed, leading to a strange but compelling feeling of “HD vision”.
But this is not all. Psychedelics, in higher doses, can lead to much more savage and surrealistic changes to the pseudo-time arrow. Let us tackle a few of the more exotic variants with this explanatory framework:
Time Loops
This effect feels like being stuck in a perfectly-repeating sequence of events outside of the universe in some kind of Platonic closed timelike curve. People often accidentally induce this effect by conducting repetitive tasks or listening to repetitive sounds (which ultimately entrain this pattern). For most people this is a very unsettling experience since it produces a pronounce feeling of helplessness due to making you feel powerless about ever escaping the loop.
In terms of the causal network, this experience could be accounted for with a loop in the pseudo-time arrow of experience:
High Dose LSD can lead to annealing and perfect “standing temporal waves” often described as “time looping” or “infinite time”
Moments of Eternity
Subjectively, so-called “Moments of Eternity” are extremely bizarre experiences that have the quality of being self-sustaining and unconditioned. It is often described in mystical terms, such as “it feels like one is connected to the eternal light of consciousness with no past and no future direction”. Whereas time loops lack some of the common features of phenomenal time such as a vanishing past, moments of eternity are even more alien as they also lack a general direction for the pseudo-time arrow.
High Dose LSD may also generate a pseudo-time arrow with a central source and sink to that connects all nodes.
Both time loops and moments of eternity arise from the confluence of a slower time-dependent qualia decay function and structural annealing (which is typical of feedback). As covered in previous posts, as depicted in numerous psychedelic replications, and as documented in PsychonautWiki, one of the core effects of psychedelics is to lower the symmetry detection threshold. Visually, this leads to the perception of wallpaper symmetry groups covering textures (e.g. grass, walls, etc.). But this effect is much more general than mere visual repetition; it generalizes to the pseudo-time arrow! The texture repetition via mirroring, gyrations, glides, etc. works indiscriminately across (phenomenal) time and space. As an example of this, consider the psychedelic replication gifs below and how the last one nearly achieves a standing-wave structure. On a sufficient dose, this can anneal into a space-time crystal, which may have “time looping” and/or “moment of eternity” features.
Sober Input
Stimuli with tracers
Temporal Branching
As discussed in a previous post, a number of people report temporal branching on high doses of psychedelics. The reported experience can be described as simultaneously perceiving multiple possible outcomes of a given event, and its branching causal implications. If you flip a coin, you see it both coming up heads and tails in different timelines, and both of these timelines become superimposed in your perceptual field. This experience is particularly unsettling if one interprets it through the lens of direct realism about perception. Here one imagines that the timelines are real, and that one is truly caught between branches of the multiverse. Which one is really yours? Which one will you collapse into? Eventually one finds oneself in one or another timeline with the alternatives having been pruned. An indirect realist about perception has an easier time dealing with this experience as she can interpret it as the explicit rendering of one’s predictions about the future in such a way that they interfere with one’s incoming sensory stimuli. But just in case, in the linked post we developed an empirically testable predictions from the wild possibility (i.e. where you literally experience information from adjacent branches of the multiverse) and tested it using quantum random number generators (and, thankfully for our collective sanity, obtained null results).
High Dose LSD Pseudo-Time Arrow Branching, as described in trip reports where people seem to experience “multiple branches of the multiverse at once.”
Timelessness
Finally, in some situations people report the complete loss of a perceived time arrow but not due to time loops, moments of eternity, or branching, but rather, due to scrambling. This is less common on psychedelics than the previous kinds of exotic phenomenal time, but it still happens, and is often very disorienting and unpleasant (an “LSD experience failure mode” so to speak). It is likely that this also happens on anti-psychotics and quite possibly with some anti-depressants, which seem to destroy unpleasant states by scrambling the network of local binding (rather than annealing it, as with most euphoric drugs).
Loss of the Pseudo-Time Arrow (bad trips? highly scrambled states caused by anti-psychotics?)
In summary, this framework can tackle some of the weirdest and most exotic experiences of time. It renders subjective time legible to formal systems. And although it relies on an unrealistically simple formalism for the mathematical structure of consciousness, the traction we are getting is strong enough to make this approach a promising starting point for future developments in philosophy of time perception.
We will now conclude with a few final thoughts…
Hyperbolic Geometry
Intriguingly, with compounds such as DMT, the layering process is so fast that on doses above the threshold level one very quickly loses track of the individual layers. In turn, one’s mind attempts to bind together the incoming layers, which leads to attempts of stitching together multiple layers in a small (phenomenal) space. This confusion between layers compounded with a high density of edges is the way we explained the unusual geometric features of DMT hallucinations, such as the spatial hyperbolic symmetry groups expressed in its characteristic visual texture repetition (cf. eli5). One’s mind tries to deal with multiple copies of e.g. the wall in front, and the simplest way to do so is to stitch them together in a woven Chrysanthemum pattern with hyperbolic wrinkles.
Of special interest to us is the fact that both moments of eternity and time loops tend to be experienced with very intense emotions. One could imagine that finding oneself in such an altered state is itself bewildering and therefore stunning. But there are many profoundly altered states of consciousness that lack a corresponding emotional depth. Rather, we think that this falls out of the very nature of valence and the way it is related to the structure of one’s experience.
In particular, the symmetry theory of valence (STV) we are developing at the Qualia Research Institute posits that the pleasure-pain axis is a function of the symmetry (and anti-symmetry) of the mathematical object whose features are isomorphic to an experience’s phenomenology. In the case of the simplified toy model of consciousness based on the network of local binding connections, this symmetry may manifest in the form of regularity within and across layers. Both in time loops and moments of eternity we see a much more pronounced level of symmetry of this sort than in the sober pseudo-time arrow structure. Likewise, symmetry along the pseudo-time arrow may explain the high levels of positive valence associated with music, yoga, orgasm, and concentration meditation. Each of these activities would seem to lead to repeating standing waves along the pseudo-time arrow, and hence, highly valence states. Futurework shall aim to test this correspondence empirically.
The Qualia Research Institute Logo (timeless, as you can see)
Suppose that we do know L1 and L2, but we do not know R1 and R2. Will learning M1 tell us anything about M2? […]
The answer, on the assumption that causality flows to the right, and on the other assumptions previously given, is no. “On each round, the past values of 1 and 2 probabilistically generate the future value of 1, and then separately probabilistically generate the future value of 2.” So once we have L1 and L2, they generate M1 independently of how they generate M2.
But if we did know R1 or R2, then, on the assumptions, learning M1 would give us information about M2. […]
Similarly, if we didn’t know L1 or L2, then M1 should give us information about M2, because from the effect M1 we can infer the state of its causes L1 and L2, and thence the effect of L1/L2 on M2.
Thanks to: Mike Johnson, David Pearce, Romeo Stevens, Justin Shovelain, Andrés Silva Ruiz, Liam Brereton, and Enrique Bojorquez for their thoughts about phenomenal time and its possible mathematical underpinnings. And to Alfredo Valverde for pointing me to the Erlangen program, wh