Principia Qualia: Part II – Valence

Extract from Principia Qualia (2016) by my colleague Michael E. Johnson (from Qualia Research Institute). This is intended to summarize the core ideas of chapter 2, which proposes a precise, testable, simple, and so far science-compatible theory of the fundamental nature of valence (also called hedonic tone or the pleasure-pain axis; what makes experiences feel good or bad).

 

VII. Three principles for a mathematical derivation of valence

We’ve covered a lot of ground with the above literature reviews, and synthesizing a new framework for understanding consciousness research. But we haven’t yet fulfilled the promise about valence made in Section II- to offer a rigorous, crisp, and relatively simple hypothesis about valence. This is the goal of Part II.

Drawing from the framework in Section VI, I offer three principles to frame this problem: ​

1. Qualia Formalism: for any given conscious experience, there exists- in principle- a mathematical object isomorphic to its phenomenology. This is a formal way of saying that consciousness is in principle quantifiable- much as electromagnetism, or the square root of nine is quantifiable. I.e. IIT’s goal, to generate such a mathematical object, is a valid one.

2. Qualia Structuralism: this mathematical object has a rich set of formal structures. Based on the regularities & invariances in phenomenology, it seems safe to say that qualia has a non-trivial amount of structure. It likely exhibits connectedness (i.e., it’s a unified whole, not the union of multiple disjoint sets), and compactness, and so we can speak of qualia as having a topology.

More speculatively, based on the following:

(a) IIT’s output format is data in a vector space,

(b) Modern physics models reality as a wave function within Hilbert Space, which has substantial structure,

(c) Components of phenomenology such as color behave as vectors (Feynman 1965), and

(d) Spatial awareness is explicitly geometric,

…I propose that Qualia space also likely satisfies the requirements of being a metric space, and we can speak of qualia as having a geometry.

Mathematical structures are important, since the more formal structures a mathematical object has, the more elegantly we can speak about patterns within it, and the closer our words can get to “carving reality at the joints”. ​

3. Valence Realism: valence is a crisp phenomenon of conscious states upon which we can apply a measure.

–> I.e. some experiences do feel holistically better than others, and (in principle) we can associate a value to this. Furthermore, to combine (2) and (3), this pleasantness could be encoded into the mathematical object isomorphic to the experience in an efficient way (we should look for a concise equation, not an infinitely-large lookup table for valence). […]

valence_structuralism

I believe my three principles are all necessary for a satisfying solution to valence (and the first two are necessary for any satisfying solution to consciousness):

Considering the inverses:

If Qualia Formalism is false, then consciousness is not quantifiable, and there exists no formal knowledge about consciousness to discover. But if the history of science is any guide, we don’t live in a universe where phenomena are intrinsically unquantifiable- rather, we just haven’t been able to crisply quantify consciousness yet.

If Qualia Structuralism is false and Qualia space has no meaningful structure to discover and generalize from, then most sorts of knowledge about qualia (such as which experiences feel better than others) will likely be forever beyond our empirical grasp. I.e., if Qualia space lacks structure, there will exist no elegant heuristics or principles for interpreting what a mathematical object isomorphic to a conscious experience means. But this doesn’t seem to match the story from affective neuroscience, nor from our everyday experience: we have plenty of evidence for patterns, regularities, and invariances in phenomenological experiences. Moreover, our informal, intuitive models for predicting our future qualia are generally very good. This implies our brains have figured out some simple rules-of-thumb for how qualia is structured, and so qualia does have substantial mathematical structure, even if our formal models lag behind.

If Valence Realism is false, then we really can’t say very much about ethics, normativity, or valence with any confidence, ever. But this seems to violate the revealed preferences of the vast majority of people: we sure behave as if some experiences are objectively superior to others, at arbitrarily-fine levels of distinction. It may be very difficult to put an objective valence on a given experience, but in practice we don’t behave as if this valence doesn’t exist.

[…]

VIII. Distinctions in qualia: charting the explanation space for valence

Sections II-III made the claim that we need a bottom-up quantitative theory like IIT in order to successfully reverse-engineer valence, Section VI suggested some core problems & issues theories like IIT will need to address, and Section VII proposed three principles for interpreting IIT-style output:

  1. We should think of qualia as having a mathematical representation,
  2. This mathematical representation has a topology and probably a geometry, and perhaps more structure, and
  3. Valence is real; some things do feel better than others, and we should try to explain why in terms of qualia’s mathematical representation.

But what does this get us? Specifically, how does assuming these three things get us any closer to solving valence if we don’t have an actual, validated dataset (“data structure isomorphic to the phenomenology”) from *any* system, much less a real brain?

It actually helps a surprising amount, since an isomorphism between a structured (e.g., topological, geometric) space and qualia implies that any clean or useful distinction we can make in one realm automatically applies in the other realm as well. And if we can explore what kinds of distinctions in qualia we can make, we can start to chart the explanation space for valence (what ‘kind’ of answer it will be).

I propose the following four distinctions which depend on only a very small amount of mathematical structure inherent in qualia space, which should apply equally to qualia and to qualia’s mathematical representation:

  1. Global vs local
  2. Simple vs complex
  3. Atomic vs composite
  4. Intuitively important vs intuitively trivial

[…]

Takeaways: this section has suggested that we can get surprising mileage out of the hypothesis that there will exist a geometric data structure isomorphic to the phenomenology of a system, since if we can make a distinction in one domain (math or qualia), it will carry over into the other domain ‘for free’. Given this, I put forth the hypothesis that valence may plausibly be a simple, global, atomic, and intuitively important property of both qualia and its mathematical representation.

IX. Summary of heuristics for reverse-engineering the pattern for valence

Reverse-engineering the precise mathematical property that corresponds to valence may seem like finding a needle in a haystack, but I propose that it may be easier than it appears. Broadly speaking, I see six heuristics for zeroing in on valence:

A. Structural distinctions in Qualia space (Section VIII);

B. Empirical hints from affective neuroscience (Section I);

C. A priori hints from phenomenology;

D. Empirical hints from neurocomputational syntax;

E. The Non-adaptedness Principle;

F. Common patterns across physical formalisms (lessons from physics). None of these heuristics determine the answer, but in aggregate they dramatically reduce the search space.

IX.A: Structural distinctions in Qualia space (Section VIII):

In the previous section, we noted that the following distinctions about qualia can be made: Global vs local; Simple vs complex; Atomic vs composite; Intuitively important vs intuitively trivial. Valence plausibly corresponds to a global, simple, atomic, and intuitively important mathematical property.

[…]

Music is surprisingly pleasurable; auditory dissonance is surprisingly unpleasant. Clearly, music has many adaptive signaling & social bonding aspects (Storr 1992; Mcdermott and Hauser 2005)- yet if we subtract everything that could be considered signaling or social bonding (e.g., lyrics, performative aspects, social bonding & enjoyment), we’re still left with something very emotionally powerful. However, this pleasantness can vanish abruptly- and even reverse– if dissonance is added.

Much more could be said here, but a few of the more interesting data points are:

  1. Pleasurable music tends to involve elegant structure when represented geometrically (Tymoczko 2006);
  2. Non-human animals don’t seem to find human music pleasant (with some exceptions), but with knowledge of what pitch range and tempo their auditory systems are optimized to pay attention to, we’ve been able to adapt human music to get animals to prefer it over silence (Snowdon and Teie 2010).
  3. Results suggest that consonance is a primary factor in which sounds are pleasant vs unpleasant in 2- and 4-month-old infants (Trainor, Tsang, and Cheung 2002).
  4. Hearing two of our favorite songs at once doesn’t feel better than just one; instead, it feels significantly worse.

More generally, it feels like music is a particularly interesting case study by which to pick apart the information-theoretic aspects of valence, and it seems plausible that evolution may have piggybacked on some fundamental law of qualia to produce the human preference for music. This should be most obscured with genres of music which focus on lyrics, social proof & social cohesion (e.g., pop music), and performative aspects, and clearest with genres of music which avoid these things (e.g., certain genres of classical music).

[…]

X. A simple hypothesis about valence

To recap, the general heuristic from Section VIII was that valence may plausibly correspond to a simple, atomic, global, and intuitively important geometric property of a data structure isomorphic to phenomenology. The specific heuristics from Section IX surveyed hints from a priori phenomenology, hints from what we know of the brain’s computational syntax, introduced the Non-adaptedness Principle, and noted the unreasonable effectiveness of beautiful mathematics in physics to suggest that the specific geometric property corresponding to pleasure should be something that involves some sort of mathematically-interesting patterning, regularity, efficiency, elegance, and/or harmony.

We don’t have enough information to formally deduce which mathematical property these constraints indicate, yet in aggregate these constraints hugely reduce the search space, and also substantially point toward the following:

Given a mathematical object isomorphic to the qualia of a system, the mathematical property which corresponds to how pleasant it is to be that system is that object’s symmetry.

[…]

XI. Testing this hypothesis today

In a perfect world, we could plug many peoples’ real-world IIT-style datasets into a symmetry detection algorithm and see if this “Symmetry in the Topology of Phenomenology” (SiToP) theory of valence successfully predicted their self-reported valences.

Unfortunately, we’re a long way from having the theory and data to do that.

But if we make two fairly modest assumptions, I think we should be able to perform some reasonable, simple, and elegant tests on this hypothesis now. The two assumptions are:

  1. We can probably assume that symmetry/pleasure is a more-or-less fractal property: i.e., it’ll be evident on basically all locations and scales of our data structure, and so it should be obvious even with imperfect measurements. Likewise, symmetry in one part of the brain will imply symmetry elsewhere, so we may only need to measure it in a small section that need not be directly contributing to consciousness.
  2. We can probably assume that symmetry in connectome-level brain networks/activity will roughly imply symmetry in the mathematical-object-isomorphic-to-phenomenology (the symmetry that ‘matters’ for valence), and vice-versa. I.e., we need not worry too much about the exact ‘flavor’ of symmetry we’re measuring.

So- given these assumptions, I see three ways to test our hypothesis:

1. More pleasurable brain states should be more compressible (all else being equal).

Symmetry implies compressibility, and so if we can measure the compressibility of a brain state in some sort of broad-stroke fashion while controlling for degree of consciousness, this should be a fairly good proxy for how pleasant that brain state is.

[…]

2. Highly consonant/harmonious/symmetric patterns injected directly into the brain should feel dramatically better than similar but dissonant patterns.

Consonance in audio signals generally produces positive valence; dissonance (e.g., nails-on-a-chalkboard) reliably produces negative valence. This obviously follows from our hypothesis, but it’s also obviously true, so we can’t use it as a novel prediction. But if we take the general idea and apply it to unusual ways of ‘injecting’ a signal into the brain, we should be able to make predictions that are (1) novel, and (2) practically useful.

TMS is generally used to disrupt brain functions by oscillating a strong magnetic field over a specific region to make those neurons fire chaotically. But if we used it on a lower-powered, rhythmic setting to ‘inject’ a symmetric/consonant pattern directly into parts of the brain involved directly with consciousness, the result should produce good feeling- or at least, much better valence than a similar dissonant pattern.

Our specific prediction: direct, low-power, rhythmic stimulation (via TMS) of the thalamus at harmonic frequencies (e.g., @1hz+2hz+4hz+6hz+8hz+12hz+16hz+24hz+36hz+48hz+72hz+96hz+148hz) should feel significantly more pleasant than similar stimulation at dissonant frequencies (e.g., @1.01hz+2.01hz+3.98hz+6.02hz+7.99hz+12.03hz+16.01hz+24.02hz+35.97hz+48.05hz+72.04hz+95.94hz+ 147.93hz).

[…]

3. More consonant vagus nerve stimulation (VNS) should feel better than dissonant VNS.

The above harmonics-based TMS method would be a ‘pure’ test of the ‘Symmetry in the Topology of Phenomenology’ (SiToP) hypothesis. It may rely on developing custom hardware and is also well outside of my research budget.

However, a promising alternative method to test this is with consumer-grade vagus nerve stimulation (VNS) technology. Nervana Systems has an in-ear device which stimulates the Vagus nerve with rhythmic electrical pulses as it winds its way past the left ear canal. The stimulation is synchronized with either user-supplied music or ambient sound. This synchronization is done, according to the company, in order to mask any discomfort associated with the electrical stimulation. The company says their system works by “electronically signal[ing] the Vagus nerve which in turn stimulates the release of neurotransmitters in the brain that enhance mood.”

This explanation isn’t very satisfying, since it merely punts the question of why these neurotransmitters enhance mood, but their approach seems to work– and based on the symmetry/harmony hypothesis we can say at least something about why: effectively, they’ve somewhat accidentally built a synchronized bimodal approach (coordinated combination of music+VNS) for inducing harmony/symmetry in the brain. This is certainly not the only component of how this VNS system functions, since the parasympathetic nervous system is both complex and powerful by itself, but it could be an important component.

Based on our assumptions about what valence is, we can make a hierarchy of predictions:

  1. Harmonious music + synchronized VNS should feel the best;
  2. Harmonious music + placebo VNS (unsynchronized, simple pattern of stimulation) should feel less pleasant than (1);
  3. Harmonious music + non-synchronized VNS (stimulation that is synchronized to a different kind of music) should feel less pleasant than (1);
  4. Harmonious music + dissonant VNS (stimulation with a pattern which scores low on consonance measures such as (Chon 2008) should feel worse than (2) and (3));
  5. Dissonant auditory noise + non-synchronized, dissonant VNS should feel pretty awful.

We can also predict that if a bimodal approach for inducing harmony/symmetry in the brain is better than a single modality, a trimodal or quadrimodal approach may be even more effective. E.g., we should consider testing the addition of synchronized rhythmic tactile stimulation and symmetry-centric music visualizations. A key question here is whether adding stimulation modalities would lead to diminishing or synergistic/accelerating returns.

Psychedelic Science 2017: Take-aways, impressions, and what’s next

 

It would be impossible for me to summarize what truly went on at Psychedelic Science 2017. Since giving a fair and detailed account of all of the presentations, workshops and social events I attended is out of the question, I will restrict myself to talking about, what I see as, the core insights and take-aways from the conference (plus some additional impressions I’ll get to). In brief, the core insights are: (1) that we are on the brink of a culturally-accepted scientific revolution on the study of consciousness in which we finally navigate our way out of our current pre-Galilean understanding of the mind, (2) that the breakdown of both the extremes of nihilism and eternalism as ideological north-stars in consciousness research is about to take place (i.e. finding out that neither scientific materialism nor spirituality convey the full picture), and (3) that a new science of valence, qualia, and rational psychonautics based on the quantification of good and bad feelings is slowly making its way into the surface.

With regards to (1): It should not come as a surprise to anyone who has been paying attention that there is a psychedelic renaissance underway. Bearing extreme world-wide counter-measures against it, in so far as psychedelic and empathogenic compounds meet the required evidentiary standards of mainstream psychopharmacology as safe and effective treatments for mental illness (and they do), they will be a staple of tomorrow’s tools for mental health. It’s not a difficult gamble: the current studies being made around the world are merely providing the scientific backing of what was already known in the 60s (for psychedelics) and 80s (for MDMA). I.e. That psychedelic medicine (people love to call it that way) in the right set and setting produces outstanding clinically-relevant effect sizes.

On (2): it is very unclear what people who attended the conference believe about the nature of reality, but overall there was a strong Open Individualist undercurrent and a powerful feeling that transcendence is right next door (even the urinals had sacred geometry*). That said, the science provided a refreshing feeling of cautious nihilism. Trying to reconcile both love and science is, in my opinion, the way to go. Whether we are about to ascend to another realm or if we are about to find out about our cosmic meaninglessness, the truth is that there are a lot of more immediate things to worry about. Arguably, psychedelic experiences could be used to treat both the afflictions that come with eternalism as well as those that come from nihilism. Namely, psychedelics often make you experience the world as you believe it to be (echoing John C. Lilly’s famous words: “In the province of the mind, what one believes to be true is true or becomes true, within certain limits to be found experientially and experimentally. These limits are further beliefs to be transcended. In the mind, there are no limits…”). So if you rely on intense (but mundanely challenged) feelings of transcendence to get by, you may find out on a psychedelic experience that making a world in which what you believe is literally true does not lead to happiness and meaningfulness in the way you thought it might. Unless, of course, one believes that everything that happens is a net positive somehow (which is hard to do given the regular onslaught of meaninglessness found in everyday life), any profound realization of an ontological basis of reality (as in “a made up universe perceived as if real”) can lead to dysphoria. Nihilism can be profoundly distressing on psychedelics. Yet, as evidenced by the bulk of conscious experiences, the quality of meaningfulness in one’s experience is a continuum, neither objective nor subjective, and neither eternal nor unreal (I’m using the terminology from the book “Meaningness“, though other terminologies exist for similar concepts such as the Buddhist “middle way”, Existentialism, Pragmatism, Rationalists’ epistemic rationality, etc.).

Psychedelic veterans usually end up converging on something that has this sort of emotional texture: A bitter-sweet yet Stoic worldview that leaves an open space for all kinds of wonderful things to happen, yet remains aware of the comings and goings of happiness and fulfillment. It makes it a point to not be too preoccupied with questions of ultimate meaning. It may be that for most people it’s impossible to arrive at such wisdom without trying out (and failing in some way) to live all of their fantasies before giving up and accepting the fluxing nature of reality. In such a case, psychedelics would seem to offer us a way to accelerate our learning about the unsatisfactoriness of attachments and find the way to live in realistic joy.

That said, maybe such wisdom is not Wisdom (in the sense of being universal) since we are restricting our analysis to the human wetware as it is today.  What reason do we have to believe that the hedonic treadmill is a fundamental property of the universe? A lot of evidence suggests persistent differences in people’s hedonic set-point (often genetically influenced, as in the case of the SCN9A gene for pain thresholds), and this challenges the notion that we can’t avoid suffering. Indeed, MDMA-like states may some day be experienced at will with the use of technology (and without side effects). There may even be scientifically-derived precision-engineered ethical and freedom-expanding wireheading technology that will make our current everyday way of life look laughably uninteresting and unmeaningful in comparison.

Unfortunately, talking about this (i.e. technologically-induced hedonic recalibration) with people who need a pessimistic metaphysics of valence just to function may be considered antisocial. For example, some people seem to need spiritual theories of the pleasure-pain axis that focus on fairness (such as the doctrine of Karma) in order to feel like they are not randomly getting the shorter end of the (cosmic) stick (this sentiment usually comes together with implicit Closed Individualist convictions). Of course feeling like one is a victim is itself the result of one’s affect. This provides the perfect segway for (3):

In addition to all of the magical (but expected) fusion of art, psychotherapy, mysticism, spirituality and self-hacking that this conference attracted, I was extremely delighted to see the hints of what I think will change the world for the better like nothing else will: psychedelic valence research.

Of particular note is the work of Dráulio Barros de Araújo (“Rapid Antidepressant Effects of the Psychedelic Ayahuasca in Treatment-Resistant Depression: A Randomized Placebo-Controlled Trial”), Mendel Kaelen (“The Psychological and Neurophysiological Effects of Music in Combination with Psychedelics”), Leor Roseman (“Psilocybin-Assisted Therapy: Neural Changes and the Relationship Between Acute Peak Experience and Clinical Outcomes”), Jordi Riba (“New Findings from Ayahuasca Research: From Enhancing Mindfulness Abilities to Promoting Neurogenesis”), Selen Atasoy (“Enhanced Improvisation in Brain Processing by LSD: Exploring Neural Correlates of LSD Experience With Connectome-Specific Harmonic Waves”), Tomas Palenicek (“The Effects of Psilocybin on Perception and Dynamics of Induced EEG/fMRI Correlates of Psychedelic Experience”) and Clare Wikins (“A Novel Approach to Detoxification from Methadone Using Low, Repeated, and Cumulative Administering of Ibogaine”).

And of all of these, Selen Atasoy‘s work seems to be hitting the nail in the head the most: Her work involves looking into how psychedelics affect the overall amount of energy that each of the brain’s discrete connectome-specific resonant states has. Without giving it away (their work with LSD is still unpublished) let me just say that they found that having some extra energy in specific harmonics was predictive of the specific psychedelic effects experienced at a given point in time (including things such as emotional arousal, deeply felt positive mood, and ego dissolution).

Remarkably, this line of work is in agreement with Mike Johnson’s theoretical framework for the study of valence (as outlined in Principia Qualia). Namely, that there is a deep connection between harmony, symmetry and valence that will make sense once we figure out the mathematical structure whose formal properties are isomorphic to a subject’s phenomenology. In particular, “Valence Structuralism” would seem to be supported by the findings that relatively pure harmonic states are experienced as positive emotion. We would further predict that very pure harmonic states would have the highest level of (positive) hedonic tone (i.e. bliss). We are indeed very intrigued by the connectome-specific harmonic approach to psychedelic research and look forward to working with this paradigm in the future. It would be an understatement to say that we are also excited to see the results of applying this paradigm to study MDMA-like states of consciousness. This line of research is, above all, what makes me think that this year is the Year of Qualia (whether we have realized it or not). As it were, we are seeing the first hints of a future science of consciousness that can finally provide quantitative predictions about valence, and hence, become the first scientifically-compliant theory of ultimate value.

And now some subjective impressions about the conference…

Impressions

Psychedelic Ambiance

At its core, the conference felt extremely psychedelic in its own right. The artwork, people’s attires, the scents, the background music, etc. were all what seemed to me like expressions of an emerging style of psychedelic ambiance: A euphoric blend of MDMA-like self-assurant empathegenesis vibes (“everything will be ok”) with an LSD-like ontological sabotage to the ego entheoblasting vibes of universal oneness (“things are not what they seem/everything already always and never has happened at the same time”). Peak experiences, after all, often involve the metaphorical reconciliation of the divine and the mundane in a cosmic dance of meaning.

The Gods

In his book “Simulations of God” John C. Lilly proposes that beneath the surface of our awareness, each and every mind worships a number of seemingly transcendental values (sometimes, but not always, explicitly personified). Whether we know it or not, he argues, each and every one of us treats as if a God at least something. Whether we think there there is a “God Out There”, that “Truth is the Ultimate God”, or that “God Is The Group”, the highest node in our behavioral hierarchy is always covertly managed by our basic assumptions about reality (and what they prescribe as “intrinsically good”). The book’s table of contents is awesome; it outlines what ends up being the bulk of what humans ever care about as their ultimate values:

  1. God As the Beginning
  2. I Am God
  3. God Out There
  4. God As Him/Her/It
  5. God As The Group
  6. God As Orgasm and Sex
  7. God As Death
  8. God As Drugs
  9. God As the Body
  10. God As Money
  11. God As Righteous Wrath
  12. God As Compassion
  13. God As War
  14. God As Science
  15. God As Mystery
  16. God As the Belief, the Simulation, the Model
  17. God As the Computer
  18. God Simulating Himself
  19. God As Consciousness-without-an-Object
  20. God As Humor
  21. God As Superspace, the Ultimate Collapse into the Black Hole, the End.
  22. The Ultimate Simulation
  23. God As the Diad

Perhaps what’s most amazing about psychedelics is that they are capable of changing one’s Gods. It’s extremely common for people who take psychedelics to de-emphasize traditionalist and mainstream Gods such as 1, 3, 5, 7, 10, 11, 13, while also having experiences (and changes of mind) that push them to emphasize 2, 6, 8, 12, 14, 15, 16, 17, 18, 19, 21, 22, and 23. But one wonders, what’s the eventual steady-state? As an umbrella description of what is going on we could say that psychedelics make you more open. But where does this, ultimately, lead?

Perhaps you started out in a conservative household and a family that emphasized loyalty to the group, conformism, nationalism and traditional religious values (1, 3, 5, 7). But once you tried LSD you felt a great change in the strength of your various deep-seated inclinations. You realize that you do not want to worship anything just to fit in, just to be part of a group, and that maybe caring about money is not as important as caring about making your own meaning out of life. You now feel like you care more about mysterious things like Orgasm (6), the Mind-Body connection (9), and philosophical questions like “If I am God, why would I build a universe with suffering in it?” (2, 15, 16, 21). You maybe watch some lectures by Alan Watts and read a book by Huxley, among other counter-culture material consumed, and you might start to develop a general belief in “the transcendent” but in a way that attempts to be compatible with the fact that you and the people you love experience suffering. You fantasize with the idea that maybe all of suffering is somehow necessary for some higher cosmic purpose (18, 19, 22) to which you are only made privy every now and then. You then continue on the path of psychedelic divination, perhaps taking more than you could handle here and there, and you are made aware of incredible universes: you meet guardians, you are led to read about Theosophy, you meet archetypes of the collective psyche, and after a while your strange experience with electronic equipment on LSD makes you wonder whether telepathy (at least an energetic and emotional variant of it) could be possible after all. But you do not ever obtain “good enough evidence” that would convince anyone who is determined to be a skeptic of your glitches of the Matrix. At some point, after taking too many magic mushrooms, you end up in what seems like a sort of Buddhist Hell: Feeling like we are all One no longer feels like a fact to be excited about, but rather, this is felt as a realization that should be forgotten as soon as one has it. Don’t let the cosmic boredom set in, don’t led nihilistic monism get to your very core. But it does, and you have a bad trip, one trip that you feel you never really recovered from, and whose nature is never talked about at psychedelic gatherings. (Don’t worry, right next door someone had a bad trip whose semantic content was the exact opposite of yours yet its effects on your corresponding valence landscapes were similar, e.g. concluding that “we are all made of atoms with no purpose” may feel just as bad as believing that “we are all God, and God is bored”). So maybe psychedelic therapy is a red herring after all, you think to yourself, and we should really be looking only into compounds that both increase euphoria and obfuscate the ultimate nature of reality at the same time. “Science, we need science” -you tell yourself- “so that we can figure out what it is that consciousness truly wants, and avoid both nihilistic bad trips as well as unrealistic eternalist mania”. Perhaps we are currently about to have to figure this out as a collective intelligence: “What do we do with the fact that we are all God?” This question is now making its way in etheric undercurrents in the shared meme-space of humanity just as the psychedelic renaissance starts to unfold.

The above paragraph is just one of the various archetypical ways in which psychedelic self-exploration may progress over time for a particular person. Of course not only do people’s progression vary; people’s starting points may be different. Some people approach psychedelics with spiritual intentions, others do so with recreation in mind, others use them for psychological self-exploration, and yet others use it to try to find glitches in reality. I would love to have a quantitative assessment of how one’s starting “implicit Gods” influence the way psychedelics affect you, and how such Gods evolve over the course of more exposure to psychedelic states of consciousness. There is a lot of wisdom-amplification research to be made on this front.

Psychedelic Gods

You’re only as young as the last time you changed your mind.

– Timothy Leary

The first thing I noticed at this conference was that this is a crowd that values both love and science. The geek in me seemed to be more than welcomed in here.

While I was able to enjoy the incredible vibe of the Bicycle Day celebration (just a day before the conference), I remember thinking that evolutionary psychology (cf. Mating Mind) would have a lot to say about it. A large proportion of seemingly selfless display of psychedelic self-sacrifice (e.g. LSD mega-dosing, spiritual training, asceticism, etc.) might in fact be just sexual signaling of fitness traits such as mental and physical robustness (cf. Algorithmic Reduction of Psychedelic StatesPolitical Peacocks). It’s hard to separate the universal love from the tribal mate-selection going on at raves and parties of this nature, and at times one may even get a bit of an anti-intellectual vibe for questioning this too deeply.

At the conference, though, I could tell there was another story going on. Namely, the God of Science made a prominent appearance, giving us all a sense of genuine progress beyond the comings and goings of the eternal game of hide-and-seek as one would expect in mere neo-hippy cyber-paganist events.

The God of Science… yes… if you think about it, holding an enriched concept of “science” (in its most expansive sense possible) while simultaneously trying to hold with equal intensity and expansiveness the intent of “love for all beings”, can make strange and wonderful things happen in your mind. Of salience is the fact that there will be an intense pull towards either only experiencing thought-forms about love or only focusing on thought-forms about science. Mixing the two requires a lot of energy. It’s almost as if we were wired to only focus on one at a time. This is an effect reminiscent to the mutual inhibition between empathizing and systematizing cognitive styles, and maybe at its core, the difficulty in blending both love and science without residue is a reflection of an underlying invariant. Under the assumption that you have a limited amount of positive valence at your disposal to paint your world simulation, and that you want to achieve clarity of mind, it is possible that you will have to front-load most of that positive valence in either broad quantitative observations (systematizing) or focused feelings of specialness and intimacy (empathizing). This is why, for instance, MDMA and 2C-B are so promising for cognitive transhumanism: these compounds can give rise to experiences in which there is a huge surplus of positive valence ready to be used to paint any aspect of your world simulation with bliss qualia. Sadly, this is a property of such states of consciousness, and it cannot currently be brought into our everyday lives as it is. Without serious genetic engineering (or other valence-enhancing technologies) all we can do for now is to make use of these states of consciousness to catalyze changes in our deep-seated existential stances in order to help us get by in our half-meaningful half-meaningless everyday life.

Of course, the Holy Grail of mental health interventions would be a technology that allows us to instantiate a context-dependent level of empathogenesis in a reliable and sustainable way. When I asked people at the conference whether they thought that having “a machine that makes you feel like you are on MDMA on demand with no tolerance, impulsivity, addiction or other side effects” would be good, most people (at least 80%) said “it would be bad for humanity to have such machine”. Why? Because they think that suffering serves a higher purpose, somehow. But I would disagree. And even if they are right, I still think that there are not enough people steel-manning the case for intelligent wire-heading. It’d be silly to find out in 2200 that we could have avoided hundreds of millions of people’s suffering at no cost to our collective growth if we only had thought more carefully about the intrinsic value of suffering back in 2050 when the MDMA-machine was invented and reflexively banned.

But healthy sustainable wire-heading (let alone wire-heading done right in light of evolution-at-the-limit scenarios) is many decades away into the future anyway. So all we have for now, by way of consciousness-expanding therapies for real-life knots-and-bolts treatment-resistant human suffering is the sort of therapy paradigms discussed in the conference. Of the roughly 135 conference talks (excluding parties, networking events, and workshops) at least 100 were either only or at least primarily focused on psychedelic therapy for mental illness (cancer end-of-life anxiety, PTSD, addiction, treatment-resistant depression, etc.). As far as a strategical cultural move, this focus on treatment is a very good approach, and from a valence utilitarian point of view maybe this is indeed what we should be focusing on in 2017. But I still wish that there was a bigger presence of some other kinds of discussion. In particular, I’d love for psychedelic science to eventually make a prominent appearance in a much wider context. Any discussion about the nature of consciousness from a scientific point of view cannot overlook the peculiar consciousness-enhancing properties of psychedelics. And any discussion about ethics, life and the purpose of it all will likewise be under-informed in so far as psychedelic peak-meaningful experiences are not brought into the conversation. After all, the ethical, philosophical, and scientific significance of psychedelics is hard to overstate.

Ideally we would all organize a conference that takes the best of: 1) A steadfast resolution to figure out the problem of consciousness, such as what we can find at places like The Science of Consciousness, 2) a steadfast resolution to combine both the best of compassion and rationality in order to help as many beings as possible, as we find in places like Effective Altruism Global, and 3) a steadfast resolution to look at the most impressive pieces of evidence about the nature of the mind and valence, as can be found in places like Psychedelic Science. All in all, this would be a perfect triad, as it would combine (1) The Question (Consciousness), (2) The Purpose (Ending Suffering), and (3) The Method (Scientific Study of Highly-Energetic States of Consciousness). Rest assured, the conferences organized by the Super-Shulgin Academy will blend these three aspects into one.

The Crowd

This was a very chill crowd. The only way for me to be edgy in the social contexts that arose at Psychedelic Science 2017 was to refuse to dab with the guy next to me (and to decline the Asparagus Butternut Squash edible offered at some point), or, at its worse, trying to spark a conversation about the benefits of well-managed opioid medication treatment for chronic pain (it was a rather opioid-phobic crowd, if I may say so myself).

On the other hand, talking about one’s experience in hyperbolic phenomenal spaces while on DMT, how to secretly communicate with people on LSD, and about the use of texture analysis and synthesis for psychophysical tasks to investigate psychedelic image processing barely raised anybody’s brows. I was happy to find that some people recognized me from Qualia Computing, and more than one of them shared the thought that it would be great to see more interbreeding and cross-fertilization between the psychedelic and the rationalist communities (I can’t agree more with this sentiment).

To give you a taste of the sort of gestalt present at this event, let me share with you something. Waiting on the line for one of the parties hosted by the conference organizers I overheard someone talking about what his ketamine experiences had taught him. Curious about it, I approached him and asked him to debrief me -if at all possible -about what he had learned. He said:

The super-intelligence that I’ve encountered on my ketamine experiences is far, far, beyond human comprehension, and its main message is that everything is interconnected; it does not matter when you hear the message, but that you hear it, and unconsciously prepare for what is going to happen. We are all soon going to be part of it, and we will all be together, knowing each other at a deeper level than we have ever thought imaginable, and experience love and meaning on another level, together in a vast interdimensional ecology of benevolent minds. All of the stories that we tell ourselves about the grand human narrative are all, well, made up by our minds on our limited human level. Whatever we are coming to, whatever this future thing that we are facing is, goes beyond human cravings for transcendence, it goes beyond the sentiment of return to nature, it goes beyond science and technology, and it goes beyond every religion and contemplative practice. The complexity to be found in the super-intelligent collective being that we will become is inexpressible, but there is nothing to fear, we are it on some level already, and we will soon all realize it.

It is hard to estimate what the distribution, prevalence and resilience of beliefs about the nature of reality, consciousness, love, purpose and everything else of the people attending this conference were. As a whole, it felt remarkably diverse, though. Based on my subjective impressions, I’d suspect that like the person quoted above, about 40% of the attendees were people who genuinely believe that there is a big consciousness event that is about to happen (whether it is a collective spiritual level-breaking point, a technological Singularity, inter-dimensional aliens taking us with them, or a more mundane run-of-the-mill recursively self-improving feedback loop with genetic methods for consciousness research). Maybe about 50% seemed to be what you might call pragmatic, agnostic, and open minded people who are simply looking to find out what’s up with the field, without spiritual (or emotional) vested interested in exactly what will happen. And finally, about 10% of the attendees might be classifiable as nihilists on some or another level. While intrigued about the effects of psychedelics, they see them as dead ends or red herrings. Perhaps useful for mental health, but not likely to be a key to reality (or even a hint of a future revolution in the states of consciousness we utilize on our everyday life).

Conclusion

I am very excited with the current movement to examine psychedelics in a rational scientific framework. Ultimately, I think that we will realize that valence is a quantifiable and definite thing (cf. Valence Structuralism). Wether we are talking about humor, pain relief, transcendence, or knots-and-bolts feelings of competence, all of our positive experiences share something in common. Ultimately, I do not know whether “valence is a spiritual trick” or if “spirituality is a valence trick”, but I am confident that as a species we do not yet have the answer to these questions and that a scientific approach to them may clarify this incredibly important line of inquiry.

Sooner or later, it seems to me, we will figure out what exactly “the universe wants from us”, so to speak, and then nothing will ever be the same; psychedelic research is a powerful and promising way to make good headway in this highly desirable direction.

 

 

 

IMG_20170421_212302

The look from the Sunset Cruise at the Psychedelic Science 2017 Conference


*Even the bathroom urinals seemed to have sacred geometry:

 

IMG_20170423_192257

Even the urinals had sacred geometry… reminding you of the interconnectedness of all things at the unlikeliest of moments.

GHB vs. MDMA

A brief comparison of GHB and MDMA may be instructive because one therapeutic challenge ahead will be to design agents that reverse SSRI-like flattening of affect without inducing mawkish sentimentalism (cf. ethyl alcohol). In contrast to mainstream psychiatric drug therapies, both GHB and MDMA deliver a rare emotional intensity of experience, albeit an intensity different both in texture and molecular mechanism. GHB is known by clubbers if not structural chemists as “liquid ecstasy”. GHB and MDMA are indeed sometimes mixed at raves; but the two drugs are chemically unrelated. GHB is an endogenous neuromodulator derived from GABA, the main inhibitory neurotransmitter of the brain. A naturally-occurring fatty acid derivative, GHB is a metabolite of normal human metabolism. GHB has its own G protein-coupled presynaptic receptor in the brain. Sold as a medicine, GHB is licensed as an oral solution under the brand name Xyrem for the treatment of cataplexy associated with narcolepsy. Unlike MDMA, GHB stimulates tissue serotonin turnover. GHB increases both the transport of tryptophan to the brain and its uptake by serotonergic cells. Taking GHB stimulates growth hormone secretion; hence its popularity with bodybuilders. GHB offers cellular protection against cerebral hypoxia, and deep sleep without inducing a hangover. GHB also stimulates tyrosine hydroxylase. Tyrosine hydroxylase converts L-tyrosine to L-dopa, subsequently metabolised to dopamine. Unlike MDMA, the acute effects of GHB involve first inhibiting the dopamine system, followed the next day by a refreshing dopamine rebound. GHB induces mild euphoria in many users. In general, the neurotransmitter GABA acts to reduce the firing of the dopaminergic neurons in the tegmentum and substantia nigra. The sedative/hypnotic effect of GHB is mediated by its stimulation of GABA(B) receptors, though GHB also modulates the GABA(A) receptor complex too. The main effect of GABA(B) agonism is normally muscle relaxation, though interestingly, pretreatment with the GABA(B) agonist baclofen also prevents an MDMA-induced rise in core body temperature. Whatever the exact GABA(A), GABA(B), and GHB-specific mechanisms by which GHB works, when taken at optimal dosage GHB typically acts as a “sociabiliser”. This is a term popularised by the late Claude Rifat (Claude de Contrecoeur), author of GHB: The First Authentic Antidepressant (1999). Rifat was GHB’s most celebrated advocate and an outspoken critic of Anglo-American psychiatry. Similar therapeutic claims have been made for GHB as for MDMA, despite their pharmacological differences. GHB swiftly banishes depression and replaces low mood with an exhilarating feeling of joy; GHB has anxiolytic properties; it’s useful against panic attacks; it suppresses suicidal ideation; it inhibits hostility, paranoia and aggression; it enhances the recall of long-forgotten memories and dreams; and it promotes enhanced feelings of love. Like MDMA, and on slightly firmer grounds, GHB has been touted as an aphrodisiac: GHB heightens and prolongs the experience of orgasm. GHB disinhibits the user, and deeply relaxes his or her body. Inevitably, GHB has been demonised as a date-rape drug [“I was at this party, and this guy gave me a drink. Next thing I know, it’s morning and I’m in someone’s bed. I’ve no idea what happened in between…”]. GHB has a steep dose-response curve. Higher doses will cause anterograde amnesia i.e. users forget what they did under the influence of the drug. It’s dangerous to combine GHB with other depressants. So despite GHB’s therapeutic and pro-social potential, GHB is probably unsafe to commend to clubbers. This is because a significant percentage of the population will combine any drug whatsoever with alcohol regardless of the consequences to health. If used wisely, sparingly, and in a different cultural milieu, then GHB could be a valuable addition to the bathroom pharmacopoeia. But even then, it’s still flawed. GHB may intensify emotion and affection, but not introspective depth or intellectual acuity. Unlike taking too much MDMA, overdoing GHB makes the user fall profoundly asleep. If our consciousness is to be durably enhanced, then sedative-hypnotics have only a limited role to play in the transition ahead.

– Extract from “Utopian Pharmacology: Mental Health in the Third Millennium
MDMA and Beyond” by David Pearce (notice the great domain name: mdma.net)

36 Textures of Confusion

Formal Logic

When I was in 10th grade I took a course in formal logic. I had been a big fan of logic (and math in general) for several years, so I was looking forward to seeing how the class would approach the subject. I personally liked the teacher and I knew he thought very deeply about a range of topics (including aesthetics and philosophy). I was sure I was going to have a great time.

Unfortunately, the overall learning strategy of the class consisted of studying the textbook in extreme detail. The way I remember the textbook was that it featured a mixture of very casual and naïve paragraphs interspersed with blocks of rigid definitions and formulaic procedures for solving logic problems. My overall perception of the textbook was that anyone with a genuine interest in the beauty of math would experience the exercise of reading this book as particularly unpleasant.

I was used to math classes that didn’t actually require you to study anything; usually, problem solving skills and pragmatic inference of the meaning of words during the exam was good enough. In contrast, most questions on the exams for this class had a very particular style. The answers had to be verbatim repeats of the specific idiosyncratic responses found in the textbook. If you knew the contents of the textbook by heart, then the exam would be trivial. If you didn’t, then no amount of problem solving would get you anywhere.

These exams were open-note but closed-textbook, which meant that if you simply copied the entire textbook into your notebook you would easily be able to respond accurately to the vast majority of the questions. And if you didn’t, then you were almost guaranteed to fail. This meant that the largest fraction of the variance of grades in the class was determined by whether or not students took the time to do the grueling task of transcribing an entire textbook into their notebooks.

Needless to say, I intensely disliked this approach.

Thankfully, in every bad situation you can always find something good that redeems it a little bit [citation needed]. And in this case, what could be rescued from the situation was the man from Figure 5.9:

8667557_300x300

Figure 5.9: This man is confused

This must have been around page 150, which dealt with the need for logic. The textbook said, in a very informal way, something along the lines of: “Imagine a man without any logic. This person would have disjointed thoughts with no objectives, and he would be incapable of making sense of anything. The man in question would be confused. See Figure 5.9”

The teacher joked that the man in the figure could be experiencing one of many possible states of mind. His expression is somewhat ambiguous and it is unclear what exactly it adds to the conversation. Likewise, the facial features are not even the most salient component of the picture; his hair looks completely bizarre.

The Value of Confusion

This picture made me reflect on the difficulty of expressing mental states using drawings and pictures. A facial expression is perhaps a good start. Words, of course, and dialogue can help you trigger an emotion or state of being. But that only takes you so far, and it restricts you to what are largely social emotions.

Confusion, on the other hand, is an umbrella term for many states that are hard to communicate and describe. There is perceptual confusion, emotional confusion, cognitive confusion and even ontological confusion. Each of these varieties contains many flavors; there is a combinatorial explosion of possible reasons for the confusion.

Subjectively, confusion is an extremely interesting state of consciousness, since it spawns a lot of novelty. Even though it can and often is unpleasant (especially when what’s at stake is something one values), confusion comes in all shades of hedonic tone. Pleasant confusion is possible, and indeed it may play an important role in philosophical and spiritual euphoria. Likewise, one can achieve fantastic levels of neutral-valence confusion during meditation (alternating, at times, with states of very high clarity). Epiphanic, wondrous and mystical states are also often proceeded by profound confusion of the ontological kind (where you doubt the deepest background assumptions that provide the stilts upon which your worldview is suspended).

The fact that the texture of one’s experience has information processing properties (aka qualia computing) is itself more evident during states of confusion. For example, when you are confused about the meaning of something, this will have implications for the way you experience language and encode gestalts of experience (ex: “This synesthetic sensation here is usually paired up with meaning, but what is the meaning of it now? Without experiencing the meaning I usually ascribe to the sensation, I can’t compare it to other sensations I’ve had before.”)

Since language and facial expressions have their limitations, one might prefer to communicate confusion and other states using non-symbolic expressions. Visual textural gestalts, it seems to me, may take us the farthest in this direction, at least with the current level of technology (that is, unless we also include music, which itself has textural qualities).

In order to visualize new kinds of confusion, we can project the textural gestalt that the man from Figure 5.9 is experiencing into the picture itself, and imagine that we were given private access to his state of consciousness. We can then experience what it would be like to be him in these different experiential worlds, and introspect on the subjective nature of his confusion.

Doing this is now easier than ever thanks to the recent and fantastic developments in deep neural networks. In order to try out this technology, I decided to texturize the confusion of the man from Figure 5.9 in a myriad of ways. The textures themselves are a mixture of pictures I’ve taken or synthesized in the last couple of years and textures I’ve found online. I used the cool online service developed by the Bethge lab at the University of Tübingen to make these pictures. Feel free to try it yourself, it’s really fun.

So here you have it folks. The man of Figure 5.9, experiencing 36 different kinds of confusion: