Psychedelic Turk: A Platform for People on Altered States of Consciousness

An interesting variable is how much external noise is optimal for peak processing. Some, like Kafka, insisted that “I need solitude for my writing; not ‘like a hermit’ – that wouldn’t be enough – but like a dead man.” Others, like von Neumann, insisted on noisy settings: von Neumann would usually work with the TV on in the background, and when his wife moved his office to a secluded room on the third floor, he reportedly stormed downstairs and demanded “What are you trying to do, keep me away from what’s going on?” Apparently, some brains can function with (and even require!) high amounts of sensory entropy, whereas others need essentially zero. One might look for different metastable thresholds and/or convergent cybernetic targets in this case.

– Mike Johnson, A future for neuroscience

My drunk or high Tweets are my best work.

– Joe Rogan, Vlog#18

Introduction

Mechanical Turk is a service that makes outsourcing simple tasks to a large number of people extremely easy. The only constraint is that the tasks outsourced ought to be the sort of thing that can be explained and performed within a browser in less than 10 minutes, which in practice is not a strong constraint for most tasks you would outsource anyway. This service is in fact a remarkably effective way to accelerate the testing of digital prototypes at a reasonable price.

I think the core idea has incredible potential in the field of interest we explore in this blog. Namely, consciousness research and the creation of consciousness technologies. Mechanical Turk is already widely used in psychology, but its usefulness could be improved further. Here is an example: Imagine an extension to Mechanical Turk in which one could choose to have the tasks completed (or attempted) by people in non-ordinary states of consciousness.

Demographic Breakdown

With Mechanical Turk you can already ask for people who belong to specific demographic categories to do your task. For example, some academics are interested in the livelihoods of people within certain ages, NLP researchers might need native speakers of a particular language, and people who want to proof-read a text may request users who have completed an undergraduate degree. The demographic categories are helpful but also coarse. In practice they tend to be used as noisy proxies for more subtle attributes. If we could multiply the categories, which ones would give the highest bang for the buck? I suspect there is a lot of interesting information to be gained from adding categories like personality, cognitive organization, and emotional temperament. What else?

States of Consciousness as Points of View

One thing to consider is that the value of a service like Mechanical Turk comes in part from the range of “points of view” that the participants bring. After all, ensemble models that incorporate diverse types of modeling approaches and datasets usually dominate in real-world machine learning competitions (e.g. Kaggle). Analogously, for a number of applications, getting feedback from someone who thinks differently than everyone already consulted is much more valuable than consulting hundreds of people similar to those already queried. Human minds, insofar as they are prediction machines, can be used as diverse models. A wide range of points of view expands the perspectives used to draw inferences, and in many real-world conditions this will be beneficial for the accuracy of an aggregated prediction. So what would a radical approach to multiplying such “points of view” entail? Arguably a very efficient way of doing so would involve people who inhabit extraordinarily different states of consciousness outside the “typical everyday” mode of being.

Jokingly, I’d very much like to see the “wisdom of the crowds enhanced with psychedelic points of view” expressed in mainstream media. I can imagine an anchorwoman on CNN saying: “according to recent polls 30% of people agree that X, now let’s break this down by state of consciousness… let’s see what the people on acid have to say… ” I would personally be very curious to hear how “the people on acid” are thinking about certain issues relative to e.g. a breakdown of points of view by political affiliation. Leaving jokes aside, why would this be a good idea? Why would anyone actually build this?

I posit that a “Mechanical Turk for People on Psychedelics” would benefit the requesters, the workers, and outsiders. Let’s start with the top three benefits for requesters: better art and marketing, enhanced problem solving, and accelerating the science of consciousness. For workers, the top reason would be making work more interesting, stimulating, and enjoyable. And from the point of view of outsiders, we could anticipate some positive externalities such as improved foundational science, accelerated commercial technology development, and better prediction markets. Let’s dive in:

Benefits to Requesters

Art and Marketing

A reason why a service like this might succeed commercially comes from the importance of understanding one’s audience in art and marketing. For example, if one is developing a product targeted to people who have a hangover (e.g. “hangover remedies”), one’s best bet would be to see how people who actually are hungover resonate with the message. Asking people who are drunk, high on weed, on empathogenic states, on psychedelics, specific psychiatric medications, etc. could certainly find its use in marketing research for sports, comedy, music shows, etc.

Basically, when the product is consumed in the sort of events in which people frequently avoid being sober for the occasion, doing market research on the same people sober might produce misleading results. What percent of concert-goers are sober the entire night? Or people watching the World Cup final? Clearly, a Mechanical Turk service with diverse states of consciousness has the potential to improve marketing epistemology.

On the art side, people who might want to be the next Alex Grey or Android Jones would benefit from prototyping new visual styles on crowds of people who are on psychedelics (i.e. the main consumers of such artistic styles).

As an aside, I would like to point out that in my opinion, artists who create audio or images that are expected to be consumed by people in altered states of consciousness have some degree of responsibility in ensuring that they are not particularly upsetting to people in such states. Indeed, some relatively innocent sounds and images might cause a lot of anxiety or trigger negative states in people on psychedelics due to the way they are processed in such states. With a Mechanical Turk for psychedelics, artists could reduce the risk of upsetting festival/concert goers who partake in psychedelic perception by screening out offending stimuli.

Problem Solving

On a more exciting note, there are a number of indications that states of consciousness as alien as those induced by major psychedelics are at times computationally suited to solve information processing tasks in competitive ways. Here are two concrete examples: First, in the sixties there was some amount of research performed on psychedelics for problem solving. A notorious example would be the 1966 study conducted by Willis Harman & James Fadiman in which mescaline was used to aid scientists, engineers, and designers in solving concrete technical problems with very positive outcomes. And second, in How to Secretly Communicate with People on LSD we delved into ways that messages could be encoded in audio-visual stimuli in such a way that only people high on psychedelics could decode them. We called this type of information concealment Psychedelic Cryptography:

These examples are just proofs of concept that there probably are a multitude of tasks for which minds under various degrees of psychedelic alteration outperform those minds in sober states. In turn, it may end up being profitable to recruit people on such states to complete your tasks when they are genuinely better at them than the sober competition. How to know when to use which state of consciousness? The system could include an algorithm that samples people from various states of consciousness to identify the most promising states to solve your particular problem and then assign the bulk of the task to them.

All of this said, the application I find the most exciting is…

Accelerating the Science of Consciousness

The psychedelic renaissance is finally getting into the territory of performance enhancement in altered states. For example, there is an ongoing study that evaluates how microdosing impacts how one plays Go, and another one that uses a self-blinding protocol to assess how microdosing influences cognitive abilities and general wellbeing.

A whole lot of information about psychedelic states can be gained by doing browser experiments with people high on them. From sensory-focused studies such as visual psychophysics and auditory hedonics to experiments involving higher-order cognition and creativity, internet-based studies of people on altered states can shed a lot of light on how the mind works. I, for one, would love to estimate the base-rate of various wallpaper symmetry groups in psychedelic visuals (cf. Algorithmic Reduction of Psychedelic States), and to study the way psychedelic states influence the pleasantness of sound. There may be no need to spend hundreds of thousands of dollars in experiments that study those questions when the cost of asking people who are on psychedelics to do tasks can be amortized by having them participate in hundreds of studies on e.g. a single LSD session.

Quantifying Bliss (36)

17 wallpaper symmetry groups

This kind of research platform would also shed light on how experiences of mental illness compare with altered states of consciousness and allow us to place the effects of common psychiatric medications on a common “map of mental states”. Let me explain. While recreational materials tend to produce the largest changes to people’s conscious experience, it should go without saying that a whole lot of psychiatric medications have unusual effects on one’s state of consciousness. For example: Most people have a hard time pin-pointing the effect of beta blockers on their experience, but it is undeniable that such compounds influence brain activity and there are suggestions that they may have long-term mood effects. Many people do report specific changes to their experience related to beta blockers, and experienced psychonauts can often compare their effects to other drugs that they may use as benchmarks. By conducting psychophysical experiments on people who are taking various major psychoactives, one would get an objective benchmark for how the mind is altered along a wide range of dimensions by each of these substances. In turn, this generalized Mechanical Turk would enable us to pin-point where much more subtle drugs fall along on this space (cf. State-Space of Drug Effects).

In other words, this platform may be revolutionary when it comes to data collection and bench-marking for psychiatric drugs in general. That said, since these compounds are more often than not used daily for several months rather than briefly or as needed, it would be hard to see how the same individual performs a certain task while on and off the medicine. This could be addressed by implementing a system allowing requesters to ask users for follow up experiments if/when the user changes his or her drug regimen.

Benefit to Users

As claimed earlier on, we believe that this type of platform would make work more enjoyable, stimulating, and interesting for many users. Indeed, there does seem to be a general trend of people wanting to contribute to science and culture by sharing their experiences in non-ordinary states of consciousness. For instance, the wonderful artists at r/replications try to make accurate depiction of various unusual states of consciousness for free. There is even an initiative to document the subjective effects of various compounds by grounding trip reports on a subjective effects index. The point being that if people are willing to share their experience and time on psychedelic states of consciousness for free, chances are that they will not complain if they can also earn money with this unusual hobby.

698okoc

LSD replication (source: r/replications)

We also know from many artists and scientists that normal everyday states of consciousness are not always the best for particular tasks. By expanding the range of states of consciousness with economic advantages, we would be allowing people to perform at their best. You may not be allowed to conduct your job while high at your workplace even if you perform it better that way. But with this kind of platform, you would have the freedom to choose the state of consciousness that optimizes your performance and be paid in kind.

Possible Downsides

It is worth mentioning that there would be challenges and negative aspects too. In general, we can probably all agree that it would suck to have to endure advertisement targeted to your particular state of consciousness. If there is a way to prevent this from happening I would love to hear it. Unfortunately, I assume that marketing will sooner or later catch on to this modus operandi, and that a Mechanical Turk for people on altered states would be used for advertisement before anything else. Making better targeted ads, it turns out, is a commercially viable way of bootstrapping all sorts of novel systems. But better advertisement indeed puts us at higher risk of being taken over by pure replicators in the broader scope, so it is worth being cautious with this application.

In the worst case scenario, we discover that very negative states of consciousness dominate other states in the arena of computational efficiency. In this scenario, the abilities useful to survive in the mental economy of the future happen to be those that employ suffering in one way or another. In that case, the evolutionary incentive gradients would lead to terrible places. For example, future minds might end up employing massive amounts of suffering to “run our servers”, so to speak. Plus, these minds would have no choice because if they don’t then they would be taken over by other minds that do, i.e. this is a race to the bottom. Scenarios like this have been considered before (1, 2, 3), and we should not ignore their warning signs.

Of course this can only happen if there are indeed computational benefits to using consciousness for information processing tasks to begin with. At Qualia Computing we generally assume that the unity of consciousness confers unique computational benefits. Hence, I would expect any outright computational use of states of consciousness is likely to involve a lot of phenomenal binding. Hence, at the evolutionary limit, conscious super-computers would probably be super-sentient. That said, the optimal hedonic tone of the minds with the highest computational efficiency is less certain. This complex matter will be dealt with elsewhere.

Concluding Discussion

Reverse Engineering Systems

A lot of people would probably agree that a video of Elon Musk high on THC may have substantially higher value than many videos of him sober. A lot of this value comes from the information gained about him by having a completely new point of view (or projection) of his mind. Reverse-engineering systems involves doing things to them to change the way they operate in order to try to reconstruct how they are put together. The same is true for the mind and the computational benefits of consciousness more broadly.

The Cost of a State of Consciousness

Another important consideration would be cost assignment for different states of consciousness. I imagine that the going rates for participants on various states would highly depend on the kind of application and profitability of these states. The price would reach a stable point that balances the usability of a state of consciousness for various tasks (demand) and its overall supply.

For problem solving in some specialized applications, for example, I could imagine “mathematician on DMT” to be a high-end sort of state of consciousness priced very highly. For example, foundational consciousness research and phenomenological studies might find such participants to be extremely valuable, as they might be helpful analyzing novel mathematical ideas and using their mathematical expertise to describe the structure of such experiences (cf. Hyperbolic Geometry of DMT Experiences).

Unfortunately, if the demand for high-end rational psychonauts never truly picks up, one might expect that people who could become professional rational psychonauts will instead work for Google or Facebook or some other high-paying company. More so, due to Lemon Markets people who do insist on hiring rational psychonauts will most likely be disappointed. Sasha Shulgin and his successors will probably only participate in such markets if the rewards are high enough to justify using their precious time on novel alien states of consciousness to do your experiment rather than theirs.

In the ideal case this type of platform might function as a spring-board to generate a critical mass of active rational psychonauts who could do each other’s experiments and replicate the results of underground researchers.

Quality Metrics

Accurately matching the task with the state of consciousness would be critical. For example, you might not necessarily want someone who is high on a large dose of acid to take a look at your tax returns*. Perhaps for mundane tasks one would want people who are on states of optimal arousal (e.g. modafinil). As mentioned earlier, a system that identifies the most promising states of consciousness for your task would be a key feature of the platform.

If we draw inspiration from the original service, we could try to make an analogous system to “Mechanical Turk Masters“. Here the service charges a higher price for requesting people who have been vetted as workers who produce high quality output. To be a Master one needs to have a high task-approval rating and have completed an absurd number of them. Perhaps top score boards and public requester prices for best work would go a long way in keeping the quality of psychedelic workers at a high level.

In practice, given the population base of people who would use this service, I would predict that to a large extent the most successful tasks in terms of engagement from the user-base will be those that have nerd-sniping qualities.** That is, make tasks that are especially fun to complete on psychedelics (and other altered states) and you would most likely get a lot of high quality work. In turn, this platform would generate the best outcomes when the tasks submitted are both fun and useful (hence benefiting both workers and requesters alike).

Keeping Consciousness Useful

Finally, we think that this kind of platform would have a lot of long-term positive externalities. In particular, making a wider range of states of consciousness economically useful goes in the general direction of keeping consciousness relevant in the future. In the absence of selection pressures that make consciousness economically useful (and hence useful to stay alive and reproduce), we can anticipate a possible drift from consciousness being somewhat in control (for now) to a point where only pure replicators matter.


Bonus content

If you are concerned with social power in a post-apocalyptic landscape, it is important that you figure out a way to induce psychedelic experiences in such a way that they cannot easily be used as weapons. E.g. it would be key to only have physiologically safe (e.g. not MDMA) and low-potency (e.g. not LSD) materials in a Mad Max scenario. For the love of God, please avoid stockpiling compounds that are both potent and physiologically dangerous (e.g. NBOMes) in your nuclear bunker! Perhaps high-potency materials could still work out if they are blended in hard-to-separate ways with fillers, but why risk it? I assume that becoming a cult leader would not be very hard if one were the only person who can procure reliable mystical experiences for people living in most post-apocalyptic scenarios. For best results make sure that the cause of the post-apocalyptic state of the world is a mystery to its inhabitants, such as in the documentary Gurren Lagann, and the historical monographs written by Philip K. Dick.


*With notable exceptions. For example, some regular cannabis users do seem to concentrate better while on manageable amounts of THC, and if the best tax attorney in your vicinity willing to do your taxes is in this predicament, I’d suggest you don’t worry too much about her highness.

**If I were a philosopher of science I would try to contribute a theory for scientific development based on nerd-sniping. Basically, how science develops is by the dynamic way in which scientists at all points are following the nerd-sniping gradient. Scientists are typically people who have their curiosity lever all the way to the top. It’s not so much that they choose their topics strategically or at random. It’s not so much a decision as it is a compulsion. Hence, the sociological implementation of science involves a collective gradient ascent towards whatever is nerd-sniping given the current knowledge. In turn, the generated knowledge from the intense focus on some area modifies what is known and changes the nerd-sniping landscape, and science moves on to other topics.

Estimated Cost of the DMT Machine Elves Prime Factorization Experiment

“Okay,” I said. “Fine. Let me tell you where I’m coming from. I was reading Scott McGreal’s blog, which has some good articles about so-called DMT entities, and mentions how they seem so real that users of the drug insist they’ve made contact with actual superhuman beings and not just psychedelic hallucinations. You know, the usual Terence McKenna stuff. But in one of them he mentions a paper by Marko Rodriguez called A Methodology For Studying Various Interpretations of the N,N-dimethyltryptamine-Induced Alternate Reality, which suggested among other things that you could prove DMT entities were real by taking the drug and then asking the entities you meet to factor large numbers which you were sure you couldn’t factor yourself. So to that end, could you do me a big favor and tell me the factors of 1,522,605,027, 922,533,360, 535,618,378, 132,637,429, 718,068,114, 961,380,688, 657,908,494, 580,122,963, 258,952,897, 654,000,350, 692,006,139?

Universal Love, Said the Cactus Person, by Scott Alexander

In the comments…

gwern says:
I was a little curious about how such a prime experiment would go and how much it would cost. It looks like one could probably run an experiment with a somewhat OK chance at success for under $1k.
We need to estimate the costs and probabilities of memorizing a suitable composite number, buying DMT, using DMT and getting the requisite machine-elf experience (far from guaranteed), being able to execute a preplanned action like asking about a prime, and remembering the answer.

1. The smallest RSA number not yet factored is 220 digits. The RSA numbers themselves are useless for this experiment because if one did get the right factors, because it’s so extraordinarily unlikely for machine-elves to really be an independent reality, a positive result would only prove that someone had stolen the RSA answers or hacked a computer or something along the lines. RSA-768 was factored in 2009 using ~2000 CPU-years, so we need a number much larger; since Google has several million CPUs we might want something substantially larger, at least 800 digits. We know from mnemonists that numbers that large can be routinely memorized, and an 800 digit decimal can be memorized in an hour. Chao Lu memorized 67k digits of Pi in 1 year. So the actual memorization time is not significant. How much training does it take to memorize 800 digits? I remember a famous example in WM research of how WM training does not necessarily transfer to anything, of a student taught to memorize digits, Ericsson & Chase’s whose digit span went from ~7 to ~80 after 230 hours of training; digit span is much more demanding than a one-off memorization. This does something similar using more like 80 hours of training. Foer’s _Moonwalking With Einstein: The Art and Science of Remembering Everything_ doesn’t cover much more than a year or two and fairly undemanding training regimen, and he performed well. So I’m going to guess that to memorize a number which would be truly impressive evidence (and not simply evidence for a prank or misdeeds by a hobbyist, RSA employee, Google, or the NSA) would require ~30h of practice.
2. some browsing of the DMT category on the current leading black-market suggests that 1g of DMT from a reputable seller costs ฿0.56 or ~$130. The linked paper says smoking DMT for a full trip requires 50mg/0.05g so our $130 buys ~19 doses.
3. The linked paper says that 20% of Strassman’s injected-DMT trips give a machine-elf experience; hence the 1g will give an average of ~3-4 machine-elfs and 19 trips almost guarantees at least 1 machine-elf assuming 20% success-rate (1-(1-0.2)^19 = 98%). Since the 20% figure comes from injected DMT and DMT of a controlled high quality, probably this is optimistic for anyone trying out smoking DMT at home, but let’s roll with it.
4. in a machine-elf experience, how often could we be lucid enough to wake up and ask the factoring question? No one’s mentioned trying so there’s no hard data, but we can borrow from a similar set of experiments in verifying altered states of consciousness, Laberge’s lucid dreaming experiments in which subjects had to exert control to wiggle their eyes in a fixed pattern. This study gives several flows from # of nights to # of verifications, which all are roughly 1/3 – 1/4; so given our estimated 3-4 machine-elfs, we might be able to ask 1 time. If the machine-elves are guaranteed to reply correctly, then that’s all we need.
5. at 30 hours of mnemonic labor valued at minimum wage of $8 and $130 for 19 doses, that gives us an estimate of $370 in costs to ask an average of once; if we amortize the memorization costs some more by buying 2g, then we instead spend $250 per factoring request for 2 tries; and so on down to a minimum cost of (130/19)*5 = $34 per factoring request. To get n=10 requests, we’d need to spend a cool ((30*8) + 10*130)=$1540.
6. power analysis for a question like this is tricky, since we only need one response with the *right* factors; probably what will happen is that the machine-elfs will not answer or any answer will be ‘forgotten’. You can estimate other stuff like how likely the elves are to respond given 10 questions and 0 responses (flat prior’s 95% CI: 0-28%), or apply decision-theory to decide when to stop trying (tricky, since any reasonable estimate of the probability of machine-elves will tell you that at $35 a shot, you shouldn’t be trying at all).

Hence, you could get a few attempts at somewhere under $1k, but exactly how much depends sensitively on what fraction of trips you get elves and how often you manage to ask them; the DMT itself doesn’t cost *that* much per dose (like ~$7) but it’s the all the trips where you don’t get elves or you get elves but are too ecstatic to ask them anything which really kill you and drive up the price to $34-$250 per factoring request. Also, there’s a lot of uncertainty in all these estimates (who knows how much any of the quoted rates differ from person to person?).

I thought this might be a fun self-experiment to do, but looking at the numbers and the cost, it seems pretty discouraging.


Related Empirical Paradigms for Psychedelic Research:

  1. LSD and Quantum Measurement (an experiment that was designed, coded up, and conducted to evaluate whether one can experience multiple Everett branches at once while on LSD).
  2. How to Secretly Communicate with People on LSD (a method called Psychedelic Cryptography which uses the slower qualia decay factor induced by psychedelics, aka. “tracers”, in order to encode information in gifs that you can only decode if you are sufficiently high on a psychedelic).
  3. Psychophysics for Psychedelic Research: Textures (an experimental method developed by Benjamin Bala based on the textural mongrel paradigm proposed by Eero Simoncelli and extended to provide insights into psychedelic visual perception. See: analysis).

Would Maximally Efficient Work Be Fun?

Excerpt from Superintelligence: Paths, Dangers, Strategies (2014) by Nick Bostrom (pg. 207-210).

Would Maximally Efficient Work Be Fun?

One important variable in assessing the desirability of a hypothetical condition like this* is the hedonic state of the average emulation**. Would a typical emulation worker be suffering or would he be enjoying the experience of working hard on the task at hand?

We must resist the temptation to project our own sentiments onto the imaginary emulation worker. The question is not whether you would feel happy if you had to work constantly and never again spend time with your loved ones–a terrible fate, most would agree.

It is moderately more relevant to consider the current human average hedonic experience during working hours. Worldwide studies asking respondents how happy they are find that most rate themselves as “quite happy” or “very happy” (averaging 3.1 on a scale from 1 to 4)***. Studies on average affect, asking respondents how frequently they have recently experienced various positive or negative affective states, tend to get a similar result (producing a net affect of about 0.52 on a scale from -1 to 1). There is a modest positive effect of a country’s per capita income on average subjective well-being.**** However, it is hazardous to extrapolate from these findings to the hedonic state of future emulation workers. One reason that could be given for this is that their condition would be so different: on the one hand, they might be working much harder; on the other hand, they might be free from diseases, aches, hunger, noxious odors, and so forth. Yet such considerations largely miss the mark. The much more important consideration here is that hedonic tone would be easy to adjust through the digital equivalent of drugs or neurosurgery. This means that it would be a mistake to infer the hedonic state of future emulations from the external conditions of their lives by imagining how we ourselves and other people like us would feel in those circumstances. Hedonic state would be a matter of choice. In the model we are currently considering, the choice would be made by capital-owners seeking to maximize returns on their investment in emulation-workers. Consequently, this question of how happy emulations would feel boils down to the question of which hedonic states would be most productive (in the various jobs that emulations would be employed to do). [Emphasis mine]

Here, again, one might seek to draw an inference from observations about human happiness. If it is the case, across most times, places, and occupations, that people are typically at least moderately happy, this would create some presumption in favor of the same holding in a post-transition scenario like the one we are considering. To be clear, the argument in this case would not be that human minds have a predisposition towards happiness so they would probably find satisfaction under these novel conditions; but rather that a certain average level of happiness has proved adaptive for human minds in the past so maybe a similar level of happiness will prove adaptive from human-like minds in the future. Yet this formulations also reveals the weakness of the inference: to wit, that the mental dispositions that were adaptive for hunter-gatherer hominids roaming the African savanna may not necessarily be adaptive for modified emulations living in post-transition virtual realities. We can certainly hope that the future emulation-workers would be as happy as, or happier than, typical workers were in human history; but we have yet to see any compelling reason for supposing it would be so (in the laissez-faire multipolar scenario currently under examination).

Consider the possibility that the reason happiness is prevalent among humans (to whatever limited extent it is prevalent) is that cheerful mood served a signaling function in the environment of evolutionary adaptedness. Conveying the impression to other members of the social group of being in flourishing condition–in good health, in good standing with one’s peers, and in confident expectation of continued good fortune–may have boosted an individual’s popularity. A bias toward cheerfulness could thus have been selected for, with the result that human neurochemistry is now biased toward positive affect compared to what would have been maximally efficient according to simpler materialistic criteria. If this were the case, then the future of joie de vivre might depend on cheer retaining its social signaling function unaltered in the post-transition world: an issue to which we will return shortly. 

What if glad souls dissipate more energy than glum ones? Perhaps the joyful are more prone to creative leaps and flights of fancy–behaviors that future employers might disprize in most of their workers. Perhaps a sullen or anxious fixation on simply getting on with the job without making mistakes will be the productivity-maximizing attitude in most lines of work. The claim here is not that this is so, but that we do not know that it is not so. Yet we should consider just how bad it could be if some such pessimistic hypothesis about a future Malthusian state turned out to be true: not only because of the opportunity cost of having failed to create something better–which would be enormous–but also because the state could be bad in itself, possibly far worse that the original Malthusian state.

We seldom put forth full effort. When we do, it is sometimes painful. Imagine running on a treadmill at a steep incline–heart pounding, muscles aching, lungs gasping for air. A glance at the timer: your next break, which will will also be your death, is due in 49 years, 3 months, 20 days, 4 hours, 56 minutes, and 12 seconds. You wish you had not been born.

Again the claim is not that this is how it would be, but that we do not know that it is not. One could certainly make a more optimistic case. For example, there is no obvious reason that emulations would need to suffer bodily injury and sickness: the elimination of physical wretchedness would be a great improvement over the present state of affairs. Furthermore, since such stuff as virtual reality is made of can be fairly cheap, emulations may work in sumptuous surroundings–in splendid mountaintop palaces, on terraces set in a budding spring forest, or on the beaches of azure lagoon–with just the right illumination, temperature, scenery and décor; free from annoying fumes, noises, drafts, and buzzing insects; dressed in comfortable clothing, feeling clean and focused, and well nourished. More significantly, if–as seems perfectly possible–the optimum human mental state for productivity in most jobs is one of joyful eagerness, then the era of the emulation economy could be quite paradisiacal.

There would, in any case, be a great option value in arranging matters in such a manner that somebody or something could intervene to set things right if the default trajectory should happen to veer toward dystopia. It could also be desirable to have some sort of escape hatch that would permit bailout into death and oblivion if the quality of life were to sink permanently below the level at which annihilation becomes preferable to continued existence.

Unconscious outsourcers?

In the long run, as the emulation era gives way to an artificial intelligence era (or if machine intelligence is attained directly via AI without a preceding whole brain emulation stage) pain and pleasure might possibility disappear entirely in a multipolar outcome, since a hedonic reward mechanism may not be the most effective motivation system for a complex artificial agent (one that, unlike the human mind, is not burdened with the legacy of animal wetware). Perhaps a more advanced motivation system would be based on an explicit representation of a utility function or some other architecture that has not exact functional analogs to pleasure and pain.

A related but slightly more radical multipolar outcome–one that could involve the elimination of almost all value from the future–is that the universal proletariat would not even be conscious. This possibility is most salient with respect to AI, which might be structured very differently than human intelligence. But even if machine intelligence were initially achieved through whole brain emulation, resulting in conscious digital minds, the competitive forces unleashed in a post-transition economy could easily lead to the emergence of progressively less neuromorphic forms of machine intelligence, either because synthetic AI is created de novo or because the emulations would, through successive modifications and enhancements, increasingly depart their original human form.


* Scenarios where sentient emulations are being used to do maximally efficient work.

** Footnote: “An ethical evaluation might take into account many other factors as well. Even if all the workers were constantly well pleased with their condition, the outcome might still be deeply morally objectionable on other grounds–though which other grounds is a matter of dispute between rival moral theories. But any plausible assessment would consider subjective well-being to be one important factor. See also Bostrom and Yudkowsky (2015).”

*** World Values Survey (2008).

**** Helliwell and Sachs (2012).