Saving Lives with Lemon-Lavender Flavor: THC-Free Nicotine-Laced Joints as a Substitute for Tobacco Cigarettes

Smoking takes an enormous toll on human health – accounting for about 6% of all ill-health globally according to the best estimates. This is more than HIV and malaria combined. Despite this, smoking is on the rise in many developing countries as people become richer and can afford to buy cigarettes.

Smoking in the Developing World, an Effective Altruist cause profile by 8000 Hours

Tobacco is a mischievous plant. Tobacco smoke delivers an addictive substance in a particularly carcinogenic medium. Of course you can just get the addictive substance by vaping, presumably cutting the cost to your health by a substantial amount (assuming you don’t compensate for the relative safety of the medium with a significant increase in nicotine consumption). But many people find it hard to stop smoking, no doubt because the ritualistic aspect of it can become deeply ingrained, and perhaps also because of the mildly addictive properties of combustion products (speculatively, carbon monoxide itself has a psychoactive effect in small amounts).

So one idea to keep the nicotine and the smoking while reducing the negative effects is to lace nicotine into a plant with mild flavor and far less severe carcinogenic properties. Damiana, for example, used to be the plant delivery mechanism for research cannabinoids (cf. Spice), salvia, and other exotic drugs – the kind you find in a California smoke-shop or sketchy gas station. If damiana smoke has a better health profile than tobacco smoke when inhaled, then this could be of serious benefits to the world’s health (cf. Herbal Cigarettes).

Alas, can you really imagine millions of people switching from traditional, aromatic, well-known, “perfectly natural” tobacco cigarettes to weird, insipid, bland damiana cigarettes laced with nicotine? I can’t. I don’t think the product would make much of a dent in the market. At least not without some serious leverage and incentives, like tax exemptions or limited edition trading cards inside the packaging (for the younger crowd). But as those options are too unrealistic, we may need to come up with a different product altogether.

Perhaps we could add aromas as well? This multiplies the potential market several fold. Smokers who buy perfumes, enjoy aromatic spas, and/or make use of essential oils might be interested in “damiana cigarettes that smell like X”. From humulene and alpha-damascone to linalool and geraniol, a little goes a long way in producing a gentle, delicious, and seductive aroma. Indeed, we could even market this as being a kind of smokeable nootropic. Linalool, for instance, is not only essential in perfumery, but has also subtle (yet significant) psychoactive effects when inhaled or ingested orally (cf. lavender oil capsules). The possibilities are endless. For example, an evocative- if perhaps minimalistic- interpretation of a lavender-lemon flavor can be achieved by simply combining d-limonene, citral, and linalool. Or you could use complex accords made of dozens of terpenes. The smoothness of lavender with the awakening effects of lemon in a single power-punch of aromatic bliss, already superior in character to tobacco, could be trivially achieved with an open mind and some experimentation. And orange? Pineapple? Honeysuckle? Pear? Why not explore qualia-space while inhaling addictive smoke? At least you’ll do some productive work while feeding your vice (rather than just feeding your vice). And at a QALY discount over straight up tobacco smoke, this would seem to be by far the superior option, wouldn’t it?

Now, adding lots of terpenes and other aromachemicals to a “neutral” substrate for a smokeable material reminds of something… It’s almost as if this has been explored before by someone, somewhere…

Of course!

The difference between Orange Kush and Silver Haze is not only their THC content (which is 14-18% and 18-23%, respectively, if you must know) or the degree to which CBD is present. To a large extent, their distinct aromas, feel, and perhaps even subjective effects are explained in terms of the presence of terpenoids and other aromatic compounds. For instance, Orange Kush has more terpinolene while Silver Haze has more myrcene. Of course there is very little knowledge about how exactly these differences cash out in psychoactivity. But nonetheless, the cannabis world finds them to be utterly fascinating and endlessly worthy of discussion.

So, could we perhaps take this plant, which has been praised for its aromatic properties, which already has thousands of well-defined and optimized strains, and which is in the process of becoming legal(ish) worldwide… and use it as a delivery medium for nicotine?

Why not? Although cannabis smoke is by no means harmless, it might be substantially better for your health than tobacco smoke. If people find the experience of smoking THC-free nicotine-laced Orange Kush joints enjoyable, and this enjoyment is strong enough to be superior to the experience of smoking tobacco, we may be able to reduce the health costs of nicotine worldwide by a huge margin. Could this be the long-awaited Cause X?

QRI’s FAQ

These are the answers to the most Frequently Asked Questions about the Qualia Research Institute. (See also: the glossary).


(Organizational) Questions About the Qualia Research Institute

  • What type of organization is QRI?

    • QRI is a nonprofit research group studying consciousness based in San Francisco, California. We are a registered 501(c)(3) organization.

  • What is the relationship between QRI, Qualia Computing, and Opentheory?

    • Qualia Computing and Opentheory are the personal blogs of QRI co-founders Andrés Gómez Emilsson and Michael Johnson, respectively. While QRI was in its early stages, all original QRI research was initially published on these two platforms. However, from August 2020 onward, this is shifting to a unified pipeline centered on QRI’s website.

  • Is QRI affiliated with an academic institution or university?

    • Although QRI does collaborate regularly with university researchers and laboratories, we are an independent research organization. Put simply, QRI is independent because we didn’t believe we could build the organization we wanted and needed to build within the very real constraints of academia. These constraints include institutional pressure to work on conventional projects, to optimize for publication metrics, and to clear various byzantine bureaucratic hurdles. It also includes professional and social pressure to maintain continuity with old research paradigms, to do research within an academic silo, and to pretend to be personally ignorant of altered states of consciousness. It’s not that good research cannot happen under these conditions, but we believe good consciousness research happens despite the conditions in academia, not because of them, and the best use of resources is to build something better outside of them.

  • How does QRI align with the values of EA?

    • Effective Altruism (EA) is a movement that uses evidence and reason to figure out how to do the most good. QRI believes this aesthetic is necessary and important for creating a good future. We also believe that if we want to do the most good, foundational research on the nature of the good is of critical importance. Two frames we offer are Qualia Formalism and Sentientism. Qualia Formalism is the claim that experience has a precise mathematical description, that a formal account of experience should be the goal of consciousness research. Sentientism is the claim that value and disvalue are entirely expressed in the nature and quality of conscious experiences. We believe EA is enriched by both Qualia Formalism and Sentientism.

  • What would QRI do with $10 billion?

    • Currently, QRI is a geographically distributed organization with access to commercial-grade neuroimaging equipment. The first thing we’d do with $10 billion is set up a physical headquarters for QRI and buy professional-grade neuroimaging devices (fMRI, MEG, PET, etc.) and neurostimulation equipment. We’d also hire teams of full-time physicists, mathematicians, electrical engineers, computer scientists, neuroscientists, chemists, philosophers, and artists. We’ve accomplished a great deal on a shoestring budget, but it would be hard to overestimate how significant being able to build deep technical teams and related infrastructure around core research threads would be for us (and, we believe, for the growing field of consciousness research). Scaling is always a process and we estimate our ‘room for funding’ over the next year is roughly ~$10 million. However, if we had sufficiently deep long-term commitments, we believe we could successfully scale both our organization and research paradigm into a first-principles approach for decisively diagnosing and curing most forms of mental illness. We would continue to run studies and experiments, collect interesting data about exotic and altered states of consciousness, pioneer new technologies that help eliminate involuntary suffering, and develop novel ways to enable conscious beings to safely explore the state-space of consciousness.

Questions About Our Research Approach

  • What differentiates QRI from other research groups studying consciousness?

    • The first major difference is that QRI breaks down “solving consciousness” into discrete subtasks; we’re clear about what we’re trying to do, which ontologies are relevant for this task, and what a proper solution will look like. This may sound like a small thing, but an enormous amount of energy is wasted in philosophy by not being clear about these things. This lets us “actually get to work.”

    • Second, our focus on valence is rare in the field of consciousness studies. A core bottleneck in understanding consciousness is determining what its ‘natural kinds’ are: terms which carve reality at the joints. We believe emotional valence (the pleasantness/unpleasantness of an experience) is one such natural kind, and this gives us a huge amount of information about phenomenology. It also offers a clean bridge for interfacing with (and improving upon) the best neuroscience.

    • Third, QRI takes exotic states of consciousness extremely seriously whereas most research groups do not. An analogy we make here is that ignoring exotic states of consciousness is similar to people before the scientific enlightenment thinking that they can understand the nature of energy, matter, and the physical world just by studying it at room temperature while completely ignoring extreme states such as what’s happening in the sun, black holes, plasma, or superfluid helium. QRI considers exotic states of consciousness as extremely important datapoints for reverse-engineering the underlying formalism for consciousness.

    • Lastly, we have a focus on precise, empirically testable predictions, which is rare in philosophy of mind. Any good theory of consciousness should also contribute to advancements in neuroscience. Likewise, any good theory of neuroscience should contribute to novel, bold, falsifiable predictions, and blueprints for useful things, such as new forms of therapy. Having such a full-stack approach to consciousness which does each of those two things is thus an important marker that “something interesting is going on here” and is simply very useful for testing and improving theory.

  • What methodologies are you using? How do you actually do research? 

    • QRI has three core areas of research: philosophy, neuroscience, and neurotechnology 

      • Philosophy: Our philosophy research is grounded in the eight problems of consciousness. This divide-and-conquer approach lets us explore each subproblem independently, while being confident that when all piecemeal solutions are added back together, they will constitute a full solution to consciousness.

      • Neuroscience: We’ve done original synthesis work on combining several cutting-edge theories of neuroscience (the free energy principle, the entropic brain, and connectome-specific harmonic waves) into a unified theory of Bayesian emotional updating; we’ve also built the world’s first first-principles method for quantifying emotional valence from fMRI. More generally, we focus on collecting high valence neuroimaging datasets and developing algorithms to analyze, quantify, and visualize them. We also do extensive psychophysics research, focusing on both the fine-grained cognitive-emotional effects of altered states, and how different types of sounds, pictures, body vibrations, and forms of stimulation correspond with low and high valence states of consciousness.

      • Neurotechnology: We engage in both experimentation-driven exploration, tracking the phenomenological effects of various interventions, as well as theory-driven development. In particular, we’re prototyping a line of neurofeedback tools to help treat mental health disorders.

  • What does QRI hope to do over the next 5 years? Next 20 years?

    • Over the next five years, we intend to further our neurotechnology to the point that we can treat PTSD (post-traumatic stress disorder), especially treatment-resistant PTSD. We intend to empirically verify or falsify the symmetry theory of valence. If it is falsified, we will search for a new theory that ties together all of the empirical evidence we have discovered. We aim to create an Effective Altruist cause area regarding the reduction of intense suffering as well as the study of very high valence states of consciousness.

    • Over the next 20 years, we intend to become a world-class research center where we can put the discipline of “paradise engineering” (as described by philosopher David Pearce) on firm academic grounds.

Questions About Our Mission

  • How can understanding the science of consciousness make the world a better place?

    • Understanding consciousness would improve the world in a tremendous number of ways. One obvious outcome would be the ability to better predict what types of beings are conscious—from locked-in patients to animals to pre-linguistic humans—and what their experiences might be like.

    • We also think it’s useful to break down the benefits of understanding consciousness in three ways: reducing the amount of extreme suffering in the world, increasing the baseline well-being of conscious beings, and achieving new heights for what conscious states are possible to experience.

    • Without a good theory of valence, many neurological disorders will remain completely intractable. Disorders such as fibromyalgia, complex regional pain syndrome (CRPS), migraines, and cluster headaches are all currently medical puzzles and yet have incredibly negative effects on people’s livelihoods. We think that a mathematical theory of valence will explain why these things feel so bad and what the shortest path for getting rid of them looks like. Besides valence-related disorders, nearly all mental health disorders, from clinical depression and PTSD to schizophrenia and anxiety disorders, will become better understood as we discover the structure of conscious experience.

    • We also believe that many (though not all) of the zero-sum games people play are the products of inner states of dissatisfaction and suffering. Broadly speaking, people who have a surplus of cognitive and emotional energy tend to play more positive sum games, are more interested in cooperation, and are very motivated to do so. We think that studying states such as those induced by MDMA that combine both high valence and a prosocial behavior mindset can radically alter the game theoretical landscape of the world for the better.

  • What is the end goal of QRI? What does QRI’s perfect world look like?

    • In QRI’s perfect future:

      • There is no involuntary suffering and all sentient beings are animated by gradients of bliss,

      • Research on qualia and consciousness is done at a very large scale for the purpose of mapping out the state-space of consciousness and understanding its computational and intrinsic properties (we think that we’ve barely scratched the surface of knowledge about consciousness),

      • We have figured out the game-theoretical subtleties in order to make that world dynamic yet stable: radically positive, without just making it fully homogeneous and stuck in a local maxima.

Questions About Getting Involved

  • How can I follow QRI’s work?

    • You can start by signing up for our newsletter! This is by far our most important communication channel. We also have a Facebook page, Twitter account, and Linkedin page. Lastly, we share some exclusive tidbits of ideas and thoughts with our supporters on Patreon.

  • How can I get involved with QRI?

    • The best ways to help QRI are to:

      • Donate to help support our work.

      • Read and engage with our research. We love critical responses to our ideas and encourage you to reach out if you have an interesting thought!

      • Spread the word to friends, potential donors, and people that you think would make great collaborators with QRI.

      • Check out our volunteer page to find more detailed ways that you can contribute to our mission, from independent research projects to QRI content creation.

Questions About Consciousness

  • What assumptions about consciousness does QRI have? What theory of consciousness does QRI support?

    • The most important assumption that QRI is committed to is Qualia Formalism, the hypothesis that the internal structure of our subjective experience can be represented precisely by mathematics. We are also Valence Realists: we believe valence (how good or bad an experience feels) is a real and well-defined property of conscious states. Besides these positions, we are fairly agnostic and everything else is an educated guess useful for pragmatic purposes.

  • What does QRI think of functionalism?

    • QRI thinks that functionalism takes many high-quality insights about how systems work and combines them in such a way that both creates confusion and denies the possibility of progress. In its raw, unvarnished form, functionalism is simply skepticism about the possibility of Qualia Formalism. It is simply a statement that “there is nothing here to be formalized; consciousness is like élan vital, confusion to be explained away.” It’s not actually a theory of consciousness; it’s an anti-theory. This is problematic in at least two ways:

      • 1. By assuming consciousness has formal structure, we’re able to make novel predictions that functionalism cannot (see e.g. QRI’s Symmetry Theory of Valence, and Quantifying Bliss). A few hundred years ago, there were many people who doubted that electromagnetism had a unified, elegant, formal structure, and this was a reasonable position at the time. However, in the age of the iPhone, skepticism that electricity is a “real thing” that can be formalized is no longer reasonable. Likewise, everything interesting and useful QRI builds using the foundation of Qualia Formalism stretches functionalism’s credibility thinner and thinner.

      • 2. Insofar as functionalism is skeptical about the formal existence of consciousness, it’s skeptical about the formal existence of suffering and all sentience-based morality. In other words, functionalism is a deeply amoral theory, which if taken seriously dissolves all sentience-based ethical claims. This is due to there being an infinite number of functional interpretations of a system: there’s no ground-truth fact of the matter about what algorithm a physical system is performing, about what information-processing it’s doing. And if there’s no ground-truth about which computations or functions are present, but consciousness arises from these computations or functions, then there’s no ground-truth about consciousness, or things associated with consciousness, like suffering. This is a strange and subtle point, but it’s very important. This point alone is not sufficient to reject functionalism: if the universe is amoral, we shouldn’t hold a false theory of consciousness in order to try to force reality into some ethical framework. But in debates about consciousness, functionalists should be up-front that functionalism and radical moral anti-realism is a package deal, that inherent in functionalism is the counter-intuitive claim that just as we can reinterpret which functions a physical system is instantiating, we can reinterpret what qualia it’s experiencing and whether it’s suffering.

    • For an extended argument, see Against Functionalism.

  • What does QRI think of panpsychism?

    • At QRI, we hold a position that is close to dual-aspect monism or neutral monism, which states that the universe is composed of one kind of thing that is neutral, and that both the mental and physical are two features of this same substance. One of the motivating factors for holding this view is that if there is deep structure in the physical, then there should be a corresponding deep structure to phenomenal experience. And we can tie this together with physicalism in the sense that the laws of physics ultimately describe fields of qualia. While there are some minor disagreements between dual-aspect monism and panpsychism, we believe that our position mostly fits well with a panpsychist view—that phenomenal properties are a fundamental feature of the world and aren’t spontaneously created only when a certain computation is being performed.

    • However, even with this view, there still are very important questions, such as: what makes a unified conscious experience? Where does one experience end and another begin? Without considering these problems in the light of Qualia Formalism, it is easy to tie animism into panpsychism and believe that inanimate objects like rocks, sculptures, and pieces of wood have spirits or complex subjective experiences. At QRI, we disagree with this and think that these types of objects might have extremely small pockets of unified conscious experience, but will mostly be masses of micro-qualia that are not phenomenally bound into some larger experience.

  • What does QRI think of IIT (Integrated Information Theory)?

    • QRI is very grateful for IIT because it is the first mainstream theory of consciousness that satisfies a Qualia Formalist account of experience. IIT says (and introduced the idea!) that for every conscious experience, there is a corresponding mathematical object such that the mathematical features of that object are isomorphic to the properties of the experience. QRI believes that without this idea, we cannot solve consciousness in a meaningful way, and we consider the work of Giulio Tononi to be one of our core research lineages. That said, we are not in complete agreement with the specific mathematical and ontological choices of IIT, and we think it may be trying to ‘have its cake and eat it too’ with regard to functionalism vs physicalism. For more, see Sections III-V of Principia Qualia.

    • We make no claim that some future version of IIT, particularly something more directly compatible with physics, couldn’t cleanly address our objections, and see a lot of plausible directions and promise in this space.

  • What does QRI think of the free energy principle and predictive coding?

    • On our research lineages page, we list the work of Karl Friston as one of QRI’s core research lineages. We consider the free energy principle (FEP), as well as related research such as predictive coding, active inference, the Bayesian brain, and cybernetic regulation, as an incredibly elegant and predictive story of how brains work. Friston’s idea also forms a key part of the foundation for QRI’s theory of brain self-organization and emotional updating, Neural Annealing.

    • However, we don’t think that the free energy principle is itself a theory of consciousness, as it suffers from many of the shortcomings of functionalism: we can tell the story about how the brain minimizes free energy, but we don’t have a way of pointing at the brain and saying *there* is the free energy! The FEP is an amazing logical model, but it’s not directly connected to any physical mechanism. It is a story that “this sort of abstract thing is going on in the brain” without a clear method of mapping this abstract story to reality.

    • Friston has supported this functionalist interpretation of his work, noting that he sees consciousness as a process of inference, not a thing. That said, we are very interested in his work on calculating the information geometry of Markov blankets, as this could provide a tacit foundation for a formalist account of qualia under the FEP. Regardless of this, though, we believe Friston’s work will play a significant role in a future science of mind.

  • What does QRI think of global workspace theory?

    • The global workspace theory (GWT) is a cluster of empirical observations that seem to be very important for understanding what systems in the brain contribute to a reportable experience at a given point in time. The global workspace theory is a very important clue for answering questions of what philosophers call Access Consciousness, or the aspects of our experience on which we can report.

    • However, QRI does not consider the global workspace theory to be a full theory of consciousness. Parts of the brain that are not immediately contributing to the global workspace may be composed of micro qualia, or tiny clusters of experience. They’re obviously impossible to report on, but they are still relevant to the study of consciousness. In other words, just because a part of your brain wasn’t included in the instantaneous global workspace, doesn’t mean that it can’t suffer or it can’t experience happiness. We value global workspace research because questions of Access Consciousness are still very critical for a full theory of consciousness.

  • What does QRI think of higher-order theories of consciousness?

    • QRI is generally opposed to theories of consciousness that equate consciousness with higher order reflective thought and cognition. Some of the most intense conscious experiences are pre-reflective or unreflective such as blind panic, religious ecstasy, experiences of 5-MeO-DMT, and cluster headaches. In these examples, there is not much reflectivity nor cognition going on, yet they are intensely conscious. Therefore, we largely reject any attempt to define consciousness with a higher-order theory.

  • What is the relationship between evolution and consciousness?

    • The relationship between evolution and consciousness is very intricate and subtle. An eliminativist approach arrives at the simple idea that information processing of a certain type is evolutionarily advantageous, and perhaps we can call this consciousness. However, with a Qualia Formalist approach, it seems instead that the very properties of the mathematical object isomorphic to consciousness can play key roles (either causal or in terms of information processing) that make it advantageous for organisms to recruit consciousness.

    • If you don’t realize that consciousness maps onto a mathematical object with properties, you may think that you understand why consciousness was recruited by natural selection, but your understanding of the topic would be incomplete. In other words, to have a full understanding of why evolution recruited consciousness, you need to understand what advantages the mathematical object has. One very important feature of consciousness is its capacity for binding. For example, the unitary nature of experience—the fact that we can experience a lot of qualia simultaneously—may be a key feature of consciousness that accelerates the process of finding solutions to constraint satisfaction problems. In turn, evolution would hence have a reason to recruit states of consciousness for computation. So rather than thinking of consciousness as identical with the computation that is going on in the brain, we can think of it as a resource with unique computational benefits that are powerful and dynamic enough to make organisms that use it more adaptable to their environments.

  • Does QRI think that animals are conscious?

    • QRI thinks there is a very high probability that every animal with a nervous system is conscious. We are agnostic about unified consciousness in insects, but we consider it very likely. We believe research on animal consciousness has relevance when it comes to treating animals ethically. Additionally, we do think that the ethical importance of consciousness has more to do with the pleasure-pain axis (valence), rather than cognitive ability. In that sense, the suffering of non-human animals may be just as morally relevant, if not more relevant than humans. The cortex seems to play a largely inhibitory role for emotions, such that the larger the cortex is, the better we’re able to manage and suppress our emotions. Consequently, animals whose cortices are less developed than ours may experience pleasure and pain in a more intense and uncontrollable way, like a pre-linguistic toddler.

  • Does QRI think that plants are conscious?

    • We think it’s very unlikely that plants are conscious. The main reason is that they lack an evolutionary reason to recruit consciousness. Large-scale phenomenally bound experience may be very energetically expensive, and plants don’t have much energy to spare. Additionally, plants have thick cellulose walls that separate individual cells, making it very unlikely that plants can solve the binding problem and therefore create unified moments of experience.

  • Why do some people seek out pain?

    • This is a very multifaceted question. As a whole, we postulate that in the vast majority of cases, when somebody may be nominally pursuing pain or suffering, they’re actually trying to reduce internal dissonance in pursuit of consonance or they’re failing to predict how pain will actually feel. For example, when a person hears very harsh music, or enjoys extremely spicy food, this can be explained in terms of either masking other unpleasant sensations or raising the energy parameter of experience, the latter of which can lead to neural annealing: a very pleasant experience that manifests as consonance in the moment.

  • I sometimes like being sad. Is QRI trying to take that away from me?

    • Before we try to ‘fix’ something, it’s important to understand what it’s trying to do for us. Sometimes suffering leads to growth; sometimes creating valuable things involves suffering. Sometimes, ‘being sad’ feels strangely good. Insofar as suffering is doing good things for us, or for the world, QRI advocates a light touch (see Chesterton’s fence). However, we also suggest two things:

      • 1. Most kinds of melancholic or mixed states of sadness usually are pursued for reasons that cash out as some sort of pleasure. Bittersweet experiences are far more preferable than intense agony or deep depression. If you enjoy sadness, it’s probably because there’s an aspect of your experience that is enjoyable. If it were possible to remove the sad part of your experience while maintaining the enjoyable part of it, you might be surprised to find that you prefer this modified experience more than the original one.

      • 2. There are kinds of sadness and suffering that are just bad, that degrade us as humans, and would be better to never feel. QRI doesn’t believe in forcibly taking away voluntary suffering, or pushing bliss on people. But we would like to live in a world where people can choose to avoid such negative states, and on the margin, we believe it would be better for humanity for more people to be joyful, filled with a deep sense of well-being.

  • If dissonance is so negative, why is dissonance so important in music?

    • When you listen to very consonant music or consonant tones, you will quickly adapt to these sounds and get bored of them. This has nothing to do with consonance itself being unpleasant and everything to do with learning in the brain. Whenever you experience the same stimuli repeatedly, most brains will trigger a boredom mechanism and add dissonance of its own in order to make you enjoy the stimuli less or simply inhibit it, not allowing you to experience it at all. Semantic satiation is a classic example of this where repeating the same word over and over will make it lose its meaning. For this reason, to trigger many high valence states of consciousness consecutively, you need contrast. In particular, music works with gradients of consonance and dissonance, and in most cases, moving towards consonance is what feels good rather than the absolute value of consonance. Music tends to feel the best when you mix a high absolute value of consonance together with a very strong sense of moving towards an even higher absolute value of consonance. Playing some levels of dissonance during a song will later enhance the enjoyment of the more consonant parts such as the chorus of songs, which are reported to be the most euphoric parts of song and typically are extremely consonant.

  • What is QRI’s perspective on AI and AI safety research?

    • QRI thinks that consciousness research is critical for addressing AI safety. Without a precise way of quantifying an action’s impact on conscious experiences, we won’t be able to guarantee that an AI system has been programmed to act benevolently. Also, certain types of physical systems that perform computational tasks may be experiencing negative valence without any outside observer being aware of it. We need a theory of what produces unpleasant experiences to avoid inadvertently creating superintelligences that suffer intensely in the process of solving important problems or accidentally inflict large-scale suffering.

    • Additionally, we think that a very large percentage of what will make powerful AI dangerous is that the humans programming these machines and using these machines may be reasoning from states of loneliness, resentment, envy, or anger. By discovering ways to help humans transition away from these states, we can reduce the risks of AI by creating humans that are more ethical and aligned with consciousness more broadly. In short: an antidote for nihilism could lead to a substantial reduction in existential risk.

    • One way to think about QRI and AI safety is that the world is building AI, but doesn’t really have a clear, positive vision of what to do with AI. Lacking this, the default objective becomes “take over the world.” We think a good theory of consciousness could and will offer new visions of what kind of futures are worth building—new Schelling points that humanity (and AI researchers) could self-organize around.

  • Can digital computers implementing AI algorithms be conscious?

    • QRI is agnostic about this question. We have reasons to believe that digital computers in their current form cannot solve the phenomenal binding problem. Most of the activity in digital computers can be explained in a stepwise fashion in terms of localized processing of bits of information. Because of this, we believe that current digital computers could be creating fragments of qualia, but are unlikely to be creating strongly globally bound experiences. So, we consider the consciousness of digital computers unlikely, although given our current uncertainty over the Binding Problem (or alternatively framed, the Boundary Problem), this assumption is lightly held. In the previous question, when we write that “certain types of physical systems that perform computational tasks may be experiencing negative valence”, we assume that these hypothetical computers have some type of unified conscious experience as a result of having solved the phenomenal binding problem. For more on this topic, see: “What’s Out There?

  • How much mainstream recognition has QRI’s work received, either for this line of research or others? Has it published in peer-reviewed journals, received any grants, or garnered positive reviews from other academics?

    • We are collaborating with researchers from Johns Hopkins University and Stanford University on several studies involving the analysis of neuroimaging data of high-valence states of consciousness. Additionally, we are currently preparing two publications for peer-reviewed journals on topics from our core research areas. Michael Johnson will be presenting at this year’s MCS seminar series, along with Karl Friston, Anil Seth, Selen Atasoy, Nao Tsuchiya, and others; Michael Johnson, Andrés Gómez Emilsson, and Quintin Frerichs have also given invited talks at various east-coast colleges (Harvard, MIT, Princeton, and Dartmouth).

    • Some well-known researchers and intellectuals that are familiar and think positively about our work include: Robin Carhart-Harris, Scott Alexander, David Pearce, Steven Lehar, Daniel Ingram, and more. Scott Alexander acknowledged that QRI put together the paradigms that contributed to Friston’s integrative model of how psychedelics work before his research was published. Our track record so far has been to foreshadow (by several years in advance) key discoveries later proposed and accepted in mainstream academia. Given our current research findings, we expect this trend to continue in the years to come.

Miscellaneous

  • How does QRI know what is best for other people/animals? What about cultural relativism?

    • We think that, to a large extent, people and animals work under the illusion that they are pursuing intentional objects, states of the external environment, or relationships that they may have with the external environment. However, when you examine these situations closely, you realize that what we actually pursue are states of high valence triggered by external circumstances. There may be evolutionary and cultural selection pressures that push us toward self-deception as to how we actually function. And we consider it negative to have these selection pressures makes us less self-aware because it often focuses our energy on unpleasant, destructive, or fruitless strategies. QRI hopes to support people in fostering more self-awareness, which can come through experiments with one’s own consciousness, like meditation, as well as through the deeper theoretical understanding of what it is that we actually want.

  • How central is David Pearce’s work to the work of the QRI?

    • We consider David Pearce to be one of our core lineages. We particularly value his contribution to valence realism, the insistence that states of consciousness come with an overall valence, and that this is very morally relevant. We also consider David Pearce to be very influential in philosophy of mind; Pearce, for instance, coined the phrase ‘tyranny of the intentional object’, the title of a core QRI piece of the same name. We have been inspired by Pearce’s descriptions for what any scientific theory of consciousness should be able to explain, as well as his particular emphasis on the binding problem. David’s vision of a world animated by ‘gradients of bliss’ has also been very generative as a normative thought experiment which integrates human and non-human well-being. We do not necessarily agree with all of David Pearce’s work, but we respect him as an insightful and vivid thinker who has been brave enough to actually take a swing at describing utopia and who we believe is far ahead of his time.

  • What does QRI think of negative utilitarianism?

    • There’s general agreement within QRI that intense suffering is an extreme moral priority, and we’ve done substantial work on finding simple ways of getting rid of extreme suffering (with our research inspiring at least one unaffiliated startup to date). However, we find it premature to strongly endorse any pre-packaged ethical theory, especially because none of them are based on any formalism, but rather an ungrounded concept of ‘utility’. The value of information here seems enormous, and we hope that we can get to a point where the ‘correct’ ethical theory may simply ‘pop out of the equations’ of reality. It’s also important to highlight the fact that common versions and academic formulations of utilitarianism seem to be blind to many subtleties concerning valence. For example, they do not distinguish between mixed states of consciousness where you have extreme pleasure combined with extreme suffering in such a way that you judge the experience to be neither entirely suffering nor entirely happiness and states of complete neutrality, such as extreme white noise. Because most formulations of utilitarianism do not distinguish between them, we are generally suspicious of the idea that philosophers of ethics have considered all of the relevant attributes of consciousness in order to make accurate judgments about morality.

  • What does QRI think of philosophy of mind departments?

    • We believe that the problems that philosophy of mind departments address tend to be very disconnected from what truly matters from an ethical, moral, and philosophical point of view. For example, there is little appreciation of the value of bringing mathematical formalisms into discussions about the mind, or what that might look like in practice. Likewise there is close to no interest in preventing extreme suffering nor understanding its nature. Additionally, there is usually a disregard for extreme states of positive valence, and strange or exotic experiences in general. It may be the case that there are worthwhile things happening in departments and classes creating and studying this literature, but we find them characterized by processes which are unlikely to produce progress on their nominal purpose, creating a science of mind.

    • In particular, in academic philosophy of mind, we’ve seen very little regard for producing empirically testable predictions. There are millions of pages written about philosophy of mind, but the number of pages that provide precise, empirically testable predictions is quite thin.

  • What therapies does QRI recommend for depression, anxiety, and chronic pain?

    • At QRI, we do not make specific recommendations to individuals, but rather point to areas of research that we consider to be extremely important, tractable, and neglected, such as anti-tolerance drugs, neural annealing techniques, frequency specific microcurrent for kidney stone pain, and N,N-DMT and other tryptamines for cluster headaches and migraines.

  • Why does QRI think it’s so important to focus on ending extreme suffering? 

    • QRI thinks ending extreme suffering is important, tractable, and neglected. It’s important because of the logarithmic scales of pleasure and pain—the fact that extreme suffering is far worse by orders of magnitude than what people intuitively believe. It’s tractable because there are many types of extreme suffering that have existing solutions that are fairly trivial or at least have a viable path for being solved with moderately funded research programs. And it’s neglected mostly because people are unaware of the existence of these states, though not necessarily because of their rarity. For example, 10% of the population experiences kidney stones at some point in their life, but for reasons having to do with trauma, PTSD, and the state-dependence of memory, even people who have suffered from kidney stones do not typically end up dedicating their time or resources toward eradicating them.

    • It’s also likely that if we can meaningfully improve the absolute worst experiences, much of the knowledge we’ll gain in that process will translate into other contexts. In particular, we should expect to figure out how to make moderately depressed people happier, fix more mild forms of pain, improve the human hedonic baseline, and safely reach extremely great peak states. Mood research is not a zero-sum game. It’s a web of synergies.



Many thanks to Andrew Zuckerman, Mackenzie Dion, and Mike Johnson for their collaboration in putting this together. Featured image is QRI’s logo – animated by Hunter Meyer.

Mini-Series on Open Individualism

Part 1: Introduction

In this video I introduce the concept of Open Individualism- the idea that we are all one consciousness -, why it is relevant, and who has historically been a proponent of it (Hinduism, Einstein, Schopenhauer, Schrödinger, etc.).

We also cover the fact that there is a distinction between Open Individualism as an experience and Open Individualism as a philosophical position with rigorous arguments. I mention that I generally consider arguments to be more powerful and useful than just relying on first-person experiences, though experiences certainly have their place.

Part 2: Definitions

We define and illustrate:

  • Closed Individualism (“you are a separate observer that exists from moment to moment”)
  • Empty Individualism (“you are just a moment of experience”)
  • Open Individualism (“we are all one consciousness”)

Part 3: Strongest Arguments

In this video we provide some of the strongest arguments in favor of Open Individualism:

  • Based on continuity of identity from moment to moment.
  • Reductio ad absurdum of Closed Individualism.
    • Fission.
    • Fussion.
    • Lack of viable Identity Carriers (IC).
  • Based on parsimony.
  • Undecidability.
  • Self-locating uncertainty when taking a “view from nowhere”.

Part 4: Loneliness, Psychosis, Ecstasy

I address some key considerations when investigating Open Individualism:

  1. It is crucial to distinguish between our human feelings about a certain idea and the merits and drawbacks of that idea on its own.
  2. Open Individualism tends to cause a lot of bliss at first (caused by defanging death)
  3. But Open Individualism can often take a turn for the bad.
  4. It makes you realize that you won’t only not die, which is good, but also be forced to experience all of the suffering of the world (or multiverse).
  5. More so, it can make you feel “cosmically lonely” – a feeling typical of bad trips where the focus is the pursuit of oneness.
  6. While the increased sense of responsibility caused by Open Individualism is good, it is important not to be overwhelmed by the suffering of the world. As they say “one day at a time” and perhaps we could extend that advise to “one lifetime at a time”.
  7. The feeling of loneliness is likely the result of mixing deep brain circuits evolved to track things like one’s place in the tribe via feelings of belongingness and togetherness, which can get deactivated or over-activated when fully internalizing otherwise-neutral philosophical viewpoints. In other words, those feelings are reflections of our mammal brain’s response to Open Individualism rather than inherent to the philosophy in and of itself.

I also briefly mention the interesting relationship between the ways we represent the world and valence (i.e. the pleasure-pain axis). Given the Symmetry Theory of Valence, which claims that more “consonant and symmetrical” states of consciousness feel better, experiencing “unitive states of mind” usually comes with the “dissolution of internal boundaries”. Therefore, to actively simulate a world where we are all one is likely to come with very positive feelings (perhaps even orgasmic, and ecstatic). Yet, this is not intrinsic of oneness as such – rather, it’s an artifact of the way valence is implemented in the brain! Subtle, but key, distinction.

Finally, I also explain that “the highest truth” is not oneness:

In some sense, Open Individualism is “level 0” – it is the start of a journey of self-discovery. We still need to address things like how to eliminate extreme suffering, understand how physics describes fields of qualia, the binding problem, how causality interfaces with consciousness, what makes consciousness have an “arrow of time”, and so on. While oneness is a piece of the puzzle, it is by no means “the final answer”. To think otherwise leads to mental pathologies that constrict- rather than expand- one’s understanding and engagement with the world.

Part 5: Ethics, Coordination, Game Theory

In this video I discuss the beneficial implications of Open Individualism. Namely:

  1. Its ethical implications, where one feels a sense of responsibility for the wellbeing of all sentient beings.
  2. Its ability to solve coordination problems.
  3. Its game-theoretical effects.

I cover how a cultural, philosophical, and scientific movement that grounds the feelings of oneness and universal love in rigorous philosophy and science would be much more powerful and consequential than yet another attempt at a naïve spreading of “peace, love, and harmony”. Indeed, it is the philosophical strength of Open Individualism, rather than just its experiential component, that makes it viable as a tool for solving coordination problems.

In particular, I explain that studying 5-MeO-DMT and MDMA from a rigorous, scientific, and methodical point of view is one of the most promising ways of changing the world for the better. Creating reliable, sane, and integrative methods of experiencing oneness and universal love could help us transform weak feelings of altruism into a solid and powerful new conception of decision theoretic rationality.

We invite you to think with us about how to carry this out for the benefit of all sentient beings.

The QRI Ecosystem: Friends, Collaborators, Blogs, Media, and Adjacent Communities

The Qualia Research Institute has the vision of a world free from involuntary suffering in which conscious agents are empowered to have full control over their lived experiences. Its mission tackles this objective by combining foundational research on consciousness with a focus on explaining the mathematical properties of pleasure and pain for a full, formal account of valence.

By relating our mission to existing memeplexes, we could perhaps accurately describe the ethos of QRI as “Qualia Formalist Sentientist Effective Altruism“. That’s a mouthful. Let’s break it down:

  • Qualia Formalism refers to the notion that experience has a precise mathematical description that ties it with physics (for a more detailed breakdown see the Formalism section of the glossary).
  • Sentientism refers to the claim that value and disvalue are entirely expressed in the nature and quality of conscious experiences. In other words, that the only reason why states of affairs matter is because of the way in which they impact experiences.
  • Effective Altruism refers to the view that we can aspire to do the most good we can rather than settle for less. If you examine the actual extent to which different interventions cash out in terms of reduction in suffering throughout the world, you will notice that they follow a long-tail distribution. Thus, research on how to prioritize interventions really pays off. Focusing on the top interventions (and being willing to spend extra time digging for even better ones) can multiply your positive impact by orders of magnitude.

We could thus say that people and organizations are more or less aligned with QRI to the extent that they are aligned with each of these notions and their combinations thereof. More so, QRI also values the practice of rational psychonautics and the study of one’s own mind with meditation – hence we also include lists of rational psychonauts and great dharma teachers.

Find below the list of people and organizations that have a significant degree of alignment with QRI on each front. We also include a list of blogs and websites from readers of our work, which is meant to incentivize community-building around the aforementioned core ideas.

Format:

Name of Person/Organization – Blog/Website/Media [if any] (Representative Post of the Author- Sometimes Not from Their Primary Site [if any])


QRI Canon

Qualia Research Institute – QRI (Glossary)

Michael Edward Johnson – Open Theory (Neural Annealing)

Andrés Gómez Emilsson – Qualia Computing (Wireheading Done Right)

Current and Former QRI Employees and Collaborators Who Write About QRI Topics

Romeo Stevens – Neurotic Gradient Descent (Core Transformation)

Quintin Frerichs – The Youtopia Project (Wada Test + Phenomenal Puzzles)

Andrew “Zuck” Zuckerman – andzuck.com (Super Free Will)

Kenneth Shinozuka – Blank Horizons (A Future for Humanity)

Wendi Yan – wendiyan.com (The Psychedelic Club)

Jeremy Hadfield – jeremyhadfield.com (How to Steal a Vibe)

Elin Ahlstrand – Mind Nomad (Floating Through First Fears)

Margareta Wassinge and Anders Amelin – Qualia Productions (When AI Means Advanced Incompetence)

List of current and former QRI collaborators and volunteers not listed above (in no particular order): Patrick Taylor, Hunter Meyer, Sean McGowan, Alex Zhao, Boian Etropolski, Robin Goins, Bence Vass, Brian Westerman, Jacob Shwartz-Lucas.


People and Organizations that Advocate for Sentientism and the Elimination of Suffering

David Pearce – Hedweb.com (The Hedonistic Imperative)

Manu Herrán – manuherran.com (Psychological Biases that Impede the Success in the Reduction of Intense Suffering Movement)

Jonathan Leighton – jonathanleighton.org (Why Access to Morphine is a Human Right)

Magnus Vinding – magnusvinding.com (Suffering-Focused Ethics: Defense and Implications)

Robert Daoust – robert.algosphere.org (Review of Precursor Works)

Jacob Shwartz-Lucas – Invincible Wellbeing (Pleasure in the Brain)

Algosphere Alliance – algosphere.org (Vision)

Organization for the Prevention of Intense Suffering (OPIS) – preventsuffering.org (Cluster Headaches and Potential Therapies)

Sentience Research – sentience-research.org (Algonomy)

People and Organizations Aligned with Qualia Formalism

Giulio Tononi – integratedinformationtheory.org (Phi: A Voyage from the Brain to the Soul)

Steven Lehar – slehar.com (Harmonic Resonance Theory)

Jonathan W. D. Mason – jwmason.net (Quasi-Conscious Multivariate System)

Johannes Kleiner – jkleiner.de (Mathematical Consciousness Science)

Dan Lloyd – Labyrinth of Consciousness (The Music of Consciousness)

Luca Turin – A Spectroscopic Mechanism for Primary Olfactory Reception (The Science of Scent)

William Marshall – Google Scholar (PyPhi)

Larissa Albantakis – Google Scholar (Causal Composition)

Models of Consciousness Conference – models-of-consciousness.org (YouTube channel)

People and Organizations Aligned with Effective Altruism

Nick Bostrom – nickbostrom.com (What is a Singleton?)

Anders Sandberg – aleph.se (Uriel’s Stacking Problem)

Toby Ord – tobyord.com (The Precipice)

80000 Hours – 80000hours.org (We Could Feed All 8 Billion People Through a Nuclear Winter)

Future of Humanity Institute – fhi.ox.ac.uk (Publications)

Future of Life Institute – futureoflife.org (AI Alignment Podcast: Identity and the AI Revolution with David Pearce and Andrés Gómez Emilsson)

Center on Long-Term Risk – longtermrisk.org (The Case for Suffering-Focused Ethics)

Rethink Priorities – rethinkpriorities.org (Invertebrate Welfare Cause Profile)

Happier Lives Institute – happierlivesinstitute.org (Cause Profile: Mental Health)

Effective Altruism Forum – forum.effectivealtruism.org (Logarithmic Scales of Pleasure and Pain)


Rational Psychonautics

Steven Lehar – slehar.com (The Grand Illusion)

James Kent – psychedelic-information-theory.com (The Control Interrupt Model of Psychedelic Action)

Alexander Shulgin – Shulgin Research Institute (Phenethylamines I Have Known And Loved)

Thomas S. Ray – Breadth and Depth (Psychedelics and the Human Receptorome)

Matthew Baggott – Beyond Fear: MDMA and Emotion (MDA and Contour Integration)

Psychonaut Wiki – psychonautwiki.org (Visual Effects)

Psychedelic Replications – reddit.com/r/replications (Best of All Times Replicationsspecific floor tile example)

Great Dharma Teachers

Daniel M. Ingram – Integrated Daniel (No-Self vs. True Self)

Leigh Brasington – leighb.com (Right Concentration)

Shinzen Young – shinzen.org (The Science of Enlightenment)

Culadasa – culadasa.com (Joy and Meditation)


QRI Friends and Supporters

Ryan Ferris and James Ormrod – The Good Timeline  (5-MeO-DMT, Paradise Engineering)

Adrian Nelson – Origins of Consciousness (Consciousness Blindness in Science Fiction)

Alex K. Chen – Quora (What are the long term effects of Adderall, Dexedrine, or Ritalin use?)

Andy Vargas – Neologos (Praxis for Open Individualism; Purpose Statement)

Tyger Gruber – tygergruber.com (The Show)

Jacob Lyles – Jacob ex machina (Building a Better Anti-Capitalism)

Adjacent Communities, Organizations, and Allies

Scott Alexander – Slate Start Codex (Relaxed Beliefs Under Psychedelics and the Anarchic Brain)

Geoffrey Miller – Primal Poly (The Mating Mind: How sexual choice shaped the evolution of human nature)

Zvi Mowshowitz – Don’t Worry About the Vase (More Dakka)

Sarah Constantin – Multiple websites: 12, 3 (More Dakka in Medicine)

Scott Aaronson – scottaaronson.com/blog/ (Why I Am Not An Integrated Information Theorist)

Gwern – gwern.net (Iodine and IQ Meta-Analysis)

Venkatesh Rao – Ribbonfarm (Why We Slouch)

David Chapman – meaningness.com (Romantic Rebellion)

Atman Retreat – atmanretreat.com (FAQ)

Foresight Institute – foresight.org (YouTube Channel)

Convergence Analysis – convergenceanalysis.org (List of Works)

Simulation Series – About (YouTube Channel)

Consciousness Hacking – cohack.org (blog posts)

HeartMath Institute – heartmath.org (Chapter on Coherence)

The Wider World of People Who are Friends and Acquaintances of the QRI Ecosystem

Note: I asked (on social media) our readers to share their blogs and personal sites with us. Some of these links are very aligned with QRI and some are not. That said, together they represent a good sample of the memetic ecosystem that surrounds QRI. Namely, these links can be taken as a whole to be suggestive of “the memetic ground upon which QRI is founded”. Please feel free to share your blog or personal site in the comment section of this post.

Jack Foust – Welcome to the Symbolic Domain

Scott Jackisch – Oakland Futurist (Art as a Superweapon)

Maurits Luyben – Energy and Structure

Anonymous – deluks917 (What does ‘Actually Trying’ look like?)

Sameer Halai – sameerhalai.com (Toilet Paper Shortage is Not Caused by Hoarding)

Yohan John – neurologism.com (Some Wild Speculation On Goodhart’s Law And Its Manifestations In The Brain)

Jamie Joyce – The Society Library (Deconstructing the Logic of “Plandemic”)

João Mirage – YouTube Channel (The Mirror of the Spirit)

Natália Mendonça – Axiomatic Doubts (What Truths are Worth Seeking?)

Dustin Ali Francis Janatpour – Tales From Samarkand (The Inspector and the Crow)

Zarathustra Amadeus Goertzel – zarathustra.gitlab.io (Garden of Minds)

Duncan Sabien – Human Parts (In Defense of Punch Bug)

Brenda Esquivel – Abanico de Historias (La Reina Tamar y el Pájaro Condenado)

Vishnu Bachani – vishnubachani.com (Latent Possibilities of the Tonal System)

Martin Utheraptor Duřt – utheraptor.art (Psychedelic Series)

Qiaochu Yuan – Thicket Forte (Monist Nihilism)

Jedediah Logan – Medium Account (Coping with Death During the COVID-19 Crisis)

Eliezer da Silva – eliezersilva.blog (Prior Specification via Prior Predictive Matching)

Cassandra McClure – Lexicaldoll (On Save States)

Gaige Clark – mad.science.blog / Querky Science (The Phoenix Effect)

Ben Finn – optima.blog (Too much to do? Plan your day with Hopscotch [longer])

Michael Dello-Iacovo – michaeldello.com (How I Renounced Christianity and Became Atheist)

Robin Hanson – Overcoming Bias (What Can Money Buy Directly?)

Katja Grace – meteuphoric.com, Worldly Positions, AI Impacts

Mundy Otto Reimer – mundyreimer.github.io (On Thermodynamics, Agency, and Living Systems)

Khuyen Bui – Medium Account (Beyond Ambition)

Jessica Watson Miller – Autotranslucence (Art as the Starting Point; Becoming a Magician)

Aella – knowingless.com (The Trauma Narrative)

Jacob Falkovich – Put a Number on It (The Scent of Bad Psychology)

Javi Otero – iawaketechnologies.com (Fractal Entrainment: A New Psychoacoustic Technology Inspired by Nature)

José Luis Ricón – Nintil

Eliot Redelman – BearLamp

Tee Barnett – teebarnett.com (Are you a job search drone?)

Juan Fernandez Zaragoza – filosofiadelfuturo.com (Pandemia de Ideas)

Eric Layne – (The Antidote to a Global Crisis)

Kazi Adi Shakti – holo-poiesis.com (Beyond Affirmation and Negation)

Pushan Kumar Datta – kaiserpush1 (Ramayana and Cognition of Self)

Yan Liu – Inflection Point (Seeing a World Unshackled from Neoclassical Economics)

Joseph Kelly – (Entrepreneurship is Metaphysical Labor)

Logan Thrasher Collins – logancollinsblog.com

Malcolm Ocean – malcolmocean.com (Transcending Regrets, Problems, and Mistakes)

Jesse Parent – (Why ‘Be Yourself’ is Still Excellent Relationship Advice)

Milan Griffes – Flight From Perfection (Contemplative Practices, Optimal Stopping, Explore/Exploit)

Cody Kuiack – cosmeffect.com (The Holomorphic Self – Meditations)

Daniel Eth – thinkingofutils.com (Quantum Computing for Morons)

Brian P. Ellis – brianpellis.net (Refuting Dr. Erickson and Dr. Massihi)

John Greer – johncgreer.com (The Three Buckets)


Finally: List of Other Relevant Lists

Effective Altruism Blogs – eablogs.net

LessWrong Wiki – List of Rationalist Diaspora Blogs

Effective Altruism Hub – effectivealtruism.org (Resources)

Open Individualism Readings – r/OpenIndividualism (Wiki Reading List)

Phenomenal Binding Resources – binding-problem.com

Physicalist Hotlinks – physicalism.com/physicalist-hotlinks

QC Coronavirus Edition: Preventing Pandemics by Living on Toroidal Planets and Other Cocktail Napkin Ideas

Here is what we’ve gotta do.

I want every strategy we’ve got on Near Earth Object Collision, OK?

Any ideas, any programs, anything you’ve sketched on a pizza box or a cocktail napkin…

Armageddon (1998 film, when NASA realizes that there are 18 days left before the asteroid hits the Earth)

This Whole Thing

On January 20th someone shared, in a facebook group that I’m a part of, four facts about an emerging viral infection in China: (1) high death rate, (2) high contagion rate, (3) long incubation periods, and (4) the fact that it appeared uncontained. Despite the (at the time) relatively low number of cases, those four facts did not seem to paint a pretty picture of what was about to happen.

This was immediately alarming to a lot of people in my circles, and for good reason. Matthew Barnett, Justin Shovelain, Dony Christie, and Louis Francini sounded alarms as early as mid-January, and the rest of the EA and rationalist cluster followed suit. It makes sense people in this cluster would be concerned early on, as many of them have looked at global catastrophic risk scenarios for years, and were already well aware that the world was unequipped to deal with an infectious disease with all of the above four properties. Pandemic preparedness programs have so far relied on luck. For instance, in his 2015 TED talk “The next outbreak? We’re not readyBill Gates uses as an example the 2013 Ebola outbreak: “The problem wasn’t that there was a system that didn’t work well enough. The problem was that we didn’t have a system at all.” Accordingly, that particular outbreak didn’t become a disaster because of sheer luck: the disease only becomes contagious when you are already very sick and it didn’t hit a major urban area, so containing it was possible. But this time around we don’t seem to have the same luck.

Since, I’ve seen many thought leaders I respect succumb to focusing on this topic: Robin Hanson, Eliezer Yudkowsky, Paul Graham, Tyler Cohen, Sarah Constantine, Scott Alexander, Scott Aaronson, Joscha Bach, Ryan Carey, William EdenRobert Wilbin, etc. etc. Not to mention the way these people are publicly responding to each other and building a parallel narrative on a higher level of complexity than most everybody else****. These and many other well respected intellectuals have been going on and on about the situation for over a month now. An exponentially growing curve in its early stages may not be alarming to most people, but it certainly was to people like this (Ps. 3Blue1Brown, Kurzgezagt, and Mark Rober also recently joined the conversation).

89891338_10158153144883554_5533215167824789504_n

Image by Evan Gaensbauer (March 2020 Dank EA Memes banner)

This all adds up to a vibe of countdown to Armageddon: “X days until hospitals are overwhelmed, Y days until a million people die, Z days until a vaccine will be found”. In line with this perceived, if not frighteningly real, urgency, we’ve seen countless facebook groups, subreddits, and forums scouting for novel ideas and projects to help above and beyond what the governments of the world are already doing (e.g. Covid19RiskApp, Give Directly Response, Covid Accelerator [of technology to decelerate the spread [possibly a terrible or brilliant branding]], List of Predictors, and Corona Variolation).

march_19_2020_spread_pandemic

As of March 20 2020

I personally gave a lot of thought to pandemics several years ago (in college I was on the fence between working on pandemic prevention and consciousness research as a career), so my immediate thought when learning about the virus and its properties was “we are screwed, this can’t be contained with how the world is currently set up”. While containment might have been possible at the very beginning with some luck, it very quickly becomes unmanageable. That said, I’d like to explore here ways in which the world could be realistically modified in order to contain, mitigate, and ultimately reverse the spread of novel contagious diseases including this one. After all, the WHO director general said on March 9th: “The rule of the game is: never give up.” So, well, let’s give it some more thought. I hence offer my ‘sketches on a cocktail napkin’ type of ideas in case they find any application:

Introduction

Let us start by breaking down “social networks” into (1) contact networks, and (2) information networks:

  1. Contact networks are weighted undirected graphs where each node is a person and each edge encodes the frequency and intensity of the contact between the people it connects.*
  2. Information networks are weighted directed graphs that encode the amount of information transmission that there is between pairs of people. To a large extent, contact networks are subsets of information networks.**

Contact networks are what matters for modeling infectious disease transmission. Despite the constitutionally granted freedom of assembly, one can posit that if the risks to the public are high enough, it is justified to place some constraints on the nature and properties of contact networks. In a free society that truly grasps the danger of pandemics and is determined to squash them at the very beginning, contact networks might require some degree of top-down control. Perhaps, if we are serious about future pandemic prevention, we could re-conceptualize freedom of assembly as pertaining to information, rather than contact, networks.***d3297191270ea5bca8db652e977a6d57

So in what ways could a contact network be pandemic-safe? As an intuition pump for what I’ll be discussing further below, I’d like you to consider what it might be like to live in the original “HaloRingworld (and Ringworld too). Assume that unrestricted travel in Halo is limited to land roaming with a maximum speed, and that in order to use a spacecraft or tube across an arc of the circle, you need to be thoroughly tested and quarantined in-between. With these constraints, we would naturally infer that the structure of the contact network of the people in this world would be embedded in the ring itself. Meaning that if an infectious disease originates somewhere on the Ringworld, containing its spread would be as easy as blocking movement on two small fronts around the epicenter of the outbreak. This even allows you to control and ultimately fully suppress diseases with long incubation periods. It is a matter of estimating how long the incubation period is, and quarantining the entire region of “furthest possible transmissibility”.

More so, given the overall circular geometry of the world, after a brief period of quadratic growth of the epidemic (as concentric circles expand around the epicenter)  one would expect to see a threshold after which there is merely linear growth in the number of cases as a function of time!

Network Geometry as a Containment Strategy

To a first approximation, the single most important problem to overcome for containment is the exponential growth of the early stages of an outbreak. Of course in some cases an exponential growth is not itself the problem: and R0 = 1.001 leads to exponential growth, but it is still so slow that it can be easily dealt with. Likewise, a sub-exponential growth can still be unruly, as in a polynomial growth with an exponent of 20. But to a first approximation, I would argue that if you can get rid of exponential growth you can manage an outbreak. The example above of a Ringworld shows that exponential growth in contact networks can be slowed all the way down to linear growth at relatively early stages. Similarly, “thin” toroidal planets would also enable easy containment of outbreaks (Anders Sandberg‘s amazing work on the physics of toroidal planets finally pays off! It remains to be seen when his work on stacking high-dimensional polytopes finds real-world applications).

torusdonut2-thumb (1)

Toroidal World

But we don’t have to go all the way to high sci-fi scenarios to encounter sub-exponential growth of infections in human contact networks. You see, the black death happened at a time when the contact network of humanity had a quasi-quadratic structure at the largest of scales. Villages almost certainly had a scale-free structure (e.g. the priest touching everyone once a week and the lone serf perhaps only interacting with two people a week), but once you look at the structure at scales above the village, you would find routes between neighboring villages weaving a planar graph with a 2D Euclidean geometry. The trade routes, though, provided an exception, and in the end they turned out to be key for the spread of the plague. That said, in the absence of cars, trains, or airplanes, the maximum speed of transmission was seriously limited. Historians can tell when different parts of Europe got the plague because it really took a long time to spread; we are talking about years rather than weeks.1920px-1346-1353_spread_of_the_Black_Death_in_Europe_map.svg

So imagine having a contact network structure characteristic of the medieval times, but with an information network structure akin to the ones we currently have. Then controlling the black plague would be a piece of cake! You would simply need to close central trade routes, track down which villages are already infected, and put a perimeter around them.

Ok, so how do we generalize this idea to the modern times in a realistic way? I think we should perhaps think outside the box here. Remember, the core intention here is to make the spread of an infectious disease not behave in an exponential way at the beginning so that we can “segment out” the part of the network affected (i.e. quarantine) because the “surface area” of the region is not very large. Now, most analysis of disease spread on networks focus on analyzing how realistic-like network features affect disease spread. For example, clustering coefficients, the steepness of the slope of power law networks, the distribution of in-betweenness centrality of the nodes, and so on.

In a perhaps high-modernist style approach to network engineering, one can ask how the spread of a disease would change depending on alterations we could make to the network. The simplest real world case is the reasoning behind adding travel restrictions, which aim to block the spread between very large clusters (i.e. countries) and the closing of schools, universities, and large gatherings, which decrease the interconnectivity of each region of the network. A slightly more sophisticated version of this approach would be to come up with a “Pandemic Klout Score” for each person based on the their “network influence” and pay them to quarantine early on during an outbreak.

I actually worked at Klout as an intern in 2010, and my contributions were mostly on the (unfortunately slightly evil because it’s marketing) following problem: “How do you maximize the spread of a commercial campaign by giving free products to people?” Klout had what they called “perks” which was how they made money. They had contracts with other companies to give free products to “influencers” so that they talked about the perks on their social media accounts. To maximize the spread of a commercial campaign meant to distribute perks in such a way that the largest number of people made mentions of the campaign on their networks (including people who didn’t receive the free products). This is how they measured success- at least when I was there- and what the companies paid them for.

The “basic approach” would be simply to distribute the perks to people with the highest Klout scores, with the additional constraint that those people were influential on the relevant topic (e.g. if you had a popular Twitter account about “beauty and personal care” you might be a prime candidate to get a free “anti-aging sunscreen stick”, or whatever) . But since you can’t actually, you know, entice Justin Bieber (the person with the highest Klout score for several years) with a free Virgin America flight and expect him to either care or talk about it on his Twitter feed, the problem ends up being substantially more complex than just “give people with high Klout the free products”. I am under an NDA about the specific algorithms and research I conducted there. But I mention this because the problem of pandemic prevention could in some sense be thought of as the inverse of the problem Klout was trying to solve. Namely, how you use the node features of the network in order to minimize the spread of a contagious disease. The low-hanging fruit idea here can be to simply allot money to pay people with high Pandemic Klout Scores to stay home or cut their human touch in half whenever an outbreak arises. I would expect this to be significantly better at reducing the reproductive rate of a contagious disease than choosing people at random (or even just based on how many people they interact with on a daily basis).

That said, given the risks and costs involved with pandemics, especially in the long term in light of bioterrorism, we should not close off the possibility of making drastic changes to humanity’s contact network for the sake of our collective wellbeing. That is, merely asking some people to stay home may not be enough. We should contemplate what it would really take to be able to fully contain any future pandemic.

In terms of large-scale network geometry rather than just dealing with one node at a time, perhaps the key point to make is that we should really not fetishize and romanticize the “six degrees of separation” that results from the small world-like structure of the modern human contact network. Yes, “it’s a small world after all“, but you forgot to mention “and that’s what will get us all killed in the end.” Let’s not allow misguided network idealism to murder grandma. We need to make the contact network a large world, and save the small world exclusively for the information network.Screen-Shot-2012-04-05-at-19.26.38

Intuitively, it is precisely the small world-like property of our contact network that allows us to: meet many new people on a regular basis, collaborate with people around the world, be able to attend large gatherings, raves, and festivals, and travel care-free across the planet. Meaning, most people might think that changing the contact network structure to make it pandemic-proof would come at the cost of sacrificing what makes society so interesting and worth living in. I would disagree. I think that such a line of thinking is just the result of a failure of the imagination. We can, I posit, have contact networks that allow you to do all of that and yet be pandemic-proof. I will argue that with intelligent top-down network engineering you can in fact achieve this. Here is my case:

Scale-Dependent Geometry

The main concept that one needs to understand for my argument is that the options for large-scale network structure go far beyond the textbook examples of small worlds, scale-free, random, planar graphs, etc. In fact, one can create all kinds of fascinating hybrid networks where the properties vary by region and scale. The examples I am about to show you play with the notion of scale-dependent geometry. Meaning that the network properties depend on the number of interconnected nodes that you are considering. In particular, I’ll break down networks in terms of their micro (1 to 1,000 nodes), meso (1,000 to 1,000,000 nodes), and macro (1,000,000 to 1,000,000,000 or more nodes) structure:

QLE_ELQ

QLE and ELQ

QLE

The first example is one where the structure of the network leads to quadratic spread on the micro level, linear spread on the meso level, and exponential spread on the macro level. We achieve this by having the nodes arranged along a rectangular grid at the micro level. As one zooms out, the grid hits a limit on two fronts so that the advancement of an infection disease will start growing linearly as it only has two directions to grow in (for the sake of symmetry you can glue the two fronts to make a tube, for a meso network structure akin to that of a toroidal planet). Finally, at the largest scale this network looks like a binary tree, where the growth can reach an exponential rate.

The same scheme will apply to all of the following networks. That is, the letters indicate the ordering of the types of growth for the micro, meso, and macro scale. What I will instead focus on is explaining the advantages of these structures. In this case- the case of QLE- the primary advantage is that the spread can be entirely contained by cutting connections around the epicenter. And the best part is that even if you hit the exponential scale (i.e. you start spreading from “one arm to another”) you will still have long periods of linear growth as each “arm” will grow linearly, so cutting it will remain an option at any point. The “surface area of the spread” will remain tiny relative to the size of the network.

ELQ

A very nice property of this network is that you can have “villages” of up to 1,000 people where everyone can interact with and touch each other. Within each of these villages you have super efficient in-person information transmission and contact hedonism without restrictions. Then each of these villages would be connected to two neighboring villages, perhaps not unlike how kids in grade school often make friends with other kids in the grades immediately above and below (and only rarely with grades that are further apart). The spread of disease would very quickly engulf each village, but thankfully that would be it. After that you would have a very slow village-by-village take-over that could be stopped by ‘cutting’ the contact channels between two pairs of villages (or four if you started at an intersection of the macro structural grid). More so, you could conceive of a “conveyor belt” approach where every month half of the village moves in one direction while the other one stays put. This way over the course of years you would still be able to get to know tens of thousands of people, party like crazy in raves touching everybody, and be able to retain long-term friendships by coordinating with them to either move or stay. And you could do all of this while living in a pandemic-proof world!

LQE_EQL

LQE

This one is perhaps the least viable because it relies on most persons only having contact with two people. That said, the spread would start very, very slowly, and so it might be ideal for the worst possible pandemics. At the macro level the network looks like high-dimensional cardboard boxes, where each “cardboard side” is glued at the edge with one or multiple other sides.

A “continuous” version of LQE could use hyperbolic geometry at the macro level, such as what you get when you sneak a pentagon here and there in an otherwise rectangular grid so that locally you have a square spread, which slowly turns into an exponential spread as you begin swallowing pentagons. (Or a few heptagons in a grid of hexagons).

EQL

This one is pretty similar to ELQ, and you can do pretty much the same things I mentioned about ELQ. The main difference is that this structure is safer at the macro level but riskier at the meso level. So if you expect diseases to be really really contagious, then this structure might prevent “the end of the world” but it might be somewhat susceptible to “pretty bad scenarios”, while ELQ works the other way around.

LEQ_QEL

LEQ

I find this network very interesting because to build it I had to come up with the idea of connecting lots of cycles of different lengths with each other by having them share nodes. You can also easily construct a network like this by starting with a scale-free network and replacing the edges with long chains of nodes.

QEL

This would perhaps be the steel-manned version of the toroidal or ring world we discussed in the introduction. Here the infections would spread first slowly at a quadratic rate, then quickly accelerate once you reach the edges of the planar graph you start in, and finally there is a massive linear bottleneck at the macro scale. It’s like Ringworld, but where you interact with people in an interlaced braided mesh embedded inside the Ringworld rather than only in its meager inner surface.

Because each of these examples contain a “linear bottleneck” at some scale, an outbreak of a disease would be easy to contain at some scale. Which network is ideal for which kind of disease will depend on things like its incubation period and its contagion probability. But any of these examples is vastly safer pandemic-wise than our current contact network.

Is Biology Doing This Already?

One thing this exercise has made me wonder is if perhaps our bodies are already using this kind of strategy. I mean, looking at QLE reminds me of the structure of blood vessels in the kidney and liver. It would make sense that evolution would identify great micro, meso, and macro network structures in order to give each organ appropriate contact networks at the scale that matters to conduct its function, while creating network bottlenecks at other scales for protection against pathogens and the spread of cancer. In contrast, the immune system would have every reason to maximize spread at the largest scale while having compartmentalized spread at the micro scale (example: Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality). Finding the sub-exponential chokepoints in the human body would, I posit, give us a new angle for understanding it more deeply.

Creating a Global Human Organism

If this analysis pans out, we could perhaps think of the challenge being presented to us by SARS-CoV-2 and future pandemics as a wake up call to “scale up the network-protective measures our bodies are taking to combat disease while maintaining functionality” all the way up to the structure of all of human society. Indeed, wouldn’t it be amazing if we coordinated to be a harmonious large-scale global organism?

Now, I am not saying we should simply adopt one of these network structures. They are just proofs of concept to show it is possible to have humanly-desirable properties that come with highly interconnected networks along with a linear (or at least sub-exponential) bottleneck at some scale. The bottleneck does not even need to be visible or detectable from the point of view of each individual!

Even if we cannot construct an ideal world from scratch, we could still try to bootstrap it from within our current world. To do so we have a number of options. I will mention two and then dive into them in greater depth. The first is the strategy of “network modification” and it consists of developing gradient descent algorithms that point us to the modification of the network that would maximize a scale-specific sub-exponential bottleneck. Of course this could lead to local minima, but we don’t care about achieving the best configuration, just the closest one that is “good enough”. The second approach is that of “network nucleation” to bootstrap a pandemic-protected contact network by connecting with other people who can prove that they do not have the disease. They could all get to know each other, and then submit a list of “people they would like to hang out with on a regular basis”. An algorithm would then optimize the network so that each person can hang out with as many others as possible while making sure the overall geometry of the network is desirable for disease contention. If lucky, we could even bootstrap this system all the way up to the entire planet, starting from a mixture of people who’ve demonstrably been quarantined for a long time and people who have already recovered from the disease. And since, of course, people would eventually get sick of hanging out with a restricted list of friends, they could periodically re-submit another list and the algorithm would take into account this dynamic so that the geometry can be stable over time.

My prediction is that the current strategies that are being used to reduce the spread of disease would show up as a tiny subset of the set of possible effective strategies, many of which are currently invisible- and in some sense inconceivable- to us. This is because, in part (as far as I know) nobody is thinking in terms of scale-specific network geometry. Also, little is known about the actual empirical structure of the human contact network. In this sense, removing super-spreaders or closing schools may be re-conceptualized as pointing in this direction, and yet perhaps may not even make the Top 10 list of best cost-effective strategies. This is because just removing high-degree nodes in a scale-free network won’t automatically prevent exponential growth; since exponential growth is the killer, making strategies directly targeted at it will probably be vastly more effective. Let’s investigate these strategies in more detail:

Option 1: Network Modifications

The first thing we should do is find what actual contact networks look like, so that we can identify the smallest possible modifications to them in order to create sub-exponential bottlenecks on some scale. I have not found a good study on this, since there really aren’t public datasets of “who is physically hanging out with whom”. Though, if you were to combine, perhaps, the datasets of USA’s NSA, UK’s GCHQ, Russia’s KGB, China’s MSS, cellphone location information, census responses, and commercial surveillance camera data you might be able to get a very decent version of it. In fact, there is reason to believe Israel is already in the process of constructing this dataset.

In the absence of contact network data, we can nonetheless learn from other social and information networks. In particular, the best research I’ve read about the macro-structure of complex networks comes from the lab of Jure Leskovec (I recommend watching his CS224W lectures from past years, which are all available online):

We study over 100 large real-world social and information networks. Our results suggest a significantly more refined picture of community structure in large networks than has been appreciated previously. In particular, we observe tight communities that are barely connected to the rest of the network at very small size scales; and communities of larger size scales gradually “blend into” the expander-like core of the network and thus become less “community-like.” This behavior is not explained, even at a qualitative level, by any of the commonly-used network generation models.

Lescovec et al. 2008, “Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters

As you see, large-scale analysis of real-world networks indicate that they are not adequately described by the classic textbook structures that are most well known. Rather, there seems to be a kind of “galactic shape” at the more macro scale, where there is a highly connected giant core of overlapping communities surrounded by loosely connected superstructures (nicknamed ‘whiskers’):

Given this structure (and assuming it generalizes to contact networks), one could divide the problem into two rough components: (1) how to you deal with ‘whiskers’?, and (2) what do you do about the ‘galactic core’? I do not have answers here, but I do think that having more people who are good at math and computer science think about this would be very good. For what is worth, I have the hunch that in particular the following two network analysis techniques will be useful to tackle this problem:

  1. Spectral Graph Theory: This is a set of techniques that can help us ‘see diffusion bottlenecks in graphs’ at a glance. For instance, these techniques reveal the presence of network “chokepoints” that create insulation in heat flow. Clearly heat flow does not behave in the same way as the spread of disease, but the similarity makes it worth highlighting.
  2. Discrete Differential Geometry: An emerging field that blends differential geometry with network analysis and has shown amazing applications for graphics which can help us ‘see the curvature and dimensionality of a network around each of its nodes’ at a glance. Note: As much as I love hyperbolic spaces, I must admit that from the point of view of early pandemic prevention living in a contact network with hyperbolic geometry is a terrible idea.

Flatten the Network!

One additional interesting approach for Option 1 would be to apply topological clustering techniques to the contact network so that we can identify the hubs with the least desirable network geometry and try to “flatten them”. And policy-wise, I might imagine that in the long-run we could improve the flattening of the contact network by encouraging people to use things like the Bumble app for dating, where you find people physically near you with whom you could form a healthy relationship.

Option 2: Network Nucleation

Green and Red Countries

Countries_Recognizing(Green)_Not_recognizing(Red)_Kosovo

Imagine green are virus free, red are virus uncontrolled, and grey have unreliable statistics. (This actual map is about something unrelated I’m not going to name; it is just used as an example of what the world might look like).

Joscha Bach predicts that in a couple months there will be “green and red” countries, meaning that the outbreak will be completely under control in some countries, and completely out of control in others. I’d also add “grey” to refer to “unreliable statistics”, as many countries might just choose to not monitor the situation. You can imagine what the travel restrictions may be between green, red, and grey countries, as green countries would not find it worthwhile (or at least not politically viable) to accept the risk of reigniting the spread. Grey countries may end up also avoiding red countries while not being allowed to enter green countries.

Speculatively, this would perhaps lead to a worldwide Sakoku phenomenon, but where rather than just Japan, we would have all of the countries of each color becoming economic and cultural blocks.

What I’ll describe below is a kind of generalization of this possibility. Namely, that the blocks don’t need to be country-based.

A very interesting question to ask is “what possible partitions of humanity could create sets of people for whom a green/red/grey dynamic would successfully create clusters of wholly virus-free people?” The existence of at least some greens opens up the possibility of:

Reversing The Pandemic

I address you tonight, not as the president of the United States, not as the leader of a country, but as a citizen of humanity. We are faced with the very gravest of challenges. The Bible calls this day Armageddon. The end of all things. And yes, for the first time in the history of the planet, a species has the technology to prevent its own extinction. All of you praying with us need to know that everything that can be done to prevent this disaster is being called into service. The human thirst for excellence, knowledge, every step up the ladder of science, every adventurous reach into space, all of our combined technologies and imaginations, even the wars that we’ve fought, have provided us the tools to wage this terrible battle. Through all the chaos that is our history, through all of the wrongs and the discord, through all of the pain and suffering, through all of our times, there is one thing that has nourished our souls and elevated our species above its origins, and that is our courage. Dreams of an entire planet are focused tonight on those 14 brave souls traveling into the heavens. May we all citizens of the world over see these events through, Godspeed, and good luck to you.

– Armageddon (1998 film, when the president of the US announces the plans to avert an asteroid that would destroy the earth) [See also: what if they don’t come back?]

Nucleating Whole Virus-Free Communities

The simplest way to create a virus-free community would be to think of verifiable self- quarantining as an investment. If you can prove you’ve been physically disconnected from everyone for 30 days, you would be let into a club for people near you who have done the same already. This could become a large set of people, especially if it turns out that cash handouts are insufficient for millions of people who might end up needing to work in a month or two and defy any kind of large-scale quarantine. Those who can afford (and prove!) that they’ve been diligently quarantining would be allowed in. For a stricter “inner set” there might be stricter criteria where you would need to submit an unfakeable biosample to prove you are not infected (which would be tricky but not impossible given pre-existing DNA databases like 23andMe). Then the algorithm would group you with a subset that you can realistically physically meet, and then allow you to make friends with them. Finally, as you submit a list of people you do want to hang out with long-term, the algorithm would run an optimization process to make as many of the people happy and return the curated list of people you could hang out with so that the network as a whole has convenient scale-dependent sub-exponential chokepoints. I know this sounds like a lot. And it is. But again, pandemics can be really bad. And we have the technology, so why not try?

In a way this idea is the complementary problem to “keeping the virus out of the general population”. In the latter you start out in a fully virus-free situation and try to keep it that way, while the former starts out in a highly contaminated population and tries to “spread health” from the standpoint of a verifiably healthy core. That is, how you create pockets of health in a virus-saturated general population and grow them as much as possible.

Another approach in this vein I can think of is to seed a location with an excess of people who already have immunity and cannot transmit. The people there who haven’t gotten the disease would in a sense be lucky to find themselves around people who won’t transmit it, and thus be blessed with spontaneous herd immunity. That said, the key sacrifice here would be the potential damage elsewhere, where herd immunity would be reached later due to the removed group of immune people. This and the previous approach incur the cost of having to associate with new people, and the relocation challenges would be a logistical nightmare. But perhaps worth doing.

Finally, another approach to this problem would be to use an app with a personality test that is hard to fake, so that only healthy people who score in the top 2% of both introversion and conscientiousness could join the club. It would tell you where to go live with other people who meet the same criteria, and to get a comprehensive test of all major transmissible diseases and treat those you have before relocation. Given the temperament selected for, everyone who becomes part of the community would be extremely diligent about not physically meeting people outside the group and follow the contact network prescriptions dictated by the algorithm. If this sounds like hell to you, well, perhaps it is not for you. But at least this way there would be some pockets of fully healthy people, and that would have a lot of value. (Cf. Rat-free Alberta).

To Summarize:

What are your options for modifying a network in order to remove (or at least tame) exponential growth? The one’s I’ve considered are:

  1. Remove nodes with a high “Pandemic Klout Score”
  2. Creating sub-exponential chokepoints:
    1. Option 1: Gradient descent methods:
      1. You make piece-meal modifications to the contact network one connection at a time in order to improve the prospects of the entire network.
      2. Each person would receive a set of options for mild modifications to their contacts so that whichever they chose would lead to an improvement of the network geometry.
    2. Option 2: Network nucleation:
      1. You create a criteria for what constitutes “infection-free” such as:
        1. Self-enforced quarantine on one extreme, and
        2. Provable DNA-matched tests on the other extreme.
      2. Allow people who qualify to meet each other.
      3. Everyone submits a list of people they’d like to hang out with.
      4. The algorithm would optimize the connections to make everyone happy and at the same time maximize the sub-exponential chokepoints of the network (such as by making it a planar graph with a high clustering coefficient, etc.).

Now, perhaps if all of this sounds insane and like too much trouble, there is always the option of, er, becoming comfortable with no human touch…

Future Cultures

A Religion of Abstinence of Human Touch

I know how hard it is, what is being demanded of us.

Especially in times of needs such as these, we like to be close to one another.

We understand care and affection in terms of human closeness and human touch. 

But at the moment the exact opposite is the case, and everybody really must understand that.

At the moment, the only real way of showing you care is keeping your distance.

– German Chancellor Angela Merkel, at a Nationwide TV Address (March 18 2020)

Have you ever noticed that it is possible to reproduce without any human touch? Artificial insemination conducted with robotic arms is not a far-fetched prospect. A further question is: can we do away with human touch entirely for all functions of life?

You don’t need to be anywhere to be everywhere.

– John C. Lilly

You may say: wouldn’t a community of touch-free individuals somehow lack the most basic of human qualities, i.e. interpersonal intimacy? I reckon that you would be wrong on more than one account. First of all, insofar as touch-based intimacy is based on endorphin and oxytocin release in conjunction with nervous system entrainment under the hood, there is no reason why one couldn’t engineer a brain-stimulation technology ecosystem so that people receive the same kind of physically, psychologically, and spiritually rewarding feelings of connection by merely acknowledging each other’s presence or synchronizing with each other’s brainwaves. Perhaps even you could achieve this despite doing away with technology, as the power of deep metta meditation would suggest. Perhaps we could all cultivate a loving temperament that embraces all of the universe of sentient beings. Here, the commitment to each other’s physical wellbeing is possible without sacrificing the emotional richness of communion; in principle they could be simultaneously satisfied. Alas, the evolutionary roots of human touch are deep, and trying to mess with them with humans as they currently are is far fetched. But just wait until a virus with 0.98 fatality rate and R0 = 6 is discovered and see what people are willing to do to survive.

This concludes my presentation of the cocktail napkin ideas I’ve considered so far to deal with pandemics. But I still have a couple more things to say about this topic, so I’ll take advantage of the soap box I’m standing on and add:


Now That The World Is Paying Attention

consciousness_of_the_planet

From the 1998 film “Armageddon”

I’d like to draw your attention to the following highly relevant goals that the current crisis highlights:

1) We ought to recognize the existence of extreme suffering so that we focus our efforts on its prevention (asphyxiation is an example of extreme suffering, which is how people are dying of COVID-19).

2) Investigating what makes MDMA and 5-MeO-DMT so special and useful for treating PTSD (as people recover from the disease it will become apparent many experience PTSD associated with the episode – this will need to be addressed on a massive scale).

3) Get factory farms banned (for real, they are the breeding grounds of future pandemics – and they of course also cause the bulk of easily preventable suffering, so there is that too. Every animal product you put on your plate is a probabilistic pandemic on its way. Sorry!).

naval_common_enemy

Let’s make the best of this situation (More Dakka!)


A Few Final Thoughts

The Framing Effect

Recall the “Framing Effect” – the cognitive bias where we prefer an option when the problem is framed in a certain way, and a different option when it’s framed differently even though the corresponding options in each framing are of equal expected value.

I worry a lot of the people in my friend network, and in fact worldwide, might be falling prey to the framing effect for the coronavirus situation:

Here is how the “containment vs. mitigation” problem is being “framed” right now (assume 5 million people will die worldwide if nothing is done, but you can choose to invest your resources on ‘containment’ or ‘mitigation’):

Option A: 10% chance 0 people die (i.e. successful containment), and 90% chance 5 million people die.
Option B: 100% chance 4 million people die.

Clearly option A is more ‘heroic’. Alas, it is the one that leads to more expected deaths.

Now consider the alternate framing that might make you feel differently about the options:

Option A: 10% chance of saving 5 million people (i.e. successful containment) and 90% of saving nobody.
Option B: 100% chance of saving 1 million people (i.e. mitigation prevents many deaths).

In both cases option B is much better by a huge margin. In fact by an expected number of 500,000 people saved. Yet when framed in the first way option A seems a lot more attractive. Why? And should we try to get rid of this bias?

Of course in the real world you don’t have to choose between A and B entirely. You can try to do both containment and mitigation. But you *do* need to choose how to allocate resources, and I believe this framing issue does actually come up in our current situation.

I do want to say that, as Robin Hanson suggests, if we are doing the containment strategy we need buy-in from the population. Some personally costly and dramatic public display of commitment from many people would be useful. I am personally very happy to commit in public to hard-core quarantine if it’s ethically necessary.


Social Withdrawal and Behavioral Enrichment

Social distancing is painful because we are all opioid addicts, namely, addicts to the endogenous opioids released when socializing. With a quarantine in place, we can anticipate that people who are on the threshold of being depressed might cross that threshold as an effect of reduced in-person socializing. Likewise, we can anticipate collective health decline at a statistical level due to reduced exercise, sunlight exposure, and sensory diversity (cf. white torture).*****

Possible solutions? Besides being very bullish on at-home exercise routines and HEPA filters, I would also point out the following. I think that we should not be afraid of comparing ourselves with other animals. Bear with me. Humans, not unlike domestic dogs and cats, benefit from being exposed to a wide variety of novel sensory inputs. If you enjoy scents, for example, it would be advisable to order a set of essential oils or perfume samples in order to trick your brain into thinking you are exploring a larger area than you are. Apparently, for example, big cats in captivity are more engaged and less depressed when you spray Calvin Klein perfumes on their territory. Alternatively, if scent is not something you care about, think of perhaps increasing the repertoire of visual art, dance, food, touch, and music you are exposed to on a daily basis. This, I suggest, will help you keep depression away (for a while longer).

Caption: Just a little bit of behavioral enrichment for you! 🙂

Finally (self-promotion ahead), if you have time on your hands, and you’ve been meaning to dive deeper into Qualia Computing, this might be your chance. I’d suggest you start out with the following three resources:

  1. Top 10 Qualia Computing Articles
  2. Glossary of Qualia Research Institute Terms
  3. Every Qualia Computing Article Ever

And if you are really hard core, feel free to reach out to the Qualia Research Institute to help with volunteer work. Also we are going to be doing virtual internship cycles in April, May, and June, so you can stay home and safe and still collaborate with us. But shh! It’s a secret! (Wait, how come it’s a secret but you now know about it? Well, because you’ve scrolled all the way here, that’s some commitment!).

The End


* A more accurate representation might require the use of directed edges to encode asymmetrical contact relationships. For example: the cleaning crew of a hotel might be more exposed to the guests than the guests are exposed to the crew. Also, when two people who have very different habits of hygiene meet, the cleaner person is more likely to get the short end of the stick transmission-wise.

** It is worth pointing out for information networks the “degree of interaction” between nodes is extremely skewed. You may have a thousand friends on Facebook, but the number of people you are likely to interact on a daily basis will be a tiny subset of them, perhaps on the order of 0 to 20. And among the people you interact with, you are likely interacting much more word-count-wise with some than with the others. Indeed, if you plot the number of words exchanged in private messages between people in an information network, the distribution follows a long-tail.

*** In the long-run, this may also have to apply to information networks. Whether information networks will need also some level of top-down control will be a difficult question to answer that requires a complex cost-benefit analysis beyond the scope of this article. The most important variables being (a) what the benefits of fully-free communication are, and (b) the density and severity of memetic hazards in idea-space, in conjunction with the nature of intellectual selection pressures in future societies. If it turns out that people above a certain level of education and intelligence in a future with far more advanced science and engineering are extremely likely to encounter what Nick Bostrom calls “black balls”, there might be no way around developing tight controls on information networks for the safety of everyone. It this happens, we could also use many of the strategies outlined in this article for contact networks. After all, viruses are related to contact networks in the same way as meme hazards are related to information networks.

**** Of course, in some ways this is more about collective emotional processing than about object-level problem solving.

***** It is worth noting that the better air quality might buffer a bit against these negatives.

Qualia Production Presents: “The Seven Seals of Security” (and Other Communications from QRI Sweden)

By Maggie Wassinge and Anders Amelin (now QRI Sweden and HR helpers; see previous letters)

CosmicImpact

Jewelry by Anders and Maggie (see: Quantifying Bliss for the reference to “C, D, N”)

Hi everyone!

It’s Anders and Maggie in Stockholm, Sweden, here. Volunteers in human resource coordination for the QRI.

We would like to hereby announce our commitment to donate fifty thousand dollars to the Qualia Research Institute for research related to the mathematical modeling of phenomenological valence.

We are pretty much just your ordinary Swedish transhumanist couple. With a passion for finding out from first principles how things work. We whole-heartedly agree with Elon Musk that at the end of the day, excellence is the only passing grade. Over the last couple of years we have arrived at the solid conclusion that the biggest bonanza in effective altruism could only be realized by first of all solving valence. Symbolically, in comedy form, this is like first spending the necessary computational resources to arrive at the conciseness of 42 as “the answer”, before it can be determined what the right questions must then be. In our book it is with no doubt the Qualia Research Institute which corresponds to “Deep Thought” in what Elon Musk has called “the best philosophy book ever”: The Hitch-Hiker’s Guide to the Galaxy. Seriously here, it is advisable to balance this with a bit of David Pearce also, but indeed we do believe an encouraging “Don’t Panic” is in fact compatible with the laws of nature in this universe. Immense reward is there for those who roll up their sleeves and start working systematically from first principles.

But again, excellence is the only passing grade. The universe is no picnic. It is a field of seemingly infinite potentialities, all of which are open to exploration and exploitation. It is still unknown what the proto-states of sentience are intrinsically like, but it is clear that biological evolution works as an optimization engine for valence polarization. A “passing grade” for a long-term sustainable and prospering technological civilization must involve a universally global first-principles solution to the horrific downside of this: suffering. That solution must be combined with optimal development of the state space of positive valence and intelligence. It seems plausible that experienced negative valence is a computationally economic way for evolution to drive behavior when the implementation is in biochemistry. However, information processing can also be done non-consciously, and it stands to reason that all the informational saliency achieved via negative valence experience can instead be had via non-conscious processes which would be available to future suitably modified embodiments of intelligence.

The QRI is the only real player in this game so far, as our civilization takes its first baby steps towards maturity. In the domain of effective altruism, the Qualia Research Institute today corresponds to what bitcoin was when first launched. The difference is that the QRI doesn’t just promise to be a novel medium of exchange, but a novel competence about the first principles of well-being!

During the couple of years it took for us to come to the above conclusions, we set aside every penny we could spare. That became the fifty thousand we are now committing to the QRI. If enough others with the same visions were to do the same thing, soon enough it could begin adding up to real money. Money which at this foundational stage stands at quite a favorable exchange rate with respect to the ultimate currency of the universe: positive emotional valence.

Infinite bliss to everyone from a couple of Scandinavian old-timers!HEA-2020-01-19

HEA-LENA

High Entropy Alloy (Al + Ti + Cr + Mo + W) and Low-Entropy Non-Alloy (Ti) – made by Anders and Maggie. If non-materialist physicalist idealism (i.e. panpsychism that respects physics) is true, what do these bundles of baryonic matter feel like from the inside?


Letter IV: On Psychonautics

Psychedelic trippers put effort into trying to interpret what it all means ontologically. Plant spirits may be at work, or one taps into the collective unconscious or is simulated by some alien superintelligence.

The QRI could perhaps guide interested psychonauts in the direction of writing more scientifically productive reports.

A scientifically minded tripper needs to start with the realization that human beings are perfect psychonauts because our brains have an enormous excess capacity over what is minimally required to perform any one of the tasks that we do in everyday waking life. The highly unusual aspect of human brains is that they can produce general intelligence. This is rare in nature but when you have it, you assume it to be the normal state of affairs.

Trippers are often in disbelief over the ability of human brains to produce the fantastic content of psychedelic experiences. As if there is suddenly a superpower there which one never uses when sober. How can that be? It must be something supernatural going on, right? Actually, no. Not that we should rule out the “supernatural” a priori but it is not necessary.

The human mind uses a superpower all the time. One which is hidden in plain view, we might say. It is the superpower of selecting from a huge range of possibilities for what the mind could be doing, and homing in on exactly the one choice in every moment that is most appropriate right then and there. When those tight constraints are relaxed the human brain becomes a system which can explore far and wide in qualia state-space.

Intelligence is a phenomenon which uses multiple optimization points to converge on some invariance. At the theoretical efficiency maximum this takes surprisingly (to us) little raw processing power. A jumping spider does not display less strategic and tactical intelligence than a human does when hunting. The spider’s neural network is very much smaller than the human’s but the evolutionary fitness search available for evolving small, numerous and quickly reproducing creatures is much larger than for animals like us. For us it is not so much a question of evolution having optimized what every cell does, but one of having added more and more cells to increase overall performance.

The spider’s brain probably contains far less sub-optimal “spaghetti code” than the human’s. It is possible that the spider has access to exquisitely fine-tuned qualia for the crucial task of sneaking up on big, highly dangerous prey and bringing it down without botching the job. On the other hand, there might not be much opportunity for spiders to evolve general intelligence since they have already done away with everything that is “useless” for their sober everyday lives.

Friendly-jumping-spider-Thomas-Shahan-17exizc

“Does my brain contain less spaghetti code than yours?”

A human brain is a mass of excitation-inhibition “spaghetti” which defies belief. An almost ultimate jack of all trades but master of none which cannot quite produce the hunting skills of the spider but can instead do a billion other things that the spider could not even in principle learn how to do.

It is the billion other things that we could do but don’t, which is the human superpower, not the few things that we actually do on a sober basis. This is a power which can be harnessed for psychonautics. You’ve got an inner-space warp drive in your head. Aptly named. 🖖


Letter V: Exciting Research Leads

Here are some suggestions for titles of essays and research papers the QRI could write if we had the resources.

  1. “Alloy, anneal, quench and temper: Forging a blade to cut mind at the joints”
  2. “Play me like a violin: A compressibility analysis of neuro-acoustic patterns captured during person to person interaction”
  3. “Leadership and consonance: Aggregate neuro-acoustic compressibility as a proxy for computational efficiency of human group intelligence”
  4. “Neural annealing through laughter: Neuro-acoustics of humor as a factor for healthy mental adjustment”
  5. “The tree of music: An annealable branching tuning-fork model for nervous systems”
  6. “Same but different: Suggesting a qualia analogue for the comparative planetology of Earth and Titan”
  7. “Music of life: Consonance, dissonance, noise and symmetry as explanatory elements for evolution from single cells to human minds”
  8. “Compartments of harmony bounded by dissonance: A neuro-acoustic model of domain specificity in cognition”

The Seven Seals of Security or Safety Through Uncertainty – Transhumanist Satire

This slideshow requires JavaScript.


Letter VI: Earth as an Engine of Qualia Diversity

Handwaving Johnson & Gómez-Emilsson’s law about the surprisingly large size of qualia state space:

Presume that consciousness and matter are interconnected information structures. Can any useful parallels be drawn from the matter domain of outer space to the consciousness domain of inner space? Consider that planets, as a group, are subject to variation and (anthropic) selection. An interconnection point is provided by observation selection: Certain planetary properties far from the universe median are going to be found by intelligent conscious observers for their own planet of origin. A small subset of conscious observers are the ones who, like humans, have general intelligence and broad curiosity. Those observers are the few who observe more and more aspects of their own planet as well as adjacent space and the state space of matter at large, and ultimately perhaps also of consciousness at large. The evolutionary reproductive selection of such observers is not the default condition of all life but rather it is conditional upon even more unusual properties of their planet of origin than for the average life-bearing planet.

Conclusion: Earth is likely to be a highly unusual planet, and human consciousness is likely to be a highly unusual seat of experience. They are causally linked. A structural property they share could be a high level of diversity but never reaching cosmically global extremes on any single parameter. A Jill of all trades planet is married to a Jack of all trades mind.

While fairly good at impressively many trades, Jack and Jill are master and mistress of none. For a tentative and very loose analogy which may be better than nothing, let’s say planet Earth is like the human mind. The other planets in the Solar System are like altered human minds and some animal minds. Some basic properties like gravity, roundness and rotation are common to all the planets. Corresponding to suggested basic features of biologically evolved sentience, such as valence and some sensory modalities.

Then we follow Slartibartfast to the fjords of Norway. Here we see how Earth differs in diversity compared with the other “animals”. The planet’s surface is an energetic 3-phase regime. Solid crust, liquid water and solid water under highly dynamic conditions. Not widely separated like on Europa but forming extended areas of contact where unusual complexity emerges. It’s worth an award, really. (No, not Belgium…).

Human cognition is like Earth with its’ coasts and mountain ranges. A “just right” quantity and proportionality of ingredients is what allowed self-organization of Earth’s environmental complexity and its’ endurance over time via the mechanism of prolonged core solidification and plate tectonics. An unusual state of affairs in nature. It’s not unexpected in principle, only rare in actual existence. The same may go for evolution of the general cognition accessible to human minds.

A type of mind which is generally competent over multiple domains of agency cannot function as such if not many crucial parameters in its’ architecture fall within a tight range of “just right and not too much nor too little”. Or, in Swedish, “lagom”. If you loosen that constraint, such as by ingesting 5 grams of mushrooms blindfolded, your mind will clearly no longer function on your job or even in your body. But in exchange for giving up on that functionality as agent, you can max out on stuff like… well, it’s beyond words.

General intelligence is not compatible with an easy achievement of extreme states of consciousness, though as a less frequently added mental ingredient for a group intelligence (like human hunter-gatherers) extreme states can be hypothesized to enhance abilities of that group intelligence.

But what does the current human “master of none” in qualia rendering imply for the future of consciousness, and what about cosmic matter beyond the neighboring planets?

Beyond the Solar System we find many types of stars, black holes, dark matter and various ultra-thin, ultra-dense, ultra-cold, or ultra-hot configurations of matter in the wider domain of spacetime. Nature usually has not developed nonliving matter into configurations with even remotely as high a complexity as for living matter, simply because of no evolutionary selection pressures. Some nonbiological matter objects could be strong qualia generators just by chance, though. The Sun comes speculatively and punlessly to mind. Doing an IIT and a CDNS analysis on its’ surface magnetized plasma wave patterns may not be entirely far-fetched. But the big promise for expanding the diversity of actualized sentience comes through engineering. Jack and Jill is the couple who can pull that off, and their offspring can then grow up in that fabulous new landscape of experience. For they can become masters and mistresses. Dominatrices, even. The reason being that while the parents are tightly constrained experientially, the kids need not be.

For an efficiently organized advanced technological civilization, the constraints of being a highly general and resilient intelligence can be placed high up on the group level. Individual seats of experience with the sizes of today’s human or animal brains, say, can then be allowed to render experiential states more specialized to feel meaningful, enjoyable and worthwhile. (A dystopian version could instead generate unimaginable suffering, of course. Need to watch out…).

Earth is by far the most diverse planet in the Solar System, but it does not have the deepest ocean, the tallest mountain, the highest gravity, the hottest days, the most explosive volcanoes or the most intense thunderstorms. Human minds who have only experienced their evolved biologically functional mental states have not reached the consciousness state space equivalents of the extreme environments on the other planets. They have never snowboarded down the tellurobismutite condensate slopes on Maxwell Montes or been ejected on a ballistic trajectory by a sulfur dioxide plume from Tvashtar Patera. These things may be comparable to being a bat or taking psilocybin. As different from sober human experience as they are, they still merely hint at the range of possible experiences in the qualia state space opening up beyond. If all goes well, there will be psychonauts of the future who are children of Earth and able to engineer any form of matter and energy into conscious brain architectures. They would become what Max Tegmark has called “Life 3.0”.

Either that or, in a hopefully not terribly more likely scenario portrayed by imagined future historians, humanity stayed obsessed with the circulation of money to the detriment of all else.

This planet has – or rather had – a problem, which was this: most of the people living on it were unhappy for pretty much of the time. Many solutions were suggested for this problem, but most of these were largely concerned with the movement of small green pieces of paper, which was odd because on the whole it wasn’t the small green pieces of paper that were unhappy.” ― Douglas Adams, The Hitchhiker’s Guide to the Galaxy 🌎


bsj0p7j1yl821

Earth as an Engine of Qualia Diversity

One for All and All for One

By David Pearce (response to Quora question: “What does David Pearce think of closed, empty, and open individualism?“)


Vedanta teaches that consciousness is singular, all happenings are played out in one universal consciousness and there is no multiplicity of selves.

 

– Erwin Schrödinger, ‘My View of the World’, 1951

Enlightenment came to me suddenly and unexpectedly one afternoon in March [1939] when I was walking up to the school notice board to see whether my name was on the list for tomorrow’s football game. I was not on the list. And in a blinding flash of inner light I saw the answer to both my problems, the problem of war and the problem of injustice. The answer was amazingly simple. I called it Cosmic Unity. Cosmic Unity said: There is only one of us. We are all the same person. I am you and I am Winston Churchill and Hitler and Gandhi and everybody. There is no problem of injustice because your sufferings are also mine. There will be no problem of war as soon as you understand that in killing me you are only killing yourself.

 

– Freeman Dyson, ‘Disturbing the Universe’, 1979

Common sense assumes “closed” individualism: we are born, live awhile, and then die. Common sense is wrong about most things, and the assumption of enduring metaphysical egos is true to form. Philosophers sometimes speak of the “indiscernibility of identicals”. If a = b, then everything true of a is true of b. This basic principle of logic is trivially true. Our legal system, economy, politics, academic institutions and personal relationships assume it’s false. Violation of elementary logic is a precondition of everyday social life. It’s hard to imagine any human society that wasn’t founded on such a fiction. The myth of enduring metaphysical egos and “closed” individualism also leads to a justice system based on scapegoating. If we were accurately individuated, then such scapegoating would seem absurd.

Among the world’s major belief-systems, Buddhism comes closest to acknowledging “empty” individualism: enduring egos are a myth (cf. “non-self” or Anatta – Wikipedia). But Buddhism isn’t consistent. All our woes are supposedly the product of bad “karma”, the sum of our actions in this and previous states of existence. Karma as understood by Buddhists isn’t the deterministic cause and effect of classical physics, but rather the contribution of bad intent and bad deeds to bad rebirths.

Among secular philosophers, the best-known defender of (what we would now call) empty individualism minus the metaphysical accretions is often reckoned David Hume. Yet Hume was also a “bundle theorist”, sceptical of the diachronic and the synchronic unity of the self. At any given moment, you aren’t a unified subject (“For my part, when I enter most intimately into what I call myself, I always stumble on some particular perception or other, of heat, cold, light or shade, love or hatred, pain or pleasure. I can never catch myself at any time without a perception, and can never observe anything but the perception” (‘On Personal Identity’, A Treatise of Human Nature, 1739)). So strictly, Hume wasn’t even an empty individualist. Contrast Kant’s “transcendental unity of apperception”, aka the unity of the self.

An advocate of common-sense closed individualism might object that critics are abusing language. Thus “Winston Churchill”, say, is just the name given to an extended person born in 1874 who died in 1965. But adhering to this usage would mean abandoning the concept of agency. When you raise your hand, a temporally extended entity born decades ago doesn’t raise its collective hand. Raising your hand is a specific, spatio-temporally located event. In order to make sense of agency, only a “thin” sense of personal identity can work.

According to “open” individualism, there exists only one numerically identical subject who is everyone at all times. Open individualism was christened by philosopher Daniel Kolak, author of I Am You (2004). The roots of open individualism are ancient, stretching back at least to the Upanishads. The older name is monopsychism. I am Jesus, Moses and Einstein, but also Hitler, Stalin and Genghis Khan. And I am also all pigs, dinosaurs and ants: subjects of experience date to the late Pre-Cambrian, if not earlier.

My view?
My ethical sympathies lie with open individualism; but as it stands, I don’t see how a monopsychist theory of identity can be true. Open or closed individualism might (tenuously) be defensible if we were electrons (cfOne-electron universe – Wikipedia). However, sentient beings are qualitatively and numerically different. For example, the half-life of a typical protein in the brain is an estimated 12–14 days. Identity over time is a genetically adaptive fiction for the fleetingly unified subjects of experience generated by the CNS of animals evolved under pressure of natural selection (cfWas Parfit correct we’re not the same person that we were when we were born?). Even memory is a mode of present experience. Both open and closed individualism are false.

By contrast, the fleeting synchronic unity of the self is real, scientifically unexplained (cfthe binding problem) and genetically adaptive. How a pack of supposedly decohered membrane-bound neurons achieves a classically impossible feat of virtual world-making leads us into deep philosophical waters. But whatever the explanation, I think empty individualism is true. Thus I share with my namesakes – the authors of The Hedonistic Imperative (1995) – the view that we ought to abolish the biology of suffering in favour of genetically-programmed gradients of superhuman bliss. Yet my namesakes elsewhere in tenselessly existing space-time (or Hilbert space) physically differ from the multiple David Pearces (DPs) responding to your question. Using numerical superscripts, e.g. DP^564356, DP^54346 (etc), might be less inappropriate than using a single name. But even “DP” here is misleading because such usage suggests an enduring carrier of identity. No such enduring carrier exists, merely modestly dynamically stable patterns of fundamental quantum fields. Primitive primate minds were not designed to “carve Nature at the joints”.

However, just because a theory is true doesn’t mean humans ought to believe in it. What matters are its ethical consequences. Will the world be a better or worse place if most of us are closed, empty or open individualists? Psychologically, empty individualism is probably the least emotionally satisfying account of personal identity – convenient when informing an importunate debt-collection company they are confusing you with someone else, but otherwise a recipe for fecklessness, irresponsibility and overly-demanding feats of altruism. Humans would be more civilised if most people believed in open individualism. The factory-farmed pig destined to be turned into a bacon sandwich is really youthe conventional distinction between selfishness and altruism collapses. Selfish behaviour is actually self-harming. Not just moral decency, but decision-theoretic rationality dictates choosing a veggie burger rather than a meat burger. Contrast the metaphysical closed individualism assumed by, say, the Less Wrong Decision Theory FAQ. And indeed, all first-person facts, not least the distress of a horribly abused pig, are equally real. None are ontologically privileged. More speculatively, if non-materialist physicalism is true, then fields of subjectivity are what the mathematical formalism of quantum field theory describes. The intrinsic nature argument proposes that only experience is physically real. On this story, the mathematical machinery of modern physics is transposed to an idealist ontology. This conjecture is hard to swallow; I’m agnostic.

Bern, 20. 5. 2003 Copyright Peter Mosimann: Kuppel

One for all, all for one” – unofficial motto of Switzerland.

Speculative solutions to the Hard Problem of consciousness aside, the egocentric delusion of Darwinian life is too strong for most people to embrace open individualism with conviction. Closed individualism is massively fitness-enhancing (cfAre you the center of the universe?). Moreover, temperamentally happy people tend to have a strong sense of enduring personal identity and agency; depressives have a weaker sense of personhood. Most of the worthwhile things in this world (as well as its biggest horrors) are accomplished by narcissistic closed individualists with towering egos. Consider the transhumanist agenda. Working on a cure for the terrible disorder we know as aging might in theory be undertaken by empty individualists or open individualists; but in practice, the impetus for defeating death and aging comes from strong-minded and “selfish” closed individualists who don’t want their enduring metaphysical egos to perish. Likewise, the well-being of all sentience in our forward light-cone – the primary focus of most DPs – will probably be delivered by closed individualists. Benevolent egomaniacs will most likely save the world.

One for all, all for one”, as Alexandre Dumas put it in The Three Musketeers?
Maybe one day: full-spectrum superintelligence won’t have a false theory of personal identity. “Unus pro omnibus, omnes pro uno” is the unofficial motto of Switzerland. It deserves to be the ethos of the universe.

main-qimg-46d38d2ebcea7325a3f29f7ec454096b

Two Recent Presentations: (1) Hyperbolic Geometry of DMT Experiences, and (2) Harmonic Society

Here are two recent talks I gave. The first one is a talk about the Hyperbolic Geometry of DMT Experiences I gave at the Harvard Science of Psychedelics Club in mid-September (2019). And the second talk is about QRI‘s models of art, which took place in June (2019) at a QRI party in the Bay Area.


The Hyperbolic Geometry of DMT Experiences (@Harvard Science of Psychedelics Club)


Description

Andrés Gómez Emilsson from the Qualia Research Institute presents about the Hyperbolic Geometry of DMT Experiences.

At a high-level, this video presents an algorithmic reduction of DMT phenomenology which imports concepts from hyperbolic geometry and dynamic systems theory in order to explain the “weirder than weird” hallucinations one can have on this drug. Andrés describes what different levels of DMT intoxication feel like in light of a model in which experience has both variable geometric curvature and information content. The benefit of this model cashes out in a novel approach to design DMT experiences in order to maximize specific desired benefits.

See original article: The Hyperbolic Geometry of DMT Experiences: Symmetries, Sheets, and Saddled Scenes

And the Explain Like I’m 5 version: ELI5 “The Hyperbolic Geometry of DMT Experiences”

Presentation outline:

  • Thermometers of Experience
  • The Leaf Metaphor
  • Introduction to Hyperbolic Geometry
  • DMT Levels
  • Level 1: Threshold (& Symmetry Hotel)
  • Level 2: Chrysanthemum
  • Level 3: Magic Eye (& Crystal Worlds)
  • Level 4: Waiting Room
  • Level 5: Breakthrough
  • Level 6: Amnesia
  • Energy – Complexity Landscape
  • Dynamic Systems
  • Fixed Point
  • Limit Cycles
  • Chaos
  • Noise Driven Structures
  • Turbulence
  • Conclusion
  • Super-Shulgin Academy
  • Atman Retreat
  • Wrap-Up

About the speaker: Andrés studied Symbolic Systems at Stanford (and has a masters in Computational Psychology, also from Stanford). He has professional experience in data science engineering, machine learning, and affective science. His research at the Qualia Research Institute ranges from algorithm design, to psychedelic theory, to neurotechnology development, to mapping and studying the computational properties of consciousness. Andrés blogs at qualiacomputing.com.

The Qualia Research Institute (QRI) is a non-profit based in the Bay Area close to San Francisco which seeks to discover the computational properties of experience. QRI has a “full-stack approach” to the science of consciousness which incorporates philosophy of mind, neuroscience, and neurotechnology. For more information see: qualiaresearchinstitute.org

The Harvard Science of Psychedelics Club hosts events on psychedelic research, meditation, neuroscience, students sharing their own experiences, and much more.


Credits:

– Wallpaper group 632 rotating along each symmetry element – Nick Xu

– Many of the images are by Paul Nylander: http://bugman123.com/

– The Hyperbolic Honeycomb images and 3D prints are by Henry Segerman, who also has an awesome Youtube channel where he shows 3D printed math. We used his design to print the Honeycombs we were passing around during the lecture: https://www.youtube.com/user/henryseg

– Space-Time Dynamics in Video Feedback: Jim Crutchfield, Entropy Productions, Santa Cruz (1984): https://youtu.be/B4Kn3djJMCE

Many thanks to Andrew Zuckerman and Kenneth Shinozuka for helping organize this event. And thanks to David Pearce, Michael Johnson, Romeo Stevens, Quintin Frerichs, the anonymous trippers, and many others for making this work real.


And here are the slides:

 

Dynamic Systems animations:



Harmonic Society: 8 Models of Art for a Scientific Paradigm of Aesthetic Qualia


Description

Andrés Gómez Emilsson from the Qualia Research Institute gives a presentation about how art works according to modern neuroscience and philosophy of mind.

The video discusses eight different models of art: models 1 through 4 have been discussed in academic literature and the current intellectual zeitgeist, while models 5 through 8 are new, original, and the direct result of recent insights about consciousness as uncovered by modern neuroscience, philosophy of mind, and the work of the Qualia Research Institute.

Abstract:

We start by assuming that there are real stakes in art. This motivates the analysis of this subject matter, and it focuses where we place our gaze. We examine a total of eight models for “what art might be about”, divided into two groups. The first group of four are some of the most compelling contemporary models, which derive their strength from fields such as philosophy of language, economics, evolutionary psychology, and anthropology. These models are: (1) art as a word only definable in a family resemblance way with no necessary or sufficient features, (2) art as social signaling of desirable genetic characteristics, (3) art as Schelling point creation, and (4) art as the cultivation of sacred experiences. These four models, however enlightening, nonetheless only account for what David Marr might describe as the computational level of abstraction while leaving the algorithmic and implementation levels of abstraction unexamined. They explain what art is about in terms of why it exists and what its coarse effects are, but not the nature of its internal representations or its implementation. Hence we propose a second group of four models in order to get a “full-stack” view of art. These models are: (5) art as a tool for exploring the state-space of consciousness, (6) art as a method for changing the energy parameter of experience, (7) art as activities that induce neural annealing (which implements novel valence modulation, i.e. surprising pain/pleasure effects), and (8) art as an early prototype of a future affective language that will allow diverse states of consciousness to make sense of each other. These frameworks address how art interfaces with consciousness and how its key valuable features might be implemented neurologically. We conclude with a brief look at how embracing these new paradigms could, in principle, lead to the creation of a society free from suffering and interpersonal misunderstanding. Such a society, aka. Harmonic Society, would be designed with the effect of guaranteeing positive valence interactions using principles from a post-Galilean science of consciousness.

———————–

The 8 models of art are:

1. Art as family resemblance (Semantic Deflation)

2. Art as Signaling (Cool Kid Theory)

3. Art as Schelling-point creation (a few Hipster-theoretical considerations)

4. Art as cultivating sacred experiences (self-transcendence and highest values)

5. Art as exploring the state-space of consciousness (ϡ☀♘🏳️‍🌈♬♠ヅ)

6. Art as something that messes with the energy parameter of your mind (ꙮ)

7. Art as puzzling valence effects (emotional salience and annealing as key ingredients)

8. Art as a system of affective communication: a protolanguage to communicate information about worthwhile qualia (which culminates in Harmonic Society).


The presentation is based on an essay published in the Berlin-based art magazine Art Against Art (see: Issue #6).

Article is posted online here: Models 1 & 2, 3 & 4, 5 & 6, 7 & 8.


See more about the Qualia Research Institute at: https://www.qualiaresearchinstitute.org/

Andrés blogs at Qualia Computing: Top 10 Qualia Computing Articles


Infinite bliss!!!


And here are the slides:

State of the Qualia, Fall 2019

Qualia Research Institute’s inaugural newsletter.


What is QRI trying to do?

Our long-term vision is to end suffering. To destroy hell, and to build tools for exploring all the bright futures which come after. To take the Buddha’s vision of 2600 years ago, update it with advanced theory and technology, and make it real for all creatures.

Our medium-term goal is to build a ‘full-stack’ approach to the mind and brain, centered around emotional valence. Critically, better philosophy should lead to better neuroscience, and better neuroscience should lead to better neurotechnology. We’re skeptical of any philosophical approaches that don’t try to “pay rent” by building empirically useful things.

Our short-term deliverables are to refine our tools for evaluating EEG readings of emotionally-intense states (e.g. 5-MeO-DMT), build a hardware platform for non-invasive precision brain stimulation, and release an updated version of our full-stack theory of brain dynamics (‘neural annealing’).

We think we’re on track for all of these goals. On one level this is a huge claim- but as Archimedes said, “Give me a place to stand, and a lever long enough, and I will move the world.” We think we have that lever, and we’re building a place to stand.


Progress to date

Philosophy: over the course of the last few years, we’ve imported and integrated many key insights from our research lineages – in aggregate we believe these form the world’s best map of how to not get confused in navigating the formalization of consciousness. Our paradigm (laid out in Principia Qualia) builds on top of these lineages, and our core philosophical result is the Symmetry Theory of Valence (STV), an information-theoretic approach towards understanding how pleasant an experience is. (STV is important because it’s such a crisp and theoretically significant hypothesis: if it’s right, and we can prove it, the world will shift overnight.) We’ve also done significant philosophical research on the phenomenological nature of time, DMT states, and the logarithmic nature of pain and pleasure, to pick a few topics. Read more.

Neuroscience: Over the past two years we’ve put together a substantial push into neuroscience, which is showing increasing traction. Scott Alexander recently noticed how we actually beat Robin Carhart-Harris and Karl Friston (the world’s most-influential neuroscientist!) to the punch with an annealing model for psychedelics; this also forms the basis for (we believe) the world’s best neuroscience paradigm for explaining the mechanisms and effects of meditation and was mentioned in Tim Ferriss’s newsletter. We’re also a center of gravity (along with Selen Atasoy, its creator) for phenomenological interpretation of the Connectome-Specific Harmonic Wave (CSHW) paradigm.

Organization: This year saw QRI run a successful summer internship program in San Francisco with 3 superstar interns, Andrew and Kenneth from Harvard and Quintin from Washington University. More recently, we spent a month in Boston on a ‘work sprint’, and ended up giving 3 talks at Harvard and 1 at MIT, with plans to do more at various Ivies this fall. One of the most fun outputs of this summer was Zuck’s QRI explainer video (4.5 minutes).

I’m ridiculously proud of everything we’ve accomplished — a few years ago, QRI was mostly a promissory note that a formalist approach to consciousness could produce something interesting. Today, I can say with a straight face that QRI is one of the premier consciousness research centers in the world, releasing top-tier cross-disciplinary research every few months.


What’s next

Our current push is centered on empirically validating the Symmetry Theory of Valence (STV) and integrating it with our neuroscience stack. This involves releasing an updated version of our ‘neural annealing’ neuroscience paradigm, building a hardware platform for patterned stimulation, and refining our “CDNS” algorithm to work with EEG, with an eye toward using 5-MeO-DMT EEG data to evaluate STV. It looks like 2020 will be a breakout year for us.


What we need

Frankly speaking, we need your support. Building things is hard, and what we’re doing has never been done before. Our core bottlenecks are moneypeople, and executive function.

Money: so far, QRI has been mostly self-funded from the co-founders’ personal savings. I’m proud of everyone’s commitment, but this is unsustainable, especially as we attempt more ambitious projects. At this point, we have enough results to make a firm case that supporting QRI is likely to produce an awesome amount of value for the world, potentially literally the most leveraged philanthropic effort existing today. Frankly speaking the future we’re building won’t get built if we don’t secure funding, and I ask for your help and generosity. You can donate here. (Thank you to our key supporters this year! Your efforts allowed us to onboard three amazing interns and will support building things this Fall.)

People: high-quality organizations are incredibly hungry for high-quality people. QRI is no exception. If you think you have something to offer, please get in touch about collaboration, volunteering, research, and so on. Importantly, we don’t just need researchers: we’re hungry for operations people, and looking for help with getting on podcasts (speaking with Sam Harris and Joe Rogan would both be big wins!), organizing or getting speaking engagements (especially in the Bay), and even small, fun projects like making a series of QRI meme t-shirts.

Executive function: there’s a natural tension between research and organization-building. Paul Graham talks about this in Maker’s Schedule, Manager’s Schedule; research needs big uninterrupted chunks of time, whereas management and outreach involves lots of small tasks. Speaking personally, I struggle with keeping up with all our inquiries while also doing ‘deep work’. I would offer three thoughts to potential volunteers:

  1. Please have patience if we don’t get back to you right away. We’re juggling as best we can!
  2. When possible, we absolutely love it when people can figure out their own way to help — I can think of few things more pleasant to see in my inbox than someone sharing a “by the way, I made this” link to e.g. a nice HTML version of Principia Qualia, an explainer video for various QRI concepts, a deep review of our experimental method, etc.
  3. One of the highest leverage ways to help is to build infrastructure for us. E.g., if you’re familiar with the main themes of our work and want to be a volunteer coordinator for us, that would be an amazing force-multiplier.

I am incredibly proud of what we’ve done so far, and incredibly excited about the future. We will need your help to build it.

All the best,

Michael Edward Johnson

Executive Director, Qualia Research Institute

Announcement: QRI Presentations at Harvard and NYU

The Qualia Research Institute is in Boston for the month of September.

Yesterday I gave a presentation about the Logarithmic Scales of Pleasure and Pain at the Harvard Effective Altruism student group (video coming soon! – slides).

I will be giving a presentation about The Hyperbolic Geometry of DMT Experiences at the Harvard Science of Psychedelics Club on September 17, at 8pm (Sever 113). The venue is apparently quite large so we are not going to run out of capacity for this talk. Feel free to amplify this as a Schelling point for smart rational psychonauts to meet one another.

Michael Johnson will also be giving a presentation at the Harvard Science of Psychedelics Club: 21st of September (7PM), at the Fong Auditorium in Boylston Hall.

Finally, I’ll be giving a presentation at Effective Altruism NYC (also about Logarithmic Scales) on September 23rd (7PM), at 334 E 30th St #3. See: facebook event.

Both Harvard talks are free and open to the public. The venues have a large number of seating spots, so all you need to do is show up. For the NYU talk the organizers of the event would like you to get a (free) ticket first in order to RSVP and secure a seat as the venue is not very large.

We will record these talks, share them online, and add them to the list of media appearances.

 


 

If you are in Boston, want to meet up with us, but can’t make it to any of the talks: I will show up to the SSC meetup on the 20th of September wearing a Qualia Research Institute shirt. Feel free to find me and say hi.


Many thanks to: Andrew Zuckerman, Kenneth Shinozuka, Jacob Shwartz-Lucas, and
Anisha Zaveri for organizing these events!