QC Coronavirus Edition: Preventing Pandemics by Living on Toroidal Planets and Other Cocktail Napkin Ideas

Here is what we’ve gotta do.

I want every strategy we’ve got on Near Earth Object Collision, OK?

Any ideas, any programs, anything you’ve sketched on a pizza box or a cocktail napkin…

Armageddon (1998 film, when NASA realizes that there are 18 days left before the asteroid hits the Earth)

This Whole Thing

On January 20th someone shared, in a facebook group that I’m a part of, four facts about an emerging viral infection in China: (1) high death rate, (2) high contagion rate, (3) long incubation periods, and (4) the fact that it appeared uncontained. Despite the (at the time) relatively low number of cases, those four facts did not seem to paint a pretty picture of what was about to happen.

This was immediately alarming to a lot of people in my circles, and for good reason. Matthew Barnett, Justin Shovelain, Dony Christie, and Louis Francini sounded alarms as early as mid-January, and the rest of the EA and rationalist cluster followed suit. It makes sense people in this cluster would be concerned early on, as many of them have looked at global catastrophic risk scenarios for years, and were already well aware that the world was unequipped to deal with an infectious disease with all of the above four properties. Pandemic preparedness programs have so far relied on luck. For instance, in his 2015 TED talk “The next outbreak? We’re not readyBill Gates uses as an example the 2013 Ebola outbreak: “The problem wasn’t that there was a system that didn’t work well enough. The problem was that we didn’t have a system at all.” Accordingly, that particular outbreak didn’t become a disaster because of sheer luck: the disease only becomes contagious when you are already very sick and it didn’t hit a major urban area, so containing it was possible. But this time around we don’t seem to have the same luck.

Since, I’ve seen many thought leaders I respect succumb to focusing on this topic: Robin Hanson, Eliezer Yudkowsky, Paul Graham, Tyler Cohen, Sarah Constantine, Scott Alexander, Scott Aaronson, Joscha Bach, Ryan Carey, William EdenRobert Wilbin, etc. etc. Not to mention the way these people are publicly responding to each other and building a parallel narrative on a higher level of complexity than most everybody else****. These and many other well respected intellectuals have been going on and on about the situation for over a month now. An exponentially growing curve in its early stages may not be alarming to most people, but it certainly was to people like this (Ps. 3Blue1Brown, Kurzgezagt, and Mark Rober also recently joined the conversation).

89891338_10158153144883554_5533215167824789504_n

Image by Evan Gaensbauer (March 2020 Dank EA Memes banner)

This all adds up to a vibe of countdown to Armageddon: “X days until hospitals are overwhelmed, Y days until a million people die, Z days until a vaccine will be found”. In line with this perceived, if not frighteningly real, urgency, we’ve seen countless facebook groups, subreddits, and forums scouting for novel ideas and projects to help above and beyond what the governments of the world are already doing (e.g. Covid19RiskApp, Give Directly Response, Covid Accelerator [of technology to decelerate the spread [possibly a terrible or brilliant branding]], List of Predictors, and Corona Variolation).

march_19_2020_spread_pandemic

As of March 20 2020

I personally gave a lot of thought to pandemics several years ago (in college I was on the fence between working on pandemic prevention and consciousness research as a career), so my immediate thought when learning about the virus and its properties was “we are screwed, this can’t be contained with how the world is currently set up”. While containment might have been possible at the very beginning with some luck, it very quickly becomes unmanageable. That said, I’d like to explore here ways in which the world could be realistically modified in order to contain, mitigate, and ultimately reverse the spread of novel contagious diseases including this one. After all, the WHO director general said on March 9th: “The rule of the game is: never give up.” So, well, let’s give it some more thought. I hence offer my ‘sketches on a cocktail napkin’ type of ideas in case they find any application:

Introduction

Let us start by breaking down “social networks” into (1) contact networks, and (2) information networks:

  1. Contact networks are weighted undirected graphs where each node is a person and each edge encodes the frequency and intensity of the contact between the people it connects.*
  2. Information networks are weighted directed graphs that encode the amount of information transmission that there is between pairs of people. To a large extent, contact networks are subsets of information networks.**

Contact networks are what matters for modeling infectious disease transmission. Despite the constitutionally granted freedom of assembly, one can posit that if the risks to the public are high enough, it is justified to place some constraints on the nature and properties of contact networks. In a free society that truly grasps the danger of pandemics and is determined to squash them at the very beginning, contact networks might require some degree of top-down control. Perhaps, if we are serious about future pandemic prevention, we could re-conceptualize freedom of assembly as pertaining to information, rather than contact, networks.***d3297191270ea5bca8db652e977a6d57

So in what ways could a contact network be pandemic-safe? As an intuition pump for what I’ll be discussing further below, I’d like you to consider what it might be like to live in the original “HaloRingworld (and Ringworld too). Assume that unrestricted travel in Halo is limited to land roaming with a maximum speed, and that in order to use a spacecraft or tube across an arc of the circle, you need to be thoroughly tested and quarantined in-between. With these constraints, we would naturally infer that the structure of the contact network of the people in this world would be embedded in the ring itself. Meaning that if an infectious disease originates somewhere on the Ringworld, containing its spread would be as easy as blocking movement on two small fronts around the epicenter of the outbreak. This even allows you to control and ultimately fully suppress diseases with long incubation periods. It is a matter of estimating how long the incubation period is, and quarantining the entire region of “furthest possible transmissibility”.

More so, given the overall circular geometry of the world, after a brief period of quadratic growth of the epidemic (as concentric circles expand around the epicenter)  one would expect to see a threshold after which there is merely linear growth in the number of cases as a function of time!

Network Geometry as a Containment Strategy

To a first approximation, the single most important problem to overcome for containment is the exponential growth of the early stages of an outbreak. Of course in some cases an exponential growth is not itself the problem: and R0 = 1.001 leads to exponential growth, but it is still so slow that it can be easily dealt with. Likewise, a sub-exponential growth can still be unruly, as in a polynomial growth with an exponent of 20. But to a first approximation, I would argue that if you can get rid of exponential growth you can manage an outbreak. The example above of a Ringworld shows that exponential growth in contact networks can be slowed all the way down to linear growth at relatively early stages. Similarly, “thin” toroidal planets would also enable easy containment of outbreaks (Anders Sandberg‘s amazing work on the physics of toroidal planets finally pays off! It remains to be seen when his work on stacking high-dimensional polytopes finds real-world applications).

torusdonut2-thumb (1)

Toroidal World

But we don’t have to go all the way to high sci-fi scenarios to encounter sub-exponential growth of infections in human contact networks. You see, the black death happened at a time when the contact network of humanity had a quasi-quadratic structure at the largest of scales. Villages almost certainly had a scale-free structure (e.g. the priest touching everyone once a week and the lone serf perhaps only interacting with two people a week), but once you look at the structure at scales above the village, you would find routes between neighboring villages weaving a planar graph with a 2D Euclidean geometry. The trade routes, though, provided an exception, and in the end they turned out to be key for the spread of the plague. That said, in the absence of cars, trains, or airplanes, the maximum speed of transmission was seriously limited. Historians can tell when different parts of Europe got the plague because it really took a long time to spread; we are talking about years rather than weeks.1920px-1346-1353_spread_of_the_Black_Death_in_Europe_map.svg

So imagine having a contact network structure characteristic of the medieval times, but with an information network structure akin to the ones we currently have. Then controlling the black plague would be a piece of cake! You would simply need to close central trade routes, track down which villages are already infected, and put a perimeter around them.

Ok, so how do we generalize this idea to the modern times in a realistic way? I think we should perhaps think outside the box here. Remember, the core intention here is to make the spread of an infectious disease not behave in an exponential way at the beginning so that we can “segment out” the part of the network affected (i.e. quarantine) because the “surface area” of the region is not very large. Now, most analysis of disease spread on networks focus on analyzing how realistic-like network features affect disease spread. For example, clustering coefficients, the steepness of the slope of power law networks, the distribution of in-betweenness centrality of the nodes, and so on.

In a perhaps high-modernist style approach to network engineering, one can ask how the spread of a disease would change depending on alterations we could make to the network. The simplest real world case is the reasoning behind adding travel restrictions, which aim to block the spread between very large clusters (i.e. countries) and the closing of schools, universities, and large gatherings, which decrease the interconnectivity of each region of the network. A slightly more sophisticated version of this approach would be to come up with a “Pandemic Klout Score” for each person based on the their “network influence” and pay them to quarantine early on during an outbreak.

I actually worked at Klout as an intern in 2010, and my contributions were mostly on the (unfortunately slightly evil because it’s marketing) following problem: “How do you maximize the spread of a commercial campaign by giving free products to people?” Klout had what they called “perks” which was how they made money. They had contracts with other companies to give free products to “influencers” so that they talked about the perks on their social media accounts. To maximize the spread of a commercial campaign meant to distribute perks in such a way that the largest number of people made mentions of the campaign on their networks (including people who didn’t receive the free products). This is how they measured success- at least when I was there- and what the companies paid them for.

The “basic approach” would be simply to distribute the perks to people with the highest Klout scores, with the additional constraint that those people were influential on the relevant topic (e.g. if you had a popular Twitter account about “beauty and personal care” you might be a prime candidate to get a free “anti-aging sunscreen stick”, or whatever) . But since you can’t actually, you know, entice Justin Bieber (the person with the highest Klout score for several years) with a free Virgin America flight and expect him to either care or talk about it on his Twitter feed, the problem ends up being substantially more complex than just “give people with high Klout the free products”. I am under an NDA about the specific algorithms and research I conducted there. But I mention this because the problem of pandemic prevention could in some sense be thought of as the inverse of the problem Klout was trying to solve. Namely, how you use the node features of the network in order to minimize the spread of a contagious disease. The low-hanging fruit idea here can be to simply allot money to pay people with high Pandemic Klout Scores to stay home or cut their human touch in half whenever an outbreak arises. I would expect this to be significantly better at reducing the reproductive rate of a contagious disease than choosing people at random (or even just based on how many people they interact with on a daily basis).

That said, given the risks and costs involved with pandemics, especially in the long term in light of bioterrorism, we should not close off the possibility of making drastic changes to humanity’s contact network for the sake of our collective wellbeing. That is, merely asking some people to stay home may not be enough. We should contemplate what it would really take to be able to fully contain any future pandemic.

In terms of large-scale network geometry rather than just dealing with one node at a time, perhaps the key point to make is that we should really not fetishize and romanticize the “six degrees of separation” that results from the small world-like structure of the modern human contact network. Yes, “it’s a small world after all“, but you forgot to mention “and that’s what will get us all killed in the end.” Let’s not allow misguided network idealism to murder grandma. We need to make the contact network a large world, and save the small world exclusively for the information network.Screen-Shot-2012-04-05-at-19.26.38

Intuitively, it is precisely the small world-like property of our contact network that allows us to: meet many new people on a regular basis, collaborate with people around the world, be able to attend large gatherings, raves, and festivals, and travel care-free across the planet. Meaning, most people might think that changing the contact network structure to make it pandemic-proof would come at the cost of sacrificing what makes society so interesting and worth living in. I would disagree. I think that such a line of thinking is just the result of a failure of the imagination. We can, I posit, have contact networks that allow you to do all of that and yet be pandemic-proof. I will argue that with intelligent top-down network engineering you can in fact achieve this. Here is my case:

Scale-Dependent Geometry

The main concept that one needs to understand for my argument is that the options for large-scale network structure go far beyond the textbook examples of small worlds, scale-free, random, planar graphs, etc. In fact, one can create all kinds of fascinating hybrid networks where the properties vary by region and scale. The examples I am about to show you play with the notion of scale-dependent geometry. Meaning that the network properties depend on the number of interconnected nodes that you are considering. In particular, I’ll break down networks in terms of their micro (1 to 1,000 nodes), meso (1,000 to 1,000,000 nodes), and macro (1,000,000 to 1,000,000,000 or more nodes) structure:

QLE_ELQ

QLE and ELQ

QLE

The first example is one where the structure of the network leads to quadratic spread on the micro level, linear spread on the meso level, and exponential spread on the macro level. We achieve this by having the nodes arranged along a rectangular grid at the micro level. As one zooms out, the grid hits a limit on two fronts so that the advancement of an infection disease will start growing linearly as it only has two directions to grow in (for the sake of symmetry you can glue the two fronts to make a tube, for a meso network structure akin to that of a toroidal planet). Finally, at the largest scale this network looks like a binary tree, where the growth can reach an exponential rate.

The same scheme will apply to all of the following networks. That is, the letters indicate the ordering of the types of growth for the micro, meso, and macro scale. What I will instead focus on is explaining the advantages of these structures. In this case- the case of QLE- the primary advantage is that the spread can be entirely contained by cutting connections around the epicenter. And the best part is that even if you hit the exponential scale (i.e. you start spreading from “one arm to another”) you will still have long periods of linear growth as each “arm” will grow linearly, so cutting it will remain an option at any point. The “surface area of the spread” will remain tiny relative to the size of the network.

ELQ

A very nice property of this network is that you can have “villages” of up to 1,000 people where everyone can interact with and touch each other. Within each of these villages you have super efficient in-person information transmission and contact hedonism without restrictions. Then each of these villages would be connected to two neighboring villages, perhaps not unlike how kids in grade school often make friends with other kids in the grades immediately above and below (and only rarely with grades that are further apart). The spread of disease would very quickly engulf each village, but thankfully that would be it. After that you would have a very slow village-by-village take-over that could be stopped by ‘cutting’ the contact channels between two pairs of villages (or four if you started at an intersection of the macro structural grid). More so, you could conceive of a “conveyor belt” approach where every month half of the village moves in one direction while the other one stays put. This way over the course of years you would still be able to get to know tens of thousands of people, party like crazy in raves touching everybody, and be able to retain long-term friendships by coordinating with them to either move or stay. And you could do all of this while living in a pandemic-proof world!

LQE_EQL

LQE

This one is perhaps the least viable because it relies on most persons only having contact with two people. That said, the spread would start very, very slowly, and so it might be ideal for the worst possible pandemics. At the macro level the network looks like high-dimensional cardboard boxes, where each “cardboard side” is glued at the edge with one or multiple other sides.

A “continuous” version of LQE could use hyperbolic geometry at the macro level, such as what you get when you sneak a pentagon here and there in an otherwise rectangular grid so that locally you have a square spread, which slowly turns into an exponential spread as you begin swallowing pentagons. (Or a few heptagons in a grid of hexagons).

EQL

This one is pretty similar to ELQ, and you can do pretty much the same things I mentioned about ELQ. The main difference is that this structure is safer at the macro level but riskier at the meso level. So if you expect diseases to be really really contagious, then this structure might prevent “the end of the world” but it might be somewhat susceptible to “pretty bad scenarios”, while ELQ works the other way around.

LEQ_QEL

LEQ

I find this network very interesting because to build it I had to come up with the idea of connecting lots of cycles of different lengths with each other by having them share nodes. You can also easily construct a network like this by starting with a scale-free network and replacing the edges with long chains of nodes.

QEL

This would perhaps be the steel-manned version of the toroidal or ring world we discussed in the introduction. Here the infections would spread first slowly at a quadratic rate, then quickly accelerate once you reach the edges of the planar graph you start in, and finally there is a massive linear bottleneck at the macro scale. It’s like Ringworld, but where you interact with people in an interlaced braided mesh embedded inside the Ringworld rather than only in its meager inner surface.

Because each of these examples contain a “linear bottleneck” at some scale, an outbreak of a disease would be easy to contain at some scale. Which network is ideal for which kind of disease will depend on things like its incubation period and its contagion probability. But any of these examples is vastly safer pandemic-wise than our current contact network.

Is Biology Doing This Already?

One thing this exercise has made me wonder is if perhaps our bodies are already using this kind of strategy. I mean, looking at QLE reminds me of the structure of blood vessels in the kidney and liver. It would make sense that evolution would identify great micro, meso, and macro network structures in order to give each organ appropriate contact networks at the scale that matters to conduct its function, while creating network bottlenecks at other scales for protection against pathogens and the spread of cancer. In contrast, the immune system would have every reason to maximize spread at the largest scale while having compartmentalized spread at the micro scale (example: Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality). Finding the sub-exponential chokepoints in the human body would, I posit, give us a new angle for understanding it more deeply.

Creating a Global Human Organism

If this analysis pans out, we could perhaps think of the challenge being presented to us by SARS-CoV-2 and future pandemics as a wake up call to “scale up the network-protective measures our bodies are taking to combat disease while maintaining functionality” all the way up to the structure of all of human society. Indeed, wouldn’t it be amazing if we coordinated to be a harmonious large-scale global organism?

Now, I am not saying we should simply adopt one of these network structures. They are just proofs of concept to show it is possible to have humanly-desirable properties that come with highly interconnected networks along with a linear (or at least sub-exponential) bottleneck at some scale. The bottleneck does not even need to be visible or detectable from the point of view of each individual!

Even if we cannot construct an ideal world from scratch, we could still try to bootstrap it from within our current world. To do so we have a number of options. I will mention two and then dive into them in greater depth. The first is the strategy of “network modification” and it consists of developing gradient descent algorithms that point us to the modification of the network that would maximize a scale-specific sub-exponential bottleneck. Of course this could lead to local minima, but we don’t care about achieving the best configuration, just the closest one that is “good enough”. The second approach is that of “network nucleation” to bootstrap a pandemic-protected contact network by connecting with other people who can prove that they do not have the disease. They could all get to know each other, and then submit a list of “people they would like to hang out with on a regular basis”. An algorithm would then optimize the network so that each person can hang out with as many others as possible while making sure the overall geometry of the network is desirable for disease contention. If lucky, we could even bootstrap this system all the way up to the entire planet, starting from a mixture of people who’ve demonstrably been quarantined for a long time and people who have already recovered from the disease. And since, of course, people would eventually get sick of hanging out with a restricted list of friends, they could periodically re-submit another list and the algorithm would take into account this dynamic so that the geometry can be stable over time.

My prediction is that the current strategies that are being used to reduce the spread of disease would show up as a tiny subset of the set of possible effective strategies, many of which are currently invisible- and in some sense inconceivable- to us. This is because, in part (as far as I know) nobody is thinking in terms of scale-specific network geometry. Also, little is known about the actual empirical structure of the human contact network. In this sense, removing super-spreaders or closing schools may be re-conceptualized as pointing in this direction, and yet perhaps may not even make the Top 10 list of best cost-effective strategies. This is because just removing high-degree nodes in a scale-free network won’t automatically prevent exponential growth; since exponential growth is the killer, making strategies directly targeted at it will probably be vastly more effective. Let’s investigate these strategies in more detail:

Option 1: Network Modifications

The first thing we should do is find what actual contact networks look like, so that we can identify the smallest possible modifications to them in order to create sub-exponential bottlenecks on some scale. I have not found a good study on this, since there really aren’t public datasets of “who is physically hanging out with whom”. Though, if you were to combine, perhaps, the datasets of USA’s NSA, UK’s GCHQ, Russia’s KGB, China’s MSS, cellphone location information, census responses, and commercial surveillance camera data you might be able to get a very decent version of it. In fact, there is reason to believe Israel is already in the process of constructing this dataset.

In the absence of contact network data, we can nonetheless learn from other social and information networks. In particular, the best research I’ve read about the macro-structure of complex networks comes from the lab of Jure Leskovec (I recommend watching his CS224W lectures from past years, which are all available online):

We study over 100 large real-world social and information networks. Our results suggest a significantly more refined picture of community structure in large networks than has been appreciated previously. In particular, we observe tight communities that are barely connected to the rest of the network at very small size scales; and communities of larger size scales gradually “blend into” the expander-like core of the network and thus become less “community-like.” This behavior is not explained, even at a qualitative level, by any of the commonly-used network generation models.

Lescovec et al. 2008, “Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters

As you see, large-scale analysis of real-world networks indicate that they are not adequately described by the classic textbook structures that are most well known. Rather, there seems to be a kind of “galactic shape” at the more macro scale, where there is a highly connected giant core of overlapping communities surrounded by loosely connected superstructures (nicknamed ‘whiskers’):

Given this structure (and assuming it generalizes to contact networks), one could divide the problem into two rough components: (1) how to you deal with ‘whiskers’?, and (2) what do you do about the ‘galactic core’? I do not have answers here, but I do think that having more people who are good at math and computer science think about this would be very good. For what is worth, I have the hunch that in particular the following two network analysis techniques will be useful to tackle this problem:

  1. Spectral Graph Theory: This is a set of techniques that can help us ‘see diffusion bottlenecks in graphs’ at a glance. For instance, these techniques reveal the presence of network “chokepoints” that create insulation in heat flow. Clearly heat flow does not behave in the same way as the spread of disease, but the similarity makes it worth highlighting.
  2. Discrete Differential Geometry: An emerging field that blends differential geometry with network analysis and has shown amazing applications for graphics which can help us ‘see the curvature and dimensionality of a network around each of its nodes’ at a glance. Note: As much as I love hyperbolic spaces, I must admit that from the point of view of early pandemic prevention living in a contact network with hyperbolic geometry is a terrible idea.

Flatten the Network!

One additional interesting approach for Option 1 would be to apply topological clustering techniques to the contact network so that we can identify the hubs with the least desirable network geometry and try to “flatten them”. And policy-wise, I might imagine that in the long-run we could improve the flattening of the contact network by encouraging people to use things like the Bumble app for dating, where you find people physically near you with whom you could form a healthy relationship.

Option 2: Network Nucleation

Green and Red Countries

Countries_Recognizing(Green)_Not_recognizing(Red)_Kosovo

Imagine green are virus free, red are virus uncontrolled, and grey have unreliable statistics. (This actual map is about something unrelated I’m not going to name; it is just used as an example of what the world might look like).

Joscha Bach predicts that in a couple months there will be “green and red” countries, meaning that the outbreak will be completely under control in some countries, and completely out of control in others. I’d also add “grey” to refer to “unreliable statistics”, as many countries might just choose to not monitor the situation. You can imagine what the travel restrictions may be between green, red, and grey countries, as green countries would not find it worthwhile (or at least not politically viable) to accept the risk of reigniting the spread. Grey countries may end up also avoiding red countries while not being allowed to enter green countries.

Speculatively, this would perhaps lead to a worldwide Sakoku phenomenon, but where rather than just Japan, we would have all of the countries of each color becoming economic and cultural blocks.

What I’ll describe below is a kind of generalization of this possibility. Namely, that the blocks don’t need to be country-based.

A very interesting question to ask is “what possible partitions of humanity could create sets of people for whom a green/red/grey dynamic would successfully create clusters of wholly virus-free people?” The existence of at least some greens opens up the possibility of:

Reversing The Pandemic

I address you tonight, not as the president of the United States, not as the leader of a country, but as a citizen of humanity. We are faced with the very gravest of challenges. The Bible calls this day Armageddon. The end of all things. And yes, for the first time in the history of the planet, a species has the technology to prevent its own extinction. All of you praying with us need to know that everything that can be done to prevent this disaster is being called into service. The human thirst for excellence, knowledge, every step up the ladder of science, every adventurous reach into space, all of our combined technologies and imaginations, even the wars that we’ve fought, have provided us the tools to wage this terrible battle. Through all the chaos that is our history, through all of the wrongs and the discord, through all of the pain and suffering, through all of our times, there is one thing that has nourished our souls and elevated our species above its origins, and that is our courage. Dreams of an entire planet are focused tonight on those 14 brave souls traveling into the heavens. May we all citizens of the world over see these events through, Godspeed, and good luck to you.

– Armageddon (1998 film, when the president of the US announces the plans to avert an asteroid that would destroy the earth) [See also: what if they don’t come back?]

Nucleating Whole Virus-Free Communities

The simplest way to create a virus-free community would be to think of verifiable self- quarantining as an investment. If you can prove you’ve been physically disconnected from everyone for 30 days, you would be let into a club for people near you who have done the same already. This could become a large set of people, especially if it turns out that cash handouts are insufficient for millions of people who might end up needing to work in a month or two and defy any kind of large-scale quarantine. Those who can afford (and prove!) that they’ve been diligently quarantining would be allowed in. For a stricter “inner set” there might be stricter criteria where you would need to submit an unfakeable biosample to prove you are not infected (which would be tricky but not impossible given pre-existing DNA databases like 23andMe). Then the algorithm would group you with a subset that you can realistically physically meet, and then allow you to make friends with them. Finally, as you submit a list of people you do want to hang out with long-term, the algorithm would run an optimization process to make as many of the people happy and return the curated list of people you could hang out with so that the network as a whole has convenient scale-dependent sub-exponential chokepoints. I know this sounds like a lot. And it is. But again, pandemics can be really bad. And we have the technology, so why not try?

In a way this idea is the complementary problem to “keeping the virus out of the general population”. In the latter you start out in a fully virus-free situation and try to keep it that way, while the former starts out in a highly contaminated population and tries to “spread health” from the standpoint of a verifiably healthy core. That is, how you create pockets of health in a virus-saturated general population and grow them as much as possible.

Another approach in this vein I can think of is to seed a location with an excess of people who already have immunity and cannot transmit. The people there who haven’t gotten the disease would in a sense be lucky to find themselves around people who won’t transmit it, and thus be blessed with spontaneous herd immunity. That said, the key sacrifice here would be the potential damage elsewhere, where herd immunity would be reached later due to the removed group of immune people. This and the previous approach incur the cost of having to associate with new people, and the relocation challenges would be a logistical nightmare. But perhaps worth doing.

Finally, another approach to this problem would be to use an app with a personality test that is hard to fake, so that only healthy people who score in the top 2% of both introversion and conscientiousness could join the club. It would tell you where to go live with other people who meet the same criteria, and to get a comprehensive test of all major transmissible diseases and treat those you have before relocation. Given the temperament selected for, everyone who becomes part of the community would be extremely diligent about not physically meeting people outside the group and follow the contact network prescriptions dictated by the algorithm. If this sounds like hell to you, well, perhaps it is not for you. But at least this way there would be some pockets of fully healthy people, and that would have a lot of value. (Cf. Rat-free Alberta).

To Summarize:

What are your options for modifying a network in order to remove (or at least tame) exponential growth? The one’s I’ve considered are:

  1. Remove nodes with a high “Pandemic Klout Score”
  2. Creating sub-exponential chokepoints:
    1. Option 1: Gradient descent methods:
      1. You make piece-meal modifications to the contact network one connection at a time in order to improve the prospects of the entire network.
      2. Each person would receive a set of options for mild modifications to their contacts so that whichever they chose would lead to an improvement of the network geometry.
    2. Option 2: Network nucleation:
      1. You create a criteria for what constitutes “infection-free” such as:
        1. Self-enforced quarantine on one extreme, and
        2. Provable DNA-matched tests on the other extreme.
      2. Allow people who qualify to meet each other.
      3. Everyone submits a list of people they’d like to hang out with.
      4. The algorithm would optimize the connections to make everyone happy and at the same time maximize the sub-exponential chokepoints of the network (such as by making it a planar graph with a high clustering coefficient, etc.).

Now, perhaps if all of this sounds insane and like too much trouble, there is always the option of, er, becoming comfortable with no human touch…

Future Cultures

A Religion of Abstinence of Human Touch

I know how hard it is, what is being demanded of us.

Especially in times of needs such as these, we like to be close to one another.

We understand care and affection in terms of human closeness and human touch. 

But at the moment the exact opposite is the case, and everybody really must understand that.

At the moment, the only real way of showing you care is keeping your distance.

– German Chancellor Angela Merkel, at a Nationwide TV Address (March 18 2020)

Have you ever noticed that it is possible to reproduce without any human touch? Artificial insemination conducted with robotic arms is not a far-fetched prospect. A further question is: can we do away with human touch entirely for all functions of life?

You don’t need to be anywhere to be everywhere.

– John C. Lilly

You may say: wouldn’t a community of touch-free individuals somehow lack the most basic of human qualities, i.e. interpersonal intimacy? I reckon that you would be wrong on more than one account. First of all, insofar as touch-based intimacy is based on endorphin and oxytocin release in conjunction with nervous system entrainment under the hood, there is no reason why one couldn’t engineer a brain-stimulation technology ecosystem so that people receive the same kind of physically, psychologically, and spiritually rewarding feelings of connection by merely acknowledging each other’s presence or synchronizing with each other’s brainwaves. Perhaps even you could achieve this despite doing away with technology, as the power of deep metta meditation would suggest. Perhaps we could all cultivate a loving temperament that embraces all of the universe of sentient beings. Here, the commitment to each other’s physical wellbeing is possible without sacrificing the emotional richness of communion; in principle they could be simultaneously satisfied. Alas, the evolutionary roots of human touch are deep, and trying to mess with them with humans as they currently are is far fetched. But just wait until a virus with 0.98 fatality rate and R0 = 6 is discovered and see what people are willing to do to survive.

This concludes my presentation of the cocktail napkin ideas I’ve considered so far to deal with pandemics. But I still have a couple more things to say about this topic, so I’ll take advantage of the soap box I’m standing on and add:


Now That The World Is Paying Attention

consciousness_of_the_planet

From the 1998 film “Armageddon”

I’d like to draw your attention to the following highly relevant goals that the current crisis highlights:

1) We ought to recognize the existence of extreme suffering so that we focus our efforts on its prevention (asphyxiation is an example of extreme suffering, which is how people are dying of COVID-19).

2) Investigating what makes MDMA and 5-MeO-DMT so special and useful for treating PTSD (as people recover from the disease it will become apparent many experience PTSD associated with the episode – this will need to be addressed on a massive scale).

3) Get factory farms banned (for real, they are the breeding grounds of future pandemics – and they of course also cause the bulk of easily preventable suffering, so there is that too. Every animal product you put on your plate is a probabilistic pandemic on its way. Sorry!).

naval_common_enemy

Let’s make the best of this situation (More Dakka!)


A Few Final Thoughts

The Framing Effect

Recall the “Framing Effect” – the cognitive bias where we prefer an option when the problem is framed in a certain way, and a different option when it’s framed differently even though the corresponding options in each framing are of equal expected value.

I worry a lot of the people in my friend network, and in fact worldwide, might be falling prey to the framing effect for the coronavirus situation:

Here is how the “containment vs. mitigation” problem is being “framed” right now (assume 5 million people will die worldwide if nothing is done, but you can choose to invest your resources on ‘containment’ or ‘mitigation’):

Option A: 10% chance 0 people die (i.e. successful containment), and 90% chance 5 million people die.
Option B: 100% chance 4 million people die.

Clearly option A is more ‘heroic’. Alas, it is the one that leads to more expected deaths.

Now consider the alternate framing that might make you feel differently about the options:

Option A: 10% chance of saving 5 million people (i.e. successful containment) and 90% of saving nobody.
Option B: 100% chance of saving 1 million people (i.e. mitigation prevents many deaths).

In both cases option B is much better by a huge margin. In fact by an expected number of 500,000 people saved. Yet when framed in the first way option A seems a lot more attractive. Why? And should we try to get rid of this bias?

Of course in the real world you don’t have to choose between A and B entirely. You can try to do both containment and mitigation. But you *do* need to choose how to allocate resources, and I believe this framing issue does actually come up in our current situation.

I do want to say that, as Robin Hanson suggests, if we are doing the containment strategy we need buy-in from the population. Some personally costly and dramatic public display of commitment from many people would be useful. I am personally very happy to commit in public to hard-core quarantine if it’s ethically necessary.


Social Withdrawal and Behavioral Enrichment

Social distancing is painful because we are all opioid addicts, namely, addicts to the endogenous opioids released when socializing. With a quarantine in place, we can anticipate that people who are on the threshold of being depressed might cross that threshold as an effect of reduced in-person socializing. Likewise, we can anticipate collective health decline at a statistical level due to reduced exercise, sunlight exposure, and sensory diversity (cf. white torture).*****

Possible solutions? Besides being very bullish on at-home exercise routines and HEPA filters, I would also point out the following. I think that we should not be afraid of comparing ourselves with other animals. Bear with me. Humans, not unlike domestic dogs and cats, benefit from being exposed to a wide variety of novel sensory inputs. If you enjoy scents, for example, it would be advisable to order a set of essential oils or perfume samples in order to trick your brain into thinking you are exploring a larger area than you are. Apparently, for example, big cats in captivity are more engaged and less depressed when you spray Calvin Klein perfumes on their territory. Alternatively, if scent is not something you care about, think of perhaps increasing the repertoire of visual art, dance, food, touch, and music you are exposed to on a daily basis. This, I suggest, will help you keep depression away (for a while longer).

Caption: Just a little bit of behavioral enrichment for you! 🙂

Finally (self-promotion ahead), if you have time on your hands, and you’ve been meaning to dive deeper into Qualia Computing, this might be your chance. I’d suggest you start out with the following three resources:

  1. Top 10 Qualia Computing Articles
  2. Glossary of Qualia Research Institute Terms
  3. Every Qualia Computing Article Ever

And if you are really hard core, feel free to reach out to the Qualia Research Institute to help with volunteer work. Also we are going to be doing virtual internship cycles in April, May, and June, so you can stay home and safe and still collaborate with us. But shh! It’s a secret! (Wait, how come it’s a secret but you now know about it? Well, because you’ve scrolled all the way here, that’s some commitment!).

The End


* A more accurate representation might require the use of directed edges to encode asymmetrical contact relationships. For example: the cleaning crew of a hotel might be more exposed to the guests than the guests are exposed to the crew. Also, when two people who have very different habits of hygiene meet, the cleaner person is more likely to get the short end of the stick transmission-wise.

** It is worth pointing out for information networks the “degree of interaction” between nodes is extremely skewed. You may have a thousand friends on Facebook, but the number of people you are likely to interact on a daily basis will be a tiny subset of them, perhaps on the order of 0 to 20. And among the people you interact with, you are likely interacting much more word-count-wise with some than with the others. Indeed, if you plot the number of words exchanged in private messages between people in an information network, the distribution follows a long-tail.

*** In the long-run, this may also have to apply to information networks. Whether information networks will need also some level of top-down control will be a difficult question to answer that requires a complex cost-benefit analysis beyond the scope of this article. The most important variables being (a) what the benefits of fully-free communication are, and (b) the density and severity of memetic hazards in idea-space, in conjunction with the nature of intellectual selection pressures in future societies. If it turns out that people above a certain level of education and intelligence in a future with far more advanced science and engineering are extremely likely to encounter what Nick Bostrom calls “black balls”, there might be no way around developing tight controls on information networks for the safety of everyone. It this happens, we could also use many of the strategies outlined in this article for contact networks. After all, viruses are related to contact networks in the same way as meme hazards are related to information networks.

**** Of course, in some ways this is more about collective emotional processing than about object-level problem solving.

***** It is worth noting that the better air quality might buffer a bit against these negatives.

Qualia Production Presents: “The Seven Seals of Security” (and Other Communications from QRI Sweden)

By Maggie Wassinge and Anders Amelin (now QRI Sweden and HR helpers; see previous letters)

CosmicImpact

Jewelry by Anders and Maggie (see: Quantifying Bliss for the reference to “C, D, N”)

Hi everyone!

It’s Anders and Maggie in Stockholm, Sweden, here. Volunteers in human resource coordination for the QRI.

We would like to hereby announce our commitment to donate fifty thousand dollars to the Qualia Research Institute for research related to the mathematical modeling of phenomenological valence.

We are pretty much just your ordinary Swedish transhumanist couple. With a passion for finding out from first principles how things work. We whole-heartedly agree with Elon Musk that at the end of the day, excellence is the only passing grade. Over the last couple of years we have arrived at the solid conclusion that the biggest bonanza in effective altruism could only be realized by first of all solving valence. Symbolically, in comedy form, this is like first spending the necessary computational resources to arrive at the conciseness of 42 as “the answer”, before it can be determined what the right questions must then be. In our book it is with no doubt the Qualia Research Institute which corresponds to “Deep Thought” in what Elon Musk has called “the best philosophy book ever”: The Hitch-Hiker’s Guide to the Galaxy. Seriously here, it is advisable to balance this with a bit of David Pearce also, but indeed we do believe an encouraging “Don’t Panic” is in fact compatible with the laws of nature in this universe. Immense reward is there for those who roll up their sleeves and start working systematically from first principles.

But again, excellence is the only passing grade. The universe is no picnic. It is a field of seemingly infinite potentialities, all of which are open to exploration and exploitation. It is still unknown what the proto-states of sentience are intrinsically like, but it is clear that biological evolution works as an optimization engine for valence polarization. A “passing grade” for a long-term sustainable and prospering technological civilization must involve a universally global first-principles solution to the horrific downside of this: suffering. That solution must be combined with optimal development of the state space of positive valence and intelligence. It seems plausible that experienced negative valence is a computationally economic way for evolution to drive behavior when the implementation is in biochemistry. However, information processing can also be done non-consciously, and it stands to reason that all the informational saliency achieved via negative valence experience can instead be had via non-conscious processes which would be available to future suitably modified embodiments of intelligence.

The QRI is the only real player in this game so far, as our civilization takes its first baby steps towards maturity. In the domain of effective altruism, the Qualia Research Institute today corresponds to what bitcoin was when first launched. The difference is that the QRI doesn’t just promise to be a novel medium of exchange, but a novel competence about the first principles of well-being!

During the couple of years it took for us to come to the above conclusions, we set aside every penny we could spare. That became the fifty thousand we are now committing to the QRI. If enough others with the same visions were to do the same thing, soon enough it could begin adding up to real money. Money which at this foundational stage stands at quite a favorable exchange rate with respect to the ultimate currency of the universe: positive emotional valence.

Infinite bliss to everyone from a couple of Scandinavian old-timers!HEA-2020-01-19

HEA-LENA

High Entropy Alloy (Al + Ti + Cr + Mo + W) and Low-Entropy Non-Alloy (Ti) – made by Anders and Maggie. If non-materialist physicalist idealism (i.e. panpsychism that respects physics) is true, what do these bundles of baryonic matter feel like from the inside?


Letter IV: On Psychonautics

Psychedelic trippers put effort into trying to interpret what it all means ontologically. Plant spirits may be at work, or one taps into the collective unconscious or is simulated by some alien superintelligence.

The QRI could perhaps guide interested psychonauts in the direction of writing more scientifically productive reports.

A scientifically minded tripper needs to start with the realization that human beings are perfect psychonauts because our brains have an enormous excess capacity over what is minimally required to perform any one of the tasks that we do in everyday waking life. The highly unusual aspect of human brains is that they can produce general intelligence. This is rare in nature but when you have it, you assume it to be the normal state of affairs.

Trippers are often in disbelief over the ability of human brains to produce the fantastic content of psychedelic experiences. As if there is suddenly a superpower there which one never uses when sober. How can that be? It must be something supernatural going on, right? Actually, no. Not that we should rule out the “supernatural” a priori but it is not necessary.

The human mind uses a superpower all the time. One which is hidden in plain view, we might say. It is the superpower of selecting from a huge range of possibilities for what the mind could be doing, and homing in on exactly the one choice in every moment that is most appropriate right then and there. When those tight constraints are relaxed the human brain becomes a system which can explore far and wide in qualia state-space.

Intelligence is a phenomenon which uses multiple optimization points to converge on some invariance. At the theoretical efficiency maximum this takes surprisingly (to us) little raw processing power. A jumping spider does not display less strategic and tactical intelligence than a human does when hunting. The spider’s neural network is very much smaller than the human’s but the evolutionary fitness search available for evolving small, numerous and quickly reproducing creatures is much larger than for animals like us. For us it is not so much a question of evolution having optimized what every cell does, but one of having added more and more cells to increase overall performance.

The spider’s brain probably contains far less sub-optimal “spaghetti code” than the human’s. It is possible that the spider has access to exquisitely fine-tuned qualia for the crucial task of sneaking up on big, highly dangerous prey and bringing it down without botching the job. On the other hand, there might not be much opportunity for spiders to evolve general intelligence since they have already done away with everything that is “useless” for their sober everyday lives.

Friendly-jumping-spider-Thomas-Shahan-17exizc

“Does my brain contain less spaghetti code than yours?”

A human brain is a mass of excitation-inhibition “spaghetti” which defies belief. An almost ultimate jack of all trades but master of none which cannot quite produce the hunting skills of the spider but can instead do a billion other things that the spider could not even in principle learn how to do.

It is the billion other things that we could do but don’t, which is the human superpower, not the few things that we actually do on a sober basis. This is a power which can be harnessed for psychonautics. You’ve got an inner-space warp drive in your head. Aptly named. 🖖


Letter V: Exciting Research Leads

Here are some suggestions for titles of essays and research papers the QRI could write if we had the resources.

  1. “Alloy, anneal, quench and temper: Forging a blade to cut mind at the joints”
  2. “Play me like a violin: A compressibility analysis of neuro-acoustic patterns captured during person to person interaction”
  3. “Leadership and consonance: Aggregate neuro-acoustic compressibility as a proxy for computational efficiency of human group intelligence”
  4. “Neural annealing through laughter: Neuro-acoustics of humor as a factor for healthy mental adjustment”
  5. “The tree of music: An annealable branching tuning-fork model for nervous systems”
  6. “Same but different: Suggesting a qualia analogue for the comparative planetology of Earth and Titan”
  7. “Music of life: Consonance, dissonance, noise and symmetry as explanatory elements for evolution from single cells to human minds”
  8. “Compartments of harmony bounded by dissonance: A neuro-acoustic model of domain specificity in cognition”

The Seven Seals of Security or Safety Through Uncertainty – Transhumanist Satire

This slideshow requires JavaScript.


Letter VI: Earth as an Engine of Qualia Diversity

Handwaving Johnson & Gómez-Emilsson’s law about the surprisingly large size of qualia state space:

Presume that consciousness and matter are interconnected information structures. Can any useful parallels be drawn from the matter domain of outer space to the consciousness domain of inner space? Consider that planets, as a group, are subject to variation and (anthropic) selection. An interconnection point is provided by observation selection: Certain planetary properties far from the universe median are going to be found by intelligent conscious observers for their own planet of origin. A small subset of conscious observers are the ones who, like humans, have general intelligence and broad curiosity. Those observers are the few who observe more and more aspects of their own planet as well as adjacent space and the state space of matter at large, and ultimately perhaps also of consciousness at large. The evolutionary reproductive selection of such observers is not the default condition of all life but rather it is conditional upon even more unusual properties of their planet of origin than for the average life-bearing planet.

Conclusion: Earth is likely to be a highly unusual planet, and human consciousness is likely to be a highly unusual seat of experience. They are causally linked. A structural property they share could be a high level of diversity but never reaching cosmically global extremes on any single parameter. A Jill of all trades planet is married to a Jack of all trades mind.

While fairly good at impressively many trades, Jack and Jill are master and mistress of none. For a tentative and very loose analogy which may be better than nothing, let’s say planet Earth is like the human mind. The other planets in the Solar System are like altered human minds and some animal minds. Some basic properties like gravity, roundness and rotation are common to all the planets. Corresponding to suggested basic features of biologically evolved sentience, such as valence and some sensory modalities.

Then we follow Slartibartfast to the fjords of Norway. Here we see how Earth differs in diversity compared with the other “animals”. The planet’s surface is an energetic 3-phase regime. Solid crust, liquid water and solid water under highly dynamic conditions. Not widely separated like on Europa but forming extended areas of contact where unusual complexity emerges. It’s worth an award, really. (No, not Belgium…).

Human cognition is like Earth with its’ coasts and mountain ranges. A “just right” quantity and proportionality of ingredients is what allowed self-organization of Earth’s environmental complexity and its’ endurance over time via the mechanism of prolonged core solidification and plate tectonics. An unusual state of affairs in nature. It’s not unexpected in principle, only rare in actual existence. The same may go for evolution of the general cognition accessible to human minds.

A type of mind which is generally competent over multiple domains of agency cannot function as such if not many crucial parameters in its’ architecture fall within a tight range of “just right and not too much nor too little”. Or, in Swedish, “lagom”. If you loosen that constraint, such as by ingesting 5 grams of mushrooms blindfolded, your mind will clearly no longer function on your job or even in your body. But in exchange for giving up on that functionality as agent, you can max out on stuff like… well, it’s beyond words.

General intelligence is not compatible with an easy achievement of extreme states of consciousness, though as a less frequently added mental ingredient for a group intelligence (like human hunter-gatherers) extreme states can be hypothesized to enhance abilities of that group intelligence.

But what does the current human “master of none” in qualia rendering imply for the future of consciousness, and what about cosmic matter beyond the neighboring planets?

Beyond the Solar System we find many types of stars, black holes, dark matter and various ultra-thin, ultra-dense, ultra-cold, or ultra-hot configurations of matter in the wider domain of spacetime. Nature usually has not developed nonliving matter into configurations with even remotely as high a complexity as for living matter, simply because of no evolutionary selection pressures. Some nonbiological matter objects could be strong qualia generators just by chance, though. The Sun comes speculatively and punlessly to mind. Doing an IIT and a CDNS analysis on its’ surface magnetized plasma wave patterns may not be entirely far-fetched. But the big promise for expanding the diversity of actualized sentience comes through engineering. Jack and Jill is the couple who can pull that off, and their offspring can then grow up in that fabulous new landscape of experience. For they can become masters and mistresses. Dominatrices, even. The reason being that while the parents are tightly constrained experientially, the kids need not be.

For an efficiently organized advanced technological civilization, the constraints of being a highly general and resilient intelligence can be placed high up on the group level. Individual seats of experience with the sizes of today’s human or animal brains, say, can then be allowed to render experiential states more specialized to feel meaningful, enjoyable and worthwhile. (A dystopian version could instead generate unimaginable suffering, of course. Need to watch out…).

Earth is by far the most diverse planet in the Solar System, but it does not have the deepest ocean, the tallest mountain, the highest gravity, the hottest days, the most explosive volcanoes or the most intense thunderstorms. Human minds who have only experienced their evolved biologically functional mental states have not reached the consciousness state space equivalents of the extreme environments on the other planets. They have never snowboarded down the tellurobismutite condensate slopes on Maxwell Montes or been ejected on a ballistic trajectory by a sulfur dioxide plume from Tvashtar Patera. These things may be comparable to being a bat or taking psilocybin. As different from sober human experience as they are, they still merely hint at the range of possible experiences in the qualia state space opening up beyond. If all goes well, there will be psychonauts of the future who are children of Earth and able to engineer any form of matter and energy into conscious brain architectures. They would become what Max Tegmark has called “Life 3.0”.

Either that or, in a hopefully not terribly more likely scenario portrayed by imagined future historians, humanity stayed obsessed with the circulation of money to the detriment of all else.

This planet has – or rather had – a problem, which was this: most of the people living on it were unhappy for pretty much of the time. Many solutions were suggested for this problem, but most of these were largely concerned with the movement of small green pieces of paper, which was odd because on the whole it wasn’t the small green pieces of paper that were unhappy.” ― Douglas Adams, The Hitchhiker’s Guide to the Galaxy 🌎


bsj0p7j1yl821

Earth as an Engine of Qualia Diversity

One for All and All for One

By David Pearce (response to Quora question: “What does David Pearce think of closed, empty, and open individualism?“)


Vedanta teaches that consciousness is singular, all happenings are played out in one universal consciousness and there is no multiplicity of selves.

 

– Erwin Schrödinger, ‘My View of the World’, 1951

Enlightenment came to me suddenly and unexpectedly one afternoon in March [1939] when I was walking up to the school notice board to see whether my name was on the list for tomorrow’s football game. I was not on the list. And in a blinding flash of inner light I saw the answer to both my problems, the problem of war and the problem of injustice. The answer was amazingly simple. I called it Cosmic Unity. Cosmic Unity said: There is only one of us. We are all the same person. I am you and I am Winston Churchill and Hitler and Gandhi and everybody. There is no problem of injustice because your sufferings are also mine. There will be no problem of war as soon as you understand that in killing me you are only killing yourself.

 

– Freeman Dyson, ‘Disturbing the Universe’, 1979

Common sense assumes “closed” individualism: we are born, live awhile, and then die. Common sense is wrong about most things, and the assumption of enduring metaphysical egos is true to form. Philosophers sometimes speak of the “indiscernibility of identicals”. If a = b, then everything true of a is true of b. This basic principle of logic is trivially true. Our legal system, economy, politics, academic institutions and personal relationships assume it’s false. Violation of elementary logic is a precondition of everyday social life. It’s hard to imagine any human society that wasn’t founded on such a fiction. The myth of enduring metaphysical egos and “closed” individualism also leads to a justice system based on scapegoating. If we were accurately individuated, then such scapegoating would seem absurd.

Among the world’s major belief-systems, Buddhism comes closest to acknowledging “empty” individualism: enduring egos are a myth (cf. “non-self” or Anatta – Wikipedia). But Buddhism isn’t consistent. All our woes are supposedly the product of bad “karma”, the sum of our actions in this and previous states of existence. Karma as understood by Buddhists isn’t the deterministic cause and effect of classical physics, but rather the contribution of bad intent and bad deeds to bad rebirths.

Among secular philosophers, the best-known defender of (what we would now call) empty individualism minus the metaphysical accretions is often reckoned David Hume. Yet Hume was also a “bundle theorist”, sceptical of the diachronic and the synchronic unity of the self. At any given moment, you aren’t a unified subject (“For my part, when I enter most intimately into what I call myself, I always stumble on some particular perception or other, of heat, cold, light or shade, love or hatred, pain or pleasure. I can never catch myself at any time without a perception, and can never observe anything but the perception” (‘On Personal Identity’, A Treatise of Human Nature, 1739)). So strictly, Hume wasn’t even an empty individualist. Contrast Kant’s “transcendental unity of apperception”, aka the unity of the self.

An advocate of common-sense closed individualism might object that critics are abusing language. Thus “Winston Churchill”, say, is just the name given to an extended person born in 1874 who died in 1965. But adhering to this usage would mean abandoning the concept of agency. When you raise your hand, a temporally extended entity born decades ago doesn’t raise its collective hand. Raising your hand is a specific, spatio-temporally located event. In order to make sense of agency, only a “thin” sense of personal identity can work.

According to “open” individualism, there exists only one numerically identical subject who is everyone at all times. Open individualism was christened by philosopher Daniel Kolak, author of I Am You (2004). The roots of open individualism are ancient, stretching back at least to the Upanishads. The older name is monopsychism. I am Jesus, Moses and Einstein, but also Hitler, Stalin and Genghis Khan. And I am also all pigs, dinosaurs and ants: subjects of experience date to the late Pre-Cambrian, if not earlier.

My view?
My ethical sympathies lie with open individualism; but as it stands, I don’t see how a monopsychist theory of identity can be true. Open or closed individualism might (tenuously) be defensible if we were electrons (cfOne-electron universe – Wikipedia). However, sentient beings are qualitatively and numerically different. For example, the half-life of a typical protein in the brain is an estimated 12–14 days. Identity over time is a genetically adaptive fiction for the fleetingly unified subjects of experience generated by the CNS of animals evolved under pressure of natural selection (cfWas Parfit correct we’re not the same person that we were when we were born?). Even memory is a mode of present experience. Both open and closed individualism are false.

By contrast, the fleeting synchronic unity of the self is real, scientifically unexplained (cfthe binding problem) and genetically adaptive. How a pack of supposedly decohered membrane-bound neurons achieves a classically impossible feat of virtual world-making leads us into deep philosophical waters. But whatever the explanation, I think empty individualism is true. Thus I share with my namesakes – the authors of The Hedonistic Imperative (1995) – the view that we ought to abolish the biology of suffering in favour of genetically-programmed gradients of superhuman bliss. Yet my namesakes elsewhere in tenselessly existing space-time (or Hilbert space) physically differ from the multiple David Pearces (DPs) responding to your question. Using numerical superscripts, e.g. DP^564356, DP^54346 (etc), might be less inappropriate than using a single name. But even “DP” here is misleading because such usage suggests an enduring carrier of identity. No such enduring carrier exists, merely modestly dynamically stable patterns of fundamental quantum fields. Primitive primate minds were not designed to “carve Nature at the joints”.

However, just because a theory is true doesn’t mean humans ought to believe in it. What matters are its ethical consequences. Will the world be a better or worse place if most of us are closed, empty or open individualists? Psychologically, empty individualism is probably the least emotionally satisfying account of personal identity – convenient when informing an importunate debt-collection company they are confusing you with someone else, but otherwise a recipe for fecklessness, irresponsibility and overly-demanding feats of altruism. Humans would be more civilised if most people believed in open individualism. The factory-farmed pig destined to be turned into a bacon sandwich is really youthe conventional distinction between selfishness and altruism collapses. Selfish behaviour is actually self-harming. Not just moral decency, but decision-theoretic rationality dictates choosing a veggie burger rather than a meat burger. Contrast the metaphysical closed individualism assumed by, say, the Less Wrong Decision Theory FAQ. And indeed, all first-person facts, not least the distress of a horribly abused pig, are equally real. None are ontologically privileged. More speculatively, if non-materialist physicalism is true, then fields of subjectivity are what the mathematical formalism of quantum field theory describes. The intrinsic nature argument proposes that only experience is physically real. On this story, the mathematical machinery of modern physics is transposed to an idealist ontology. This conjecture is hard to swallow; I’m agnostic.

Bern, 20. 5. 2003 Copyright Peter Mosimann: Kuppel

One for all, all for one” – unofficial motto of Switzerland.

Speculative solutions to the Hard Problem of consciousness aside, the egocentric delusion of Darwinian life is too strong for most people to embrace open individualism with conviction. Closed individualism is massively fitness-enhancing (cfAre you the center of the universe?). Moreover, temperamentally happy people tend to have a strong sense of enduring personal identity and agency; depressives have a weaker sense of personhood. Most of the worthwhile things in this world (as well as its biggest horrors) are accomplished by narcissistic closed individualists with towering egos. Consider the transhumanist agenda. Working on a cure for the terrible disorder we know as aging might in theory be undertaken by empty individualists or open individualists; but in practice, the impetus for defeating death and aging comes from strong-minded and “selfish” closed individualists who don’t want their enduring metaphysical egos to perish. Likewise, the well-being of all sentience in our forward light-cone – the primary focus of most DPs – will probably be delivered by closed individualists. Benevolent egomaniacs will most likely save the world.

One for all, all for one”, as Alexandre Dumas put it in The Three Musketeers?
Maybe one day: full-spectrum superintelligence won’t have a false theory of personal identity. “Unus pro omnibus, omnes pro uno” is the unofficial motto of Switzerland. It deserves to be the ethos of the universe.

main-qimg-46d38d2ebcea7325a3f29f7ec454096b

Two Recent Presentations: (1) Hyperbolic Geometry of DMT Experiences, and (2) Harmonic Society

Here are two recent talks I gave. The first one is a talk about the Hyperbolic Geometry of DMT Experiences I gave at the Harvard Science of Psychedelics Club in mid-September (2019). And the second talk is about QRI‘s models of art, which took place in June (2019) at a QRI party in the Bay Area.


The Hyperbolic Geometry of DMT Experiences (@Harvard Science of Psychedelics Club)


Description

Andrés Gómez Emilsson from the Qualia Research Institute presents about the Hyperbolic Geometry of DMT Experiences.

At a high-level, this video presents an algorithmic reduction of DMT phenomenology which imports concepts from hyperbolic geometry and dynamic systems theory in order to explain the “weirder than weird” hallucinations one can have on this drug. Andrés describes what different levels of DMT intoxication feel like in light of a model in which experience has both variable geometric curvature and information content. The benefit of this model cashes out in a novel approach to design DMT experiences in order to maximize specific desired benefits.

See original article: The Hyperbolic Geometry of DMT Experiences: Symmetries, Sheets, and Saddled Scenes

And the Explain Like I’m 5 version: ELI5 “The Hyperbolic Geometry of DMT Experiences”

Presentation outline:

  • Thermometers of Experience
  • The Leaf Metaphor
  • Introduction to Hyperbolic Geometry
  • DMT Levels
  • Level 1: Threshold (& Symmetry Hotel)
  • Level 2: Chrysanthemum
  • Level 3: Magic Eye (& Crystal Worlds)
  • Level 4: Waiting Room
  • Level 5: Breakthrough
  • Level 6: Amnesia
  • Energy – Complexity Landscape
  • Dynamic Systems
  • Fixed Point
  • Limit Cycles
  • Chaos
  • Noise Driven Structures
  • Turbulence
  • Conclusion
  • Super-Shulgin Academy
  • Atman Retreat
  • Wrap-Up

About the speaker: Andrés studied Symbolic Systems at Stanford (and has a masters in Computational Psychology, also from Stanford). He has professional experience in data science engineering, machine learning, and affective science. His research at the Qualia Research Institute ranges from algorithm design, to psychedelic theory, to neurotechnology development, to mapping and studying the computational properties of consciousness. Andrés blogs at qualiacomputing.com.

The Qualia Research Institute (QRI) is a non-profit based in the Bay Area close to San Francisco which seeks to discover the computational properties of experience. QRI has a “full-stack approach” to the science of consciousness which incorporates philosophy of mind, neuroscience, and neurotechnology. For more information see: qualiaresearchinstitute.org

The Harvard Science of Psychedelics Club hosts events on psychedelic research, meditation, neuroscience, students sharing their own experiences, and much more.


Credits:

– Wallpaper group 632 rotating along each symmetry element – Nick Xu

– Many of the images are by Paul Nylander: http://bugman123.com/

– The Hyperbolic Honeycomb images and 3D prints are by Henry Segerman, who also has an awesome Youtube channel where he shows 3D printed math. We used his design to print the Honeycombs we were passing around during the lecture: https://www.youtube.com/user/henryseg

– Space-Time Dynamics in Video Feedback: Jim Crutchfield, Entropy Productions, Santa Cruz (1984): https://youtu.be/B4Kn3djJMCE

Many thanks to Andrew Zuckerman and Kenneth Shinozuka for helping organize this event. And thanks to David Pearce, Michael Johnson, Romeo Stevens, Quintin Frerichs, the anonymous trippers, and many others for making this work real.


And here are the slides:

 

Dynamic Systems animations:



Harmonic Society: 8 Models of Art for a Scientific Paradigm of Aesthetic Qualia


Description

Andrés Gómez Emilsson from the Qualia Research Institute gives a presentation about how art works according to modern neuroscience and philosophy of mind.

The video discusses eight different models of art: models 1 through 4 have been discussed in academic literature and the current intellectual zeitgeist, while models 5 through 8 are new, original, and the direct result of recent insights about consciousness as uncovered by modern neuroscience, philosophy of mind, and the work of the Qualia Research Institute.

Abstract:

We start by assuming that there are real stakes in art. This motivates the analysis of this subject matter, and it focuses where we place our gaze. We examine a total of eight models for “what art might be about”, divided into two groups. The first group of four are some of the most compelling contemporary models, which derive their strength from fields such as philosophy of language, economics, evolutionary psychology, and anthropology. These models are: (1) art as a word only definable in a family resemblance way with no necessary or sufficient features, (2) art as social signaling of desirable genetic characteristics, (3) art as Schelling point creation, and (4) art as the cultivation of sacred experiences. These four models, however enlightening, nonetheless only account for what David Marr might describe as the computational level of abstraction while leaving the algorithmic and implementation levels of abstraction unexamined. They explain what art is about in terms of why it exists and what its coarse effects are, but not the nature of its internal representations or its implementation. Hence we propose a second group of four models in order to get a “full-stack” view of art. These models are: (5) art as a tool for exploring the state-space of consciousness, (6) art as a method for changing the energy parameter of experience, (7) art as activities that induce neural annealing (which implements novel valence modulation, i.e. surprising pain/pleasure effects), and (8) art as an early prototype of a future affective language that will allow diverse states of consciousness to make sense of each other. These frameworks address how art interfaces with consciousness and how its key valuable features might be implemented neurologically. We conclude with a brief look at how embracing these new paradigms could, in principle, lead to the creation of a society free from suffering and interpersonal misunderstanding. Such a society, aka. Harmonic Society, would be designed with the effect of guaranteeing positive valence interactions using principles from a post-Galilean science of consciousness.

———————–

The 8 models of art are:

1. Art as family resemblance (Semantic Deflation)

2. Art as Signaling (Cool Kid Theory)

3. Art as Schelling-point creation (a few Hipster-theoretical considerations)

4. Art as cultivating sacred experiences (self-transcendence and highest values)

5. Art as exploring the state-space of consciousness (ϡ☀♘🏳️‍🌈♬♠ヅ)

6. Art as something that messes with the energy parameter of your mind (ꙮ)

7. Art as puzzling valence effects (emotional salience and annealing as key ingredients)

8. Art as a system of affective communication: a protolanguage to communicate information about worthwhile qualia (which culminates in Harmonic Society).


The presentation is based on an essay published in the Berlin-based art magazine Art Against Art (see: Issue #6).

Article is posted online here: Models 1 & 2, 3 & 4, 5 & 6, 7 & 8.


See more about the Qualia Research Institute at: https://www.qualiaresearchinstitute.org/

Andrés blogs at Qualia Computing: Top 10 Qualia Computing Articles


Infinite bliss!!!


And here are the slides:

State of the Qualia, Fall 2019

Qualia Research Institute’s inaugural newsletter.


What is QRI trying to do?

Our long-term vision is to end suffering. To destroy hell, and to build tools for exploring all the bright futures which come after. To take the Buddha’s vision of 2600 years ago, update it with advanced theory and technology, and make it real for all creatures.

Our medium-term goal is to build a ‘full-stack’ approach to the mind and brain, centered around emotional valence. Critically, better philosophy should lead to better neuroscience, and better neuroscience should lead to better neurotechnology. We’re skeptical of any philosophical approaches that don’t try to “pay rent” by building empirically useful things.

Our short-term deliverables are to refine our tools for evaluating EEG readings of emotionally-intense states (e.g. 5-MeO-DMT), build a hardware platform for non-invasive precision brain stimulation, and release an updated version of our full-stack theory of brain dynamics (‘neural annealing’).

We think we’re on track for all of these goals. On one level this is a huge claim- but as Archimedes said, “Give me a place to stand, and a lever long enough, and I will move the world.” We think we have that lever, and we’re building a place to stand.


Progress to date

Philosophy: over the course of the last few years, we’ve imported and integrated many key insights from our research lineages – in aggregate we believe these form the world’s best map of how to not get confused in navigating the formalization of consciousness. Our paradigm (laid out in Principia Qualia) builds on top of these lineages, and our core philosophical result is the Symmetry Theory of Valence (STV), an information-theoretic approach towards understanding how pleasant an experience is. (STV is important because it’s such a crisp and theoretically significant hypothesis: if it’s right, and we can prove it, the world will shift overnight.) We’ve also done significant philosophical research on the phenomenological nature of time, DMT states, and the logarithmic nature of pain and pleasure, to pick a few topics. Read more.

Neuroscience: Over the past two years we’ve put together a substantial push into neuroscience, which is showing increasing traction. Scott Alexander recently noticed how we actually beat Robin Carhart-Harris and Karl Friston (the world’s most-influential neuroscientist!) to the punch with an annealing model for psychedelics; this also forms the basis for (we believe) the world’s best neuroscience paradigm for explaining the mechanisms and effects of meditation and was mentioned in Tim Ferriss’s newsletter. We’re also a center of gravity (along with Selen Atasoy, its creator) for phenomenological interpretation of the Connectome-Specific Harmonic Wave (CSHW) paradigm.

Organization: This year saw QRI run a successful summer internship program in San Francisco with 3 superstar interns, Andrew and Kenneth from Harvard and Quintin from Washington University. More recently, we spent a month in Boston on a ‘work sprint’, and ended up giving 3 talks at Harvard and 1 at MIT, with plans to do more at various Ivies this fall. One of the most fun outputs of this summer was Zuck’s QRI explainer video (4.5 minutes).

I’m ridiculously proud of everything we’ve accomplished — a few years ago, QRI was mostly a promissory note that a formalist approach to consciousness could produce something interesting. Today, I can say with a straight face that QRI is one of the premier consciousness research centers in the world, releasing top-tier cross-disciplinary research every few months.


What’s next

Our current push is centered on empirically validating the Symmetry Theory of Valence (STV) and integrating it with our neuroscience stack. This involves releasing an updated version of our ‘neural annealing’ neuroscience paradigm, building a hardware platform for patterned stimulation, and refining our “CDNS” algorithm to work with EEG, with an eye toward using 5-MeO-DMT EEG data to evaluate STV. It looks like 2020 will be a breakout year for us.


What we need

Frankly speaking, we need your support. Building things is hard, and what we’re doing has never been done before. Our core bottlenecks are moneypeople, and executive function.

Money: so far, QRI has been mostly self-funded from the co-founders’ personal savings. I’m proud of everyone’s commitment, but this is unsustainable, especially as we attempt more ambitious projects. At this point, we have enough results to make a firm case that supporting QRI is likely to produce an awesome amount of value for the world, potentially literally the most leveraged philanthropic effort existing today. Frankly speaking the future we’re building won’t get built if we don’t secure funding, and I ask for your help and generosity. You can donate here. (Thank you to our key supporters this year! Your efforts allowed us to onboard three amazing interns and will support building things this Fall.)

People: high-quality organizations are incredibly hungry for high-quality people. QRI is no exception. If you think you have something to offer, please get in touch about collaboration, volunteering, research, and so on. Importantly, we don’t just need researchers: we’re hungry for operations people, and looking for help with getting on podcasts (speaking with Sam Harris and Joe Rogan would both be big wins!), organizing or getting speaking engagements (especially in the Bay), and even small, fun projects like making a series of QRI meme t-shirts.

Executive function: there’s a natural tension between research and organization-building. Paul Graham talks about this in Maker’s Schedule, Manager’s Schedule; research needs big uninterrupted chunks of time, whereas management and outreach involves lots of small tasks. Speaking personally, I struggle with keeping up with all our inquiries while also doing ‘deep work’. I would offer three thoughts to potential volunteers:

  1. Please have patience if we don’t get back to you right away. We’re juggling as best we can!
  2. When possible, we absolutely love it when people can figure out their own way to help — I can think of few things more pleasant to see in my inbox than someone sharing a “by the way, I made this” link to e.g. a nice HTML version of Principia Qualia, an explainer video for various QRI concepts, a deep review of our experimental method, etc.
  3. One of the highest leverage ways to help is to build infrastructure for us. E.g., if you’re familiar with the main themes of our work and want to be a volunteer coordinator for us, that would be an amazing force-multiplier.

I am incredibly proud of what we’ve done so far, and incredibly excited about the future. We will need your help to build it.

All the best,

Michael Edward Johnson

Executive Director, Qualia Research Institute

Announcement: QRI Presentations at Harvard and NYU

The Qualia Research Institute is in Boston for the month of September.

Yesterday I gave a presentation about the Logarithmic Scales of Pleasure and Pain at the Harvard Effective Altruism student group (video coming soon! – slides).

I will be giving a presentation about The Hyperbolic Geometry of DMT Experiences at the Harvard Science of Psychedelics Club on September 17, at 8pm (Sever 113). The venue is apparently quite large so we are not going to run out of capacity for this talk. Feel free to amplify this as a Schelling point for smart rational psychonauts to meet one another.

Michael Johnson will also be giving a presentation at the Harvard Science of Psychedelics Club: 21st of September (7PM), at the Fong Auditorium in Boylston Hall.

Finally, I’ll be giving a presentation at Effective Altruism NYC (also about Logarithmic Scales) on September 23rd (7PM), at 334 E 30th St #3. See: facebook event.

Both Harvard talks are free and open to the public. The venues have a large number of seating spots, so all you need to do is show up. For the NYU talk the organizers of the event would like you to get a (free) ticket first in order to RSVP and secure a seat as the venue is not very large.

We will record these talks, share them online, and add them to the list of media appearances.

 


 

If you are in Boston, want to meet up with us, but can’t make it to any of the talks: I will show up to the SSC meetup on the 20th of September wearing a Qualia Research Institute shirt. Feel free to find me and say hi.


Many thanks to: Andrew Zuckerman, Kenneth Shinozuka, Jacob Shwartz-Lucas, and
Anisha Zaveri for organizing these events!

Atman Retreat: Safe, Legal Psilocybin Experiences in Jamaica

Atman Retreat provides safe, legal psychedelic experiences outside of Montego Bay, Jamaica.

  • Upcoming retreat dates:
    • September 23-26 (7 spots left; as of September 2nd)
    • September 27-30 (5 spots left; as of September 2nd)
    • November 13-16
    • November 17-20
       
  • Atman recently introduced tiered pricing and a low-income ticket program.

About Atman Retreat (source)

Psychedelics are known to produce profound, meaningful, transformative experiences when used in a safe and intentional manner.1 However, many people don’t have access to psychedelics, or to a safe setting within which to use them. Others simply don’t want to break the law. Until we adopt more compassionate, evidence-based drug policy, there are few ways for people to experience these extraordinary states of consciousness safely and legally. Atman Retreat exists to fill this gap.

Our core mission is to help people explore the full potential of the psychedelic experience, in all its healing, transformative, and transcendent qualities. Retreats are held in Jamaica, where psilocybin mushrooms are legal. Participants stay at a spacious villa, with comfortable rooms and a scenic private beachfront. Our team of experienced facilitators is passionate about creating space for inner transformation, insight, and breakthroughs.

Whether you’re completely new to psychedelics, or a seasoned psychonaut interested in a different kind of journey, Atman Retreat is a complete 4-day experience that allows you to explore psychedelics safely, legally, and in a setting designed to maximize their benefits.

When you feel ready, you can apply here.



Why am I sharing this announcement? I think that Atman Retreat is especially suited to Qualia Computing readers for the following three reasons:

  1. I know some of the people who started it and I can confirm that they are good, rational, and tactful people trying to make the world a better place.
  2. The retreat is open-ended in nature. Sadly, most legal psychedelic retreats come with heavy “memetic baggage” in the form of unquestioned beliefs about spirituality or strong ideological commitments. At the very least, the focus of most legal psychedelic retreats is explicitly therapeutic. Atman Retreat is a good place to simply explore your own mind and study the nature of consciousness without having to accept any spiritual, therapeutic, or ideological framework. For example, their website has a research section which lists and summarizes recent studies on the effects of psilocybin, which shows a willingness by the staff to engage with a scientific approach to psychedelics.
  3. The participants in previous cohorts of Atman Retreat have been very aligned with both Effective Altruism and the scientific study of consciousness. In other words, the attendees are typically smart, curious, ethical, and epistemologically sound.

To this, I will add that one of the visions of the Qualia Research Institute is to create an empirical consciousness research center in which psychedelics are taken by the brightest scientists, philosophers, and engineers to explore alien state-spaces of consciousness directly.

Indeed, consciousness research is currently at a pre-Galilean state, where brain scientists refuse to “look through the telescope” so to speak (or at least if they do, they are not talking about it publicly). Scientific culture is such that discussing the EEG measurements of members of the general public under the influence of psychedelics is acceptable but as soon as one talks about one’s own direct experience with such compounds one’s scientific credibility becomes suspect.

We can change this, and one of the first steps is to establish a legal framework for consciousness researchers to be able to engage in fruitful self-experimentation. Real scientific progress on consciousness will only take place with a twin track that combines both analysis of third-person data and the use of an empirical research methodology of direct experience by the researchers themselves. By pointing to the Atman Retreat I am hoping to elevate it to the status of a sort of Schelling point for rational psychonauts to converge on for the time being.

Perhaps this is a crucial first step in establishing a legally-viable Super-Shulgin Academy* for a post-Galilean science of consciousness.

b1axth3hfk221

Jamaica is waiting for you!



*From the QRI Glossary

Super-Shulgin Academy (coined by David Pearce; ref: 12345678): This is a hypothetical future intellectual society that investigates consciousness empirically. Rather than merely theorizing about it or having people from the general population describe their odd experiences, the Super-Shulgin Academy directly studies the state-space of consciousness by putting the brightest minds on the task. The Super-Shulgin Academy (1) trains high-quality consciousness researchers and psychonauts, (2) investigates the computational trade-offs between different states of consciousness, (3) finds new socially-useful applications for exotic states of consciousness, (4) practices the art and craft of creating ultra-blissful experiences, and (5) develops and maintains a full-stack memeplex that incorporates the latest insights about the state-space of consciousness into the most up-to-date Theory of Everything.

Featured image: source.

Why Care About Meme Hazards and Thoughts on How to Handle Them

By Justin Shovelain and Andrés Gómez Emilsson

Definition

Nick Bostrom defines an “Information Hazard” as: “A risk that arises from the dissemination or the potential dissemination of (true) information that may cause harm or enable some agent to cause harm.” A more general category is that of “Memetic Hazard”, which is not restricted to the potential harms of true information. False claims and mistaken beliefs can also produce harm, and should thus also be considered in any ethically-motivated policy for information dissemination. 

Introduction

Perhaps one of the best known analysis of meme hazards is the work of Nick Bostrom concerning: Information Hazards, the Unilateralist’s Curse, and Singletons. His focus could roughly be described as one of classifying the types of situations that can give rise to information hazards. A parallel set of problems to that of categorizing memetic hazards is the problem of coming up with policies for dealing with them, and the problem of convincing people that they should care. In this post we suggest some basic heuristics for dealing with meme hazards, and explain why you should care about them even when your work seems unambiguously positive.

Motivation

Why You Should Care

A big problem with getting people to engage with any kind of memetic hazard policy is that it may be perceived as a voluntary constraint on one’s behavior with little to no personal benefit. Nobody (well, at least nobody we know*) gets excited about compliance training at a new job, or inspection day at a manufacturing facility. Subjectively, most people perceive compliance and oversight as something that gets in the way of doing one’s work and as a hassle for one’s organization. That said, there is reason to believe that as the world’s technologies become both more powerful and more widely accessible, that there will be increasingly more dangerous information around. Considering the possible downsides of sharing information will thus become increasingly more important. So at least on a global scale, it will be increasingly more important for people to consider the impact of the information they choose to share. But at an individual level, why would they care about meme hazards policies and not think of them as a bothersome constraint?

Just like there are actions that can help or harm there are ideas that can help or harm. Furthermore, some ideas produce their primary good or bad effect through social transmission, which we can call memes. There are several ways to prevent the harm from memes: not producing them in the first place, not sharing them, or fixing the situation so that when dispersed they do not do damage (before or after dispersal). Let’s call policies to prevent harm from meme hazards, meme hazard policies. Because in a world with increasingly accessible technological power a lot of our largest effects are likely to be produced by memetic hazards, a good way to improve the chances of achieving one’s goals is to tilt things as much as possible towards our goals with good meme hazard policies. It thus makes sense to read works about meme hazard policy and to think about how it bears on one’s work. This way you can improve your implementation and design of meme hazard policies to avoid hampering your own goals. In particular, assuming that you are a rational agent (who both attempts to be epistemically and instrumentally rational) you will generally find that spreading dangerous information that causes large negative effects (even if by accident!) will interfere with your ability to carry out your own goals.

Why Good Work May Have Bad Net Effects

When one engages in very novel research one should be careful to consider the ratio with which one’s work advances desired outcomes relative to undesired outcomes. This may yield surprising results for the net effect of one’s work, sometimes flipping the net effect of research that at first may have seemed unambiguously good. For example, Artificial Intelligence Alignment research may in principle increase the chances of unaligned AI by virtue of providing insights into how to build powerful AIs in general. If it is 100 times harder to build an aligned AI than an unaligned AI, and researching AI alignment advances the goal of building unaligned AIs by more than 1/100 relative to how it advances building aligned AIs, then such research would (counter-intuitively) increase the chances of building unaligned AIs relative to aligned AIs.

As another example of how seemingly good work may have bad net effects let’s consider how information mutates in a social network. As discussed in previous articles such as consciousness vs. replicators there is no universal reason why causing large effects and causing good effects have to be correlated (see also: Basic AI Drives and Spreading happiness more difficult than just spreading). With an evolutionary view, it becomes clear that memes that are good and beneficial to everyone can eventually evolve to become bad and harmful to everyone if by doing so they gain a reproductive edge. As a rule of thumb, you can expect ideas to mutate towards:

    1. Noise due to generation loss
      1. Unless your copying method is perfect or has error correction methods, every time you make a copy of something the information will degrade to some extent. This is called generation loss and it leads to more noisy copies over time.
    2. Simplicity
      1. Since information transmission incurs a cost, simpler mutations of the meme have a reproductive edge.
    3. Ease of memorization and communication
      1. Mutations to the memes that are easier to memorize and communicate are more likely to spread.
    4. Inciting arms races
      1. If the meme provides a competitive edge in a zero-sum game, it may give rise to an arms race between agents who engage in such zero-sum game. For example, a new marketing method discovered by a given agency would force other marketing agencies to invest in researching how to achieve the same results. Since the rate of evolution of a meme is partly determined by the rate at which iterations over it are performed, a lot of memetic evolution takes place in arms races.
    5. Saliency (cognitive, emotional, perceptual, etc.)
      1. Saliency refers to the probability of noticing a given stimuli. Memes that mutate in a way that makes them more noticeable have a reproductive edge. Thus, many memes may over time acquire salient features, such as causing strong emotions.
    6. Uses for social signaling (such as used for signaling intelligence, knowledge, social network, local usefulness, etc.)
      1. Consider the difference between manufacturing a car that focuses exclusively on basic functionality and a car that in addition also signals wealth. Perhaps it would be better if everyone bought the first kind of car because the second kind incites the urge in others to get a new car more often than necessary. Namely, people might want to buy a new car whenever the neighbors have upgraded to a more luxurious car (see: Avoid Runaway Signaling in Effective Altruism and Keeping up with the Joneses).
    7. Overselling
      1. As a general heuristic, memes will spread faster when they are presented as better than they really are. Unless there is a feedback mechanism that allows people to know the true value of a meme, those that can oversell themselves will tend to be more common relative to those that are honest about the value they provide.
    8. Usefulness
      1. The usefulness of a meme increases the chances that it will be passed on.

Given considerations like the above, it’s clear that in order to achieve what we want we need to  think carefully about the possible impacts of our research and efforts, even when they seem unambiguously positive. Now, when should one give special thought to memetic hazard policies?

When Should You Care the Most?

meme_hazard_action_space

Meme Hazard Action Space – Worry when the ideas are both novel and have the potential to have large effects

There are two key features of potential memetic hazards that should be taken into account when thinking about whether to pursue the research that is bringing them to life. 

The first one is how large their effects may be, and the second is how novel they are. How large an effect is depends on factors such as how many people it may affect, how intense the effects would be on each person affected, how long the effects would last, and so on. How novel a meme is depends on factors like how many people know about it, how much specialized knowledge you require to arrive at it, how counter-intuitive it is, and so on.

No matter how novel a piece of information may be, if it does not have the potential to cause large effects we can disregard it in the context of a meme hazard policy. When the potential to cause large effects is there but the idea is not very novel, then one should focus on actions to mitigate risks. For instance, if everyone knows how to build nuclear bombs, then the real bottleneck to focus as a matter of policy would be on things like the accessibility to rare or expensive materials needed to build such bombs.

But when the information is both novel and can cause large effects, then the appropriate focus is that of a meme hazard policy based on strategies to handle information dissemination.

Examples

Ignore:

  • What you had for breakfast, yet another number sorting algorithm, how to get the hair of a cat to be more fluffy

Focus on ideas:

  • A more efficient deep learning technique, a chemical to improve exercise response efficiency, a new rationality technique, information on where the world’s biggest tree is

Focus on actions:

  • The idea of guns, the idea of washing hands for sanitary purposes, running an Ayahuasca retreat in the amazon

Suggested Heuristics

yes_no_diagram_3

Suggested Responses

To wrap up, here we provide a very high-level set of suggested heuristics to consider if one is indeed discovering ideas that are both very novel and capable of producing large effects:

  • Develop
    • Develop if you conclude that there is no risk
  • Share
    • Share if you conclude that there is no risk
  • Log your analysis and proceed
    • Store the results of your analysis for future use by others who may overlook the risks and then continue developing or sharing it
  • Think more about it
    • Conclude that it would be valuable to analyze the risks of the meme (e.g. a new technology) further
  • Develop cure
    • Develop a cure of the meme hazard’s downsides
    • This approach may entail selectively sharing the information with people who are highly benevolent, good at keeping secrets, and capable in the relevant domains of expertise
  • Improve the groups that receive it so that it is safe
    • Some information is only risky if certain types of groups get it, so if you change the nature of the groups then there is no risk
  • Framing it so it goes to the right people or only yields good effects
    • The way an idea is posed or framed determines a fair amount of who will read it and how they will act on it
  • Selecting a safe subset to share
    • When you have information it could be that some parts are good or safe to share and you can selectively share those parts
    • Make sure those parts are not sufficient to reconstruct the original (unsafe) information
  • Selecting a safe subset to develop
    • When developing some information it can be that some parts are good or safe to develop and you can selectively develop those parts
  • Selectively share to a subset of people
    • Some information is only risky if certain types of groups get it; if you can aim where the information goes you can avoid the risk
    • Report the information to proper authorities
  • Don’t develop
    • Some information is too risky to develop
  • Don’t share
    • Some information is too risky to share
  • Monitor to see if others move towards developing or sharing it
    • If you’ve identified something risky it may make sense to see if others are developing it or likely to share it so that you can warn them, focus on building a cure, contact authorities, or start changing your actions knowing that a disaster is likely. 
  • Try to decrease the likelihood of rediscovery
    • If it’s really risky you may want to see what you can do about decreasing the likelihood that it is rediscovered

Conclusion

In this post we discussed why you should consider following heuristics to deal with meme hazards as an important part of achieving your goals rather than as a chore or hassle. We also discussed how work that may seem unambiguously good may turn out to have negative effects. In particular, we mentioned the “ratio argument” and also brought up some evolutionary considerations (where memes may mutate in unhelpful ways to have a reproductive edge). We then considered when one should be especially cautious about meme hazards: when the information is both highly novel and capable of producing large effects. And finally, we provided a list of heuristics to consider when faced with novel information capable of producing large effects.

In the future we hope to weave these heuristics into a more complete meme hazard policy for researchers and decision makers working at the cutting edge.


*After posting this article someone contacted us to point out that they in fact love compliance training. This person was very persistent about updating this post with that fact.

Logarithmic Scales of Pleasure and Pain: Rating, Ranking, and Comparing Peak Experiences Suggest the Existence of Long Tails for Bliss and Suffering

TL;DR

Based on: the characteristic distribution of neural activity, personal accounts of intense pleasure and pain, the way various pain scales have been described by their creators, and the results of a pilot study we conducted which ranks, rates, and compares the hedonic quality of extreme experiences, we suggest that the best way to interpret pleasure and pain scales is by thinking of them as logarithmic compressions of what is truly a long-tail. The most intense pains are orders of magnitude more awful than mild pains (and symmetrically for pleasure).

This should inform the way we prioritize altruistic interventions and plan for a better future. Since the bulk of suffering is concentrated in a small percentage of experiences, focusing our efforts on preventing cases of intense suffering likely dominates most utilitarian calculations.

An important pragmatic takeaway from this article is that if one is trying to select an effective career path, as a heuristic it would be good to take into account how one’s efforts would cash out in the prevention of extreme suffering (see: Hell-Index), rather than just QALYs and wellness indices that ignore the long-tail. Of particular note as promising Effective Altruist careers, we would highlight working directly to develop remedies for specific, extremely painful experiences. Finding scalable treatments for migraines, kidney stones, childbirth, cluster headaches, CRPS, and fibromyalgia may be extremely high-impact (cf. Treating Cluster Headaches and Migraines Using N,N-DMT and Other Tryptamines, Using Ibogaine to Create Friendlier Opioids, and Frequency Specific Microcurrent for Kidney-Stone Pain). More research efforts into identifying and quantifying intense suffering currently unaddressed would also be extremely helpful. Finally, if the positive valence scale also has a long-tail, focusing one’s career in developing bliss technologies may pay-off in surprisingly good ways (whereby you may stumble on methods to generate high-valence healing experiences which are orders of magnitude better than you thought were possible).

Contents

Introduction:

  1. Weber’s Law
  2. Why This Matters

General ideas:

  1. The Non-Linearity of Pleasure and Pain
    1. Personal Accounts
    2. Consciousness Expansion
    3. Peak Pleasure States: Jhanas and Temporal Lobe Seizures
    4. Logarithmic Pain Scales: Stings, Peppers, and Cluster Headaches
  2. Deference-type Approaches for Experience Ranking
    1. Normal World vs. Lognormal World
    2. Predictions of Lognormal World

Survey setup:

  1. Mechanical Turk
  2. Participant Composition
  3. Filtering Bots

Results:

  1. Appearance Base Rates
  2. Average Ratings
  3. Deference Graph of Top Experiences
    1. Rebalanced Smoothed Proportion
    2. Triadic Analysis
  4. Latent Trait Ratings
  5. Long-tails in the Responses to “How Many Times Better/Worse” Question

Discussion:

  1. Key Pleasures Surfaced
    1. Birth of Children
    2. Falling in Love
    3. Travel/Vacation
    4. MDMA/LSD/Psilocybin
    5. Games of Chance Earnings
  2. Key Pains
    1. Kidney Stones/Migraines
    2. Childbirth
    3. Car Accidents
    4. Death of Father and Mother
  3. Future Directions for Methodological Approaches
    1. Graphical Models with Log-Normal Priors
  4. Closing Thoughts on the Valence Scale
  5. Additional Material
    1. Dimensionality of Pleasure and Pain
    2. Mixed States
    3. Qualia Formalism
  6. Notes

Introduction

Weber’s Law

Weber’s Law describes the relationship between the physical intensity of a stimulus and the reported subjective intensity of perceiving it. For example, it describes the relationship between how loud a sound is and how loud it is perceived as. In the general case, Weber’s Law indicates that one needs to vary the stimulus intensity by a multiplicative fraction (called “Weber’s fraction”) in order to detect a just noticeable difference. For example, if you cannot detect the differences between objects weighing 100 grams to 105 grams, then you will also not be able to detect the differences between objects weighing 200 grams to 210 grams (implying the Weber fraction for weight perception is at least 5%). In the general case, the senses detect differences logarithmically.

There are two compelling stories for interpreting this law:

In the first story, it is the low-level processing of the senses which do the logarithmic mapping. The senses “compress” the intensity of the stimulation and send a “linearized” packet of information to one’s brain, which is then rendered linearly in one’s experience.

In the second story, the senses, within the window of adaptation, do a fine job of translating (somewhat) faithfully the actual intensity of the stimulus, which then gets rendered in our experience. Our inability to detect small absolute differences between intense stimuli is not because we are not rendering such differences, but because Weber’s law applies to the very intensity of experience. In other words, the properties of one’s experience could follow a long-tail distribution, but our ability to accurately point out differences between the properties of experiences is proportional to their intensity.

We claim that, at least for the case of valence (i.e the pleasure-pain axis), the second story is much closer to the truth than the first. Accordingly, this article rethinks the pleasure-pain axis (also called the valence scale) by providing evidence, arguments, and datapoints to support the idea that how good or bad experiences feel follows a long-tail distribution.

As an intuition pump for what is to follow, we would like to highlight the empirical finding that brain activity follows a long-tail distribution (see: Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches, and Logarithmic Distributions Prove that Intrinsic Learning is Hebbian). The story where the “true valence scale” is a logarithmic compression is entirely consistent with the empirical long-tails of neural activity (in which “neural avalanches” account for a large fraction of overall brain activity).

The concrete line of argument we will present is based on the following:

  1. Phenomenological accounts of intense pleasure and pain (w/ accounts of phenomenal time and space expansion),
  2. The way in which pain scales are described by those who developed them, and
  3. The analytic results of a pilot study we conducted which investigates how people rank, rate, and assign relative proportions to their top 3 best and worst experiences

Why This Matters

Even if you are not a strict valence utilitarian, having the insight that the valence scale is long-tailed is still very important. Most ethical systems do give some weight to the prevention of suffering (in addition to the creation of subjectively valuable experiences), even if that is not all they care about. If your ethical system weighted slightly the task of preventing suffering when believing in a linear valence scale, then learning about the long-tailed nature of valence should in principle cause a major update. If indeed the worst experiences are exponentially more negative than originally believed by one’s ethical system, which nonetheless still cared about them, then after learning about the true valence scale the system would have to reprioritize. We suggest that while it might be unrealistic to have every ethical system refocus all of its energies on the prevention of intense suffering (and subsequently on researching how to create intense bliss sustainably), we can nonetheless expect such systems to raise this goal on their list of priorities. In other words, while “ending all suffering” will likely never be a part of most people’s ethical system, we hope that the data and arguments here presented at least persuade them to add “…and prevent intense forms of suffering” to the set of desiderata.

Indeed, lack of awareness about the long-tails of bliss and suffering may be the cause of an ongoing massive moral catastrophe (notes by Linch). If indeed the degree of suffering present in experiences follows a long-tail distribution, we would expect the worst experiences to dominate most utilitarian calculus. The biggest bang for the buck in altruistic interventions would therefore be those that are capable of directly addressing intense suffering and generating super-bliss.

General Ideas

The Non-Linearity of Pleasure and Pain

true_pleasure_scale

True long-tail pleasure scale (warning: psychedelics increase valence variance – the values here are for “good/lucky” trips and there is no guarantee e.g. LSD will feel good on a given occasion). Also: Mania is not always pleasant, but when it is, it can be super blissful.

true_pain_scale

True long-tail pain scale

As we’ve briefly discussed in previous articles (1, 2, 3), there are many reasons to believe that both pleasure and pain can be felt along a spectrum with values that range over possibly orders of magnitude. Understandably, someone who is currently in a state of consciousness around the human median of valence is likely to be skeptical of a claim like “the bliss you can achieve in meditation is literally 100 times better than eating your favorite food or having sex.” Intuitively, we only have so much space in our experience to fit bliss, and when one is in a “normal” or typical state of mind for a human, one is forced to imagine “ultra blissful states” by extrapolating the elements of one’s current experience, which certainly do not seem capable of being much better than, say, 50% of the current level of pleasure (or pain). The problem here is that the very building blocks of experiences that enable them to be ultra-high or ultra-low valence are themselves necessary to imagine accurately how they can be put together. Talking about extreme bliss to someone who is anhedonic is akin to talking about the rich range of possible color experiences to someone who is congenitally fully colorblind (cf. “What Mary Didn’t Know“).

“Ok”, you may say, “you are just telling me that pleasure and pain can be orders of magnitude stronger than I can even conceive of. What do you base this on?”. The most straightforward way to be convinced of this is to literally experience such states. Alas, this would be deeply unethical when it comes to the negative side, and it requires special materials and patience for the positive side. Instead, I will provide evidence from a variety of methods and conditions.

Personal Accounts

Dried_Tianying_Chillies_Red_Paprika_Hot_Red_Pimiento_Dry_Capsicum_634563228801138323_1

I’ve been lucky to not have experienced major pain in my life so far (the worst being, perhaps, depression during my teens). I have, however, had two key experiences that gave me some time to introspect on the non-linear nature of pain. The first one comes from when I accidentally cut a super-spicy pepper and touched it with my bare hands (the batch of peppers I was cutting were mild, but a super-hot one snuck into the produce box). After a few minutes of cutting the peppers, I noticed that a burning heat began to intensify in my hands. This was the start of experiencing “hot pepper hands” for a full 8 hours (see other people’s experiences: 1, 2, 3). The first two to three hours of this ordeal were the worst, where I experienced what I rated as a persistent 4/10 pain interspersed with brief moments of 5/10 pain. The curious thing was that the 5/10 pain moments were clearly discernible as qualitatively different. It was as if the very numerous pinpricks and burning sensations all over my hands were in a somewhat disorganized state most of the time, but whenever they managed to build-up for long enough, they would start clicking with each other (presumably via phase-locking), giving rise to resonant waves of pain that felt both more energetic, and more aversive on the whole. In a way, this jump from what I rated as 4/10 to 5/10 was qualitative as well as quantitative, and it gave me some idea of how something that is already bad can become even worse.

My second experience involves a mild joint injury I experienced while playing Bubble Soccer (a very fun sport no doubt, and a common corporate treat for Silicon Valley cognotariats, but according to my doctor it is also a frequent source of injuries among programmers). Before doing physical therapy to treat this problem (which mostly took care of it), I remember spending hours introspecting on the quality of the pain in order to understand it better. It wasn’t particularly bad, but it was constant (I rated it as 2/10 most of the time). What stuck with me was how its constant presence would slowly increase the stress of my entire experience over time. I compared the experience to having an uncomfortable knot stuck in your body. If I had a lot of mental and emotional slack early in the day, I could easily take the stress produced by the knot and “send it elsewhere” in my body. But since the source of the stress was constant, eventually I would run out of space, and the knot would start making secondary knots around itself, and it was in those moments where I would rate the pain at a 3/10. This would only go away if I rested and somehow “reset” the amount of cognitive and emotional slack I had available.

The point of these two stories is to highlight the observation that there seem to be phase-changes between levels of discomfort. An analogy I often make is with the phenomenon of secondary coils when you twist a rope. The stress induced by pain- at least introspectively speaking- is pushed to less stressed areas of your mind. But this has a limit, which is until your whole world-simulation is stressed to the point that the source of stress starts creating secondary “stress coils” on top of the already stressed background experience. This was a very interesting realization to me, which put in a different light weird expressions that chronic pain patients use like “my pain now has a pain of its own” or “I can’t let the pain build up”.

1931241794

DNA coils and super-coils as a metaphor for pain phase-changes?

Consciousness Expansion

What about more extreme experiences? Here we should briefly mention psychedelic drugs, as they seem to be able to increase the energy of one’s consciousness (and in some sense “multiply the amount of consciousness“) in a way that grows non-linearly as a function of the dose. An LSD experience with 100 micrograms may be “only” 50% more intense than normal everyday life, but an LSD experience with 200 micrograms is felt as 2-3X as intense, while 300 micrograms may increase the intensity of experience by perhaps 10X (relative to normal). Usually people say that high-dose psychedelic states are indescribably more real and vivid than normal everyday life. And then there are compounds like 5-MeO-DMT, which people often describe as being in “a completely different category”, as it gives rise to what many describe as “infinite consciousness”. Obviously there is no such thing as an experience with infinite consciousness, and that judgement could be explained in terms of the lack of “internal boundaries” of the state, which gives the impression of infinity (not unlike how the surface of a torus can seem infinite from the point of view of a flatlander). That said, I’ve asked rational and intelligent people who have tried 5-MeO-DMT in non-spiritual settings what they think the intensity of their experiences was, and they usually say that a strong dose of 10mg or more gives rise to an intensity and “quantity” of consciousness that is at least 100X as high as normal everyday experiences. There are many reasons to be skeptical of this, no doubt, but the reports should not be dismissed out of hand.

Antoine's_Necklace_Iteration_2

Secondary knots and links as a metaphor for higher bliss

As with the above example, we can reason that one of the ways in which both pain and pleasure can be present in *multiples* of one’s normal hedonic range is because the amount of consciousness crammed into a moment of experience is not a constant. In other words, when someone in a typical state of consciousness asks “if you say one can experience so much pain/pleasure, tell me, where would that fit in my experience? I don’t see much room for that to fit in here”, one can respond by saying that “in other states of consciousness there is more (phenomenal) time and space within each moment of experience”. Indeed, at Qualia Computing we have assembled and interpreted a large number of experiences of high-energy states of consciousness that indicate that both phenomenal time, and phenomenal space, can drastically expand. To sum it up – you can fit so much pleasure and pain in peak experiences precisely because such experiences make room for them.

Let us now illustrate the point with some paradigmatic cases of very high and vey low valence:

Peak Pleasure States: Jhanas and Temporal Lobe Seizures

On the pleasure side, we have Buddhist meditators who experience meditative states of absorption (aka. “Jhanas”) as extremely, and counter-intuitively, blissful:

The experience can include some very pleasant physical sensations such as goose bumps on the body and the hair standing up to more intense pleasures which grow in intensity and explode into a state of ecstasy. If you have pain in your legs, knees, or other part of the body during meditation, the pain will actually disappear while you are in the jhanas. The pleasant sensations can be so strong to eliminate your painful sensations. You enter the jhanas from the pleasant experiences exploding into a state of ecstasy where you no longer “feel” any of your senses.

9 Jhanas, Dhamma Wiki

There are 8 (or 9, depending on who you ask) “levels” of Jhanas, and the above is describing only the 1st of them! The higher the Jhana, the more refined the bliss becomes, and the more detached the state is from the common referents of our everyday human experience. Ultra-bliss does not look at all like sensual pleasure or excitement, but more like information-theoretically optimal configurations of resonant waves of consciousness with little to no intentional content (cf. semantically neutral energy). I know this sounds weird, but it’s what is reported.

insula

“Streamlines from the insula to the cortex” – the insula (in red) is an area of the brain intimately implicated in the super-bliss that sometimes precedes temporal lobe epilepsy (source)

Another example I will provide about ultra-bliss concerns temporal lobe epilepsy, which in a minority of sufferers gives rise to extraordinarily intense states of pleasure, or pain, or both. Such experiences can result in Geschwind syndrome, a condition characterized by hypergraphia (writing non-stop), hyper-religiosity, and a generally intensified mental and emotional life. No doubt, any experience that hits the valence scale at one of its extremes is usually interpreted as other-worldly and paranormal (which gives rise to the question of whether valence is a spiritual phenomenon or the other way around). Famously, Dostoevsky seems to have experienced temporal lobe seizures, and this ultimately informed his worldview and literary work in profound ways. Here is how he describes them:

“A happiness unthinkable in the normal state and unimaginable for anyone who hasn’t experienced it… I am then in perfect harmony with myself and the entire universe.”

 

– From a letter to his friend Nikolai Strakhov.

“I feel entirely in harmony with myself and the whole world, and this feeling is so strong and so delightful that for a few seconds of such bliss one would gladly give up 10 years of one’s life, if not one’s whole life. […] You all, healthy people, can’t imagine the happiness which we epileptics feel during the second before our fit… I don’t know if this felicity lasts for seconds, hours or months, but believe me, I would not exchange it for all the joys that life may bring.”

 

– from the character Prince Myshkin in Dostoevsky’s novel, The Idiot, which he likely used to give a voice to his own experiences.

Dostoevsky is far from the only person reporting these kinds of experiences from epilepsy:

As Picard [a scientist investigating seizures] cajoled her patients to speak up about their ecstatic seizures, she found that their sensations could be characterised using three broad categories of feelings (Epilepsy & Behaviour, vol 16, p 539). The first was heightened self-awareness. For example, a 53-year-old female teacher told Picard: “During the seizure it is as if I were very, very conscious, more aware, and the sensations, everything seems bigger, overwhelming me.” The second was a sense of physical well-being. A 37-year-old man described it as “a sensation of velvet, as if I were sheltered from anything negative”. The third was intense positive emotions, best articulated by a 64-year-old woman: “The immense joy that fills me is above physical sensations. It is a feeling of total presence, an absolute integration of myself, a feeling of unbelievable harmony of my whole body and myself with life, with the world, with the ‘All’,” she said.

 

– from “Fits of Rapture”, New Scientist (January 25, 2014) (source)

All in all, these examples illustrate the fact that blissful states can be deeper, richer, more intense, more conscious, and qualitatively superior to the normal everyday range of human emotion.

Now, how about the negative side?

Logarithmic Pain Scales: Stings, Peppers, and Cluster Headaches

“The difference between 6 and 10 on the pain scale is an exponential difference. Believe it or not.”

Insufferable Indifference, by Neil E. Clement (who experiences chronic pain ranging between 6/10 to 10/10, depending on the day)

Three pain-scale examples that illustrate the non-linearity of pain are: (1) the Schmidt sting pain index, (2) the Scoville scale, and (3) the KIP scale:

image

(1) Justin O. Schmidt stung himself with over 80 species of insects of the Hymenoptera order, and rated the ensuing pain on a 4-point-scale. About the scale, he had to say the following:

4:28 – Justin Schmidt: The harvester ant is what got the sting pain scale going in the first place. I had been stung by honeybees, yellow jackets, paper wasps, etc. the garden variety stuff, that you get bitten by various beetles and things. I went down to Georgia, which has the Eastern-most extension of the harvester ant. I got stung and I said “Wooooow! This is DIFFERENT!” You know? I thought I knew everything there was about insect stings, I was just this dumb little kid. And I realized “Wait a minute! There is something different going on here”, and that’s what got me to do the comparative analysis. Is this unique to harvester ants? Or are there others that are like that. It turns out while the answer is, now we know much later – it’s unique! [unique type of pain]. 

[…]

7:09 – Justin Schmidt: I didn’t really want to go out and get stung for fun. I was this desperate graduate student trying to get a thesis, so I could get out and get a real job, and stop being a student eventually. And I realized that, oh, we can measure toxicity, you know, the killing power of something, but we can’t measure pain… ouch, that one hurts, and that one hurts, and ouch that one over there also hurts… but I can’t put that on a computer program and mathematically analyze what it means for the pain of the insect. So I said, aha! We need a pain scale. A computer can analyze one, two, three, and four, but it can’t analyze “ouch!”. So I decided that I had to make a pain scale, with the harvester ant (cutting to the chase) was a 3. Honey bees was a 2. And I kind of tell people that each number is like 10 equivalent of the number before. So 10 honey bee stings are equal to 1 harvester ant sting, and 10 harvester ant stings would equal one bullet ant sting.

[…]

11:50 – [Interviewer]: When I finally worked up the courage to [put the Tarantula Hawk on my arm] and take this sting. The sting of that insect was electric in nature. I’ve been shocked before, by accidentally taking a zap from an electrical cord. This was that times 10. And it put me on the ground. My arm seized up from muscle contraction. And it was probably the worst 5 minutes of my life at that point.

Justin Schmidt: Yeah, that’s exactly what I call electrifying. I say, imagine you are walking along in Arizona, and there is a wind storm, and the power line above snaps the wire, and it hits you, of course that hasn’t happened to me, but that’s what you imagine it feels like. Because it’s absolutely electrifying, I call it debilitating because you want to be macho, “ah I’m tough, I can do this!” Now you can’t! So I tell people lay down and SCREAM! Right?

[Interviewer]: That’s what I did! And Mark would be like, this famous “Coyote, are you ok? Are you ok?”

Justin Schmidt: No, I’m not ok!

[Interviewer]: And it was very hard to try to compose myself to be like, alright, describe what is happening to your body right now. Because your mind goes into this state that is like blank emptiness. And all you can focus on is the fact that there’s radiating pain coming out of your arm.

Justin Schmidt: That’s why you scream, because now you’re focusing on something else. In addition to the pain, you’re focusing on “AAAAAAHHHHH!!!” [screams loudly]. Takes a little bit of the juice off of the pain, so maybe you lower it down to a three for as long as you can yell. And I can yell for a pretty long time when I’m stung by a tarantula hawk.

 

Origin of STINGS!, interview of Justin O. Schmidt

If we take Justin’s word for it, a sting that scores a 4 on his pain scale is about 1,000 times more painful than a sting that scores a 1 on his scale. Accordingly, Christopher Starr (who replicated the scale), stated that any sting that scores a 4 is “traumatically painful” (source). Finally, since the scale is restricted to stings of insects of the Hymenoptera order, it remains possible that there are stings whose pain would be rated even higher than 4. A 5 on the sting pain index might perhaps be experienced with the stings of the box jellyfish that produces Irukandji syndrome, and the bite of the giant desert centipede. Needless to say, these are to be avoided.

Moving on…

(2) The Scoville scale measures how spicy different chili peppers and hot sauces are. It is calculated by diluting the pepper/sauce in water until it is no longer possible to detect any spice in it. The number that is associated with the pepper or sauce is the ratio of water-to-sauce that makes it just barely possible to taste the spice. Now, this is of course not itself a pain scale. I would nonetheless anticipate that taking the log of the Scoville units of a dish might be a good approximation for the reported pain it delivers. In particular, people note that there are several qualitative jumps in the type and nature of the pain one experiences when eating hot sauces of different strengths (e.g. “Fuck you Sean! […] That was a leap, Sean, that was a LEAP!” – Ken Jeong right after getting to the 135,000 Scoville units sauce in the pain porn Youtube series Hot Ones). Amazon reviews of ultra-hot sauces can be mined for phenomenological information concerning intense pain, and the general impression one gets after reading such reviews is that indeed there is a sort of exponential range of possible pain values:

This slideshow requires JavaScript.

I know it may be fun to trivialize this kind of pain, but different people react differently to it (probably following a long-tail too!). For some people who are very sensitive to heat pain, very hot sauce can be legitimately traumatizing. Hence I advise against having ultra-spicy sauces around your house. The novelty value is not worth the probability of a regrettable accident, as exemplified in some of the Amazon reviews above (e.g. a house guest assuming that your “Da’Bomb – Beyond Insanity” bottle in the fridge can’t possibly be that hot… and ending up in the ER and with PTSD).

I should add that media that is widely consumed about extreme hot sauce (e.g. the Hot Ones mentioned above and numerous stunt Youtube channels) may seem fun on the surface, but what doesn’t make the cut and is left in the editing room is probably not very palatable at all. From an interview: “Has anyone thrown up doing it?” (interviewer) – “Yeah, we’ve run the gamuts. We’ve had people spit in buckets, half-pass out, sleep in the green room afterwards, etc.” (Sean Evans, Hot Ones host). T.J. Miller, when asked about what advice he would give to the show while eating ultra-spicy wings, responded: “Don’t do this. Don’t do this again. End the show. Stop doing the show. That’s my advice. This is very hot. This is painful. There’s a problem here.”

07e7c9915f52b1945603f0c83a48e4fe

Trigeminal Neuralgia pain scale – a condition similarly painful to Cluster Headaches

(3) Finally, we come to the “KIP scale”, which is used to rate Cluster Headaches, one of the most painful conditions that people endure:

The KIP scale

KIP-0 No pain, life is beautiful
KIP-1 Very minor, shadows come and go. Life is still beautiful
KIP-2 More persistent shadows
KIP-3 Shadows are getting constant but can deal with it
KIP-4 Starting to get bad, want to be left alone
KIP-5 Still not a “pacer” but need space
KIP-6 Wake up grumbling, curse a bit, but can get back to sleep without “dancing”
KIP-7 Wake up, sleep not an option, take the beast for a walk and finally fall into bed exhausted
KIP-8 Time to scream, yell, curse, head bang, rock, whatever works
KIP-9 The “Why me?” syndrome starts to set in
KIP-10 Major pain, screaming, head banging, ER trip. Depressed. Suicidal.

The duration factor is multiplied by the intensity factor, which uses the KIP scale in an exponential way – a KIP 10 is not just twice as bad as a KIP 5, it’s ten times as intense.

Source: Keeping Track, by Cluster Busters

As seen above, the KIP scale is acknowledged by its creator and users to be logarithmic in nature.

In summary: We see that pleasure comes in various grades and that peak experiences such as those induced by psychedelics, meditation, and temporal lobe seizures seem to be orders of magnitude more energetic and better than everyday sober states. Likewise, we see that across several categories of pain, people report being surprised by the leaps in both quality and intensity that are possible. More so, at least in the case of the Schmidt Index and the Kip Scale, the creators of the scale were explicit that it was a logarithmic mapping of the actual level of sensation.

While we do not have enough evidence (and conceptual clarity) to assert that the intensity of pain and pleasure does grow exponentially, the information presented so far does suggest that the valence of experiences follows a long-tail distribution.

Deference-type Approaches for Experience Ranking

The above considerations underscore the importance of coming up with a pleasure-pain scale that tries to take into account the non-linearity and non-normality of valence ratings. One idea we came up with was a “deference”-type approach, where we ask open-ended questions about people’s best and worst experiences and have them rank them against each other. Although locally the data would be very sparse, the idea was that there might be methods to integrate the collective patterns of deference into an approximate scale. If extended to populations of people who are known to have experienced extremes of valence, the approach would even allow us to unify the various pain scales (Scoville, Schmidt, KIP, etc.) and assign a kind of universal valence score to different categories of pain and pleasure.* That will be version 2.0. In the meantime, we thought to try to get a rough picture of the extreme joys and affections of members of the general public, which is what this article will focus on.

Normal World vs. Lognormal World

There is a world we could call the “Normal World”, where valence outliers are rare and most types of experiences affect people more or less similarly, distributed along a Gaussian curve. Then there is another, very different world we could call the “long-tailed world” or if we want to make it simple (acknowledging uncertainty) “Lognormal World”, where almost every valence distribution is a long-tail. So in the “Lognormal World”, say, for pleasure (and symmetrically for pain), we would expect to see a long-tail in the mean pleasure of experiences between different categories across all people, a long-tail in the amount of pleasure within a given type of experience across people, a long-tail for the number of times an individual has had a certain type of pleasure, a long-tail in the intensity of the pleasure experienced with a single category of experience within a single person, and so on. Do we live in the Normal World or the Lognormal World?

Predictions of Lognormal World

If we lived in the “Lognormal World”, we would expect:

  • That people will typically say that their top #1 best/worst experience is not only a bit better/worse than their #2 experience, but a lot better/worse. Like, perhaps, even multiple times better/worse.
  • That there will be a long-tail in the number of appearances of different categories (i.e. that a large amount, such as 80%, of top experiences will belong to the same narrow set of categories, and that there will be many different kinds of experiences capturing the remaining 20%).
  • That for most pairs of experiences x and y, people who have had both instances of x and y, will usually agree about which one is better/worse. We call such a relationship a “deference”. More so, we would expect to see that deference, in general, will be transitive (a > b and b > c implying that a > c).

To test the first and second prediction does not require a lot of data, but the third does because one needs to have enough comparisons to fill a lot of triads. The survey results we will discuss bellow are congruent with the first and second prediction. We did what we could with the data available to investigate the third, and tentatively, it seems to hold up (with ideas like deference network centrality analysis, triadic analysis, and tournament-style approaches).


Survey Setup

The survey asked the following questions: current level of pleasure, current level of pain, top 3 most pleasurable experiences (in decreasing order) along with pleasure ratings for each of them and the age when they were experienced, and the same for the top 3 most painful experiences. I specifically did not provide a set of broad categories (such as “physical” or “emotional”) or a drop-down menu of possible narrow categories (e.g. going to the movies, aerobic exercise, etc.). I wanted to see what people would say when the question was as open-ended as possible.

I also included questions aimed more directly at probing the long-tailed nature of valence: I asked participants to rate “how many times more pleasant was the #1 top experience relative to the #2 top experience” (and #2 relative to #3, and the same for the top most painful experiences).

I also asked them to describe in more detail the single most pleasant and unpleasant experiences, and added a box for comments at the end in order to see if anyone complained about the task (most people said “no comment”, many said they enjoyed the task, and one person said that it made them nostalgic). I also asked about basic demographics (age and gender). Participants earned $1.75 for the task, which seems reasonable given the time it took to complete in most cases.

Mechanical Turk: Participant Composition

The survey was run on Mechanical Turk. I requested “Masters” qualifications for 90/110 of the survey responses. To be a Mechanical Turk Master you need to have a good track record of task approval, which I reasoned would increase the rate of well thought-out high-quality responses (this turned out to be true). The participants’ genders were fairly balanced (50/97 women, 47/97 men), and the average age was 36.5 years (sd = 10):

age_distribution_no_bots

Age distribution

Bots (easy to spot – unless extremely sophisticated)

While reading the responses I discovered that some of them seemed to be generated by bots. Apparently task requesters started noticing the presence of bots a couple of years ago. This is obviously a problem for academics trying to use the service for their research, and for machine learning professionals using the service for data-tagging. Having been both of those things in the past, I can say that a few years ago I did not see any submissions that looked suspiciously bot-like. Though low-quality rushed responses did seem to be relatively common back then, I never observed bot-like responses to open-ended questions. Unfortunately this time I was able to spot several responses clearly written by bots. For example, one respondent answered the question “write a brief essay about your #1 best experience” with:

The reason these types of assignments are given so often is that anyone can write about their own experience and it doesn’t require any outside resources or research. However, even though anyone can tell a story about their life, that does not mean anyone can write a good essay about that experience. As a professor and teacher for 30 years, I’ve read thousands of essays and can tell you there is a distinct difference from telling a story about yourself and writing an excellent personal experience essay. The difference between good and great:

And it ends that way, with a colon indicating that the respondent is about to explain what the difference between good and great is. But it never does it. This answer, great, it is not.

In most cases the difference between a genuine response and a bot response was very obvious. That said, I erred on the side of caution for filtering bots and I got rid of answers even if they seemed just a little suspicious. This left me with 97 out of the 110 original responses. The following analysis was conducted on those 97 responses.

Preprocessing

Since the responses were open-ended I had to tag each of them with an experience category. To do this I read each response and identified the key theme in them and classified them with a label that was specific enough to distinguish it from nearby experiences (e.g. different types of fractures), but not so specific that we would never get more than one response per category (e.g. “breaking the middle finger in elementary school”). In general, most responses fell into very unambiguous categories (e.g. “When my father passed away” and “Watching my father die and take his last few breaths.” were both classified as “Father death”). About 10% of the responses were relatively ambiguous: it wasn’t clear what the source of the pain or pleasure was. To deal with those responses I used the label “Unspecified”. When some detail was present but ambiguity remained, such as when a broad type of pain or pleasure was mentioned but not the specific source I tagged it as “Unspecified X” where X was a broad category. For example, one person said that “broken bones” was the most painful experience they’ve had, which I labeled as “Unspecified fracture”.


Results

I should preface the following by saying that we are very aware of the lack of scientific rigor in this survey; it remains a pilot exploratory work. We didn’t specify the time-scale for the experiences (e.g. are we asking about the best minute of your life or the best month of your life?) or whether we were requesting instances of physical or psychological pain/pleasures. Despite this lack of constraints it was interesting to see very strong commonalities among people’s responses:

Appearance Base Rates

There were 77 and 124 categories of pleasure and pain identified, respectively. On the whole it seemed like there was a higher diversity of ways to suffer than of ways to experience intense bliss. Summoning the spirit of Tolstoy: “Happy families are all alike; every unhappy family is unhappy in its own way.”

Here are the raw counts for each category with at least two appearances:

pleasure_baserates_97_only_2andup_

Best experiences appearances (with at least two reports)

pain_baserates_97_only_2andup_

Worst experience appearances (with at least two reports)

For those who want to see the full list of number of appearances for each experience mentioned see the bottom of the article (I also clarify some of the more confusing labels there too)**.

A simple way to try to incorporate the information about the ranking is to weight experiences rated as top #1 with 3 points, those as top #2 with 2 points, and those as the top #3 with 1 point. If you do this, the experiences scores are:

pleasure_baserates_97_weighted_

Weighted appearances of best experiences (#1 – 3 points, #2 – 2 points, #3 – 1 point)

pain_baserates_97_weighted_

Weighted appearances of worst experiences (#1 – 3 points, #2 – 2 points, #3 – 1 point)

Average ratings

Given the relatively small sample size, I will only report the mean rating for pain and pleasure (out of 10) for categories of experience for which there were 6 or more respondents:

For pain:

  1. Father death (n = 19): mean 8.53, sd 2.3
  2. Childbirth (n = 16): mean 7.94, sd 2.16
  3. Grandmother death (n = 13): mean 8.12, sd 2.5
  4. Mother death (n = 11): mean 9.4, sd 0.62
  5. Car accident (n = 9): mean 8.42, sd 1.52
  6. Kidney stone (n = 9): mean 5.97, sd 3.17
  7. Migraine (n = 9): mean 5.36, sd 3.11
  8. Romantic breakup (n = 9): mean 7.11, sd 1.52
  9. Broken arm (n = 6): mean 8.28, sd 0.88
  10. Broken leg (n = 6): mean 7.33, sd 2.02
  11. Work failure (n = 6): mean 5.88, sd 3.57

(Note: the very high variance for kidney stones and migraine is partly explained by the presence of some very low responses, with values as low as 1.1/10 – perhaps misreported, or perhaps illustrating the extreme diversity of experiences of migraines and kidney stones).

And for pleasure:

  1. Falling in love (n = 42): mean 8.68, sd 1.74
  2. Children born (n = 41): mean 9.19, sd 1.64
  3. Marriage (n = 21): mean 8.7, sd 1.25
  4. Sex (n = 19): mean 8.72, sd 1.45
  5. College graduation (n = 13): mean 7.73, sd 1.4
  6. Orgasm (n = 11): mean 8.24, sd 1.63
  7. Alcohol (n = 8): mean 6.84, sd 1.59
  8. Vacation (n = 6): mean 9.12, sd 0.73
  9. Getting job (n = 6): mean 7.22, sd 1.47
  10. Personal favorite sports win (n = 6): mean 8.17, sd 1.23

Deference Graph of Top Experiences

We will now finally get to the more exploratory and fun/interesting analysis, at least in that it will generate a cool way of visualizing what causes people great joy and pain. Namely, the idea of using people’s rankings in order to populate a global scale across people and show it in the form of a graph of deferences. While the scientific literature has some studies that compare pain across different categories (e.g. 1, 2, 3) I was not able to find any dataset that included actual rankings across a variety of categories. Hence why it was so appealing to visualize this.

The simplest way of graphing experience deferences is to assign a node to each experience category and add an edge between experiences with deference relationships with a weight proportional to the number of directed deferences. For example, if 4 people have said that A was better than B, and 3 people have said that B was better than A, then there will be an edge from A to B with a weight of 4 and an edge from B to A with a weight of 3. Additionally, we can then run a graph centrality algorithm such as PageRank to see where the “deferences end up pooling”.

The images below do this: the PageRank of the graph is represented with the color gradient (darker shades of green/red representing higher PageRank values for good/bad experiences). In addition, the graphs also represent the number of appearances in the dataset for each category with the size of each node:

The main problem with the approach above is that it double (triple?) counts experiences that are very common. Say that, for example, taking 5-MeO-DMT produces a consistently higher-valence feeling relative to having sex. If we only have a couple of people who report both 5-MeO-DMT and sex as their top experiences, the edge from sex to 5-MeO-DMT will be very weak, and the PageRank algorithm will underestimate the value of 5-MeO-DMT.

In order to avoid the double counting effect of commonly-reported peak experiences we can instead add edge weights on the basis of the proportion with which an experience defers to the other. Let’s say that f(a, b) means “number of times that b is reported as higher than a”. Then the proportion would be f(a, b) / (f(a, b) + f(b, a)). Now, this introduces another problem, which is that pairs of experiences that appear together very infrequently might get a very high proportion score due to a low sample size. In order to prevent this we use Laplace smoothing and modify the equation to (f(a, b) + 1) / (f(a, b) + f(b, a) + 2). Finally, we transform this proportion score from the range of 0 to 1 to the range of -1 to 1 by multiplying by 2 and subtracting one. We call this a “rebalanced smoothed proportion” w(a, b):

CodeCogsEqn

Rebalanced smoothed proportion

I should note that this is not based on any rigorous math. The equation is based on my intuition for what I would expect to see in such a graph, namely a sort of confidence-weighted strength of directionality, but I do not guarantee that this is a principled way of doing so (did I mention this is a pilot small-scale low-budget ‘to a first approximation’ study?). I think that, nonetheless, doing this is still an improvement upon merely using the raw deference counts as the edge weights. To visualize what w(a, b) looks like I graphed its values for a and b in the range of 0 to 20 (literally typing the equation into the google search bar):

To populate the graph I only use the positive edge weights so that we can run the PageRank algorithm on it. This now looks a lot more reasonable and informative as a deference graph than the previous attempts:

pleasure_97_balanced_2

Best experiences deference graph: Edge weights based on the rebalanced smoothed proportions, size of nodes is proportional to number of appearances in the dataset, and the color tracks the PageRank of the graph. Edge color based on source node.

 

pain_network_97_balanced

Worst experiences deference graph: Edge weights based on the rebalanced smoothed proportions, size of nodes is proportional to number of appearances in the dataset, and the color tracks the PageRank of the graph. Edge color based on source node.

By taking the PageRank of these graphs (calculated with NetworkX) we arrive at the following global rankings:

pleasure_pagerank_97_

PageRank of the graph of best experiences with edge weights computed with the rebalanced smoothed proportion equation

pain_pagerank_97__

PageRank of the graph of worst experiences with edge weights computed with the rebalanced smoothed proportion equation

Intuitively this ranking seems more aligned with what I’ve heard before, but I will withhold judgement on it until we have much more data.

Triadic Analysis

With a more populated deference graph we can analyze in detail the degree to which triads (i.e. sets of three experiences such that each of the three possible deferences are present in the graph) show transitivity (cf. Balance vs. Status Theory).

In particular, we should compare the prevalence of these two triads:

triad_analysis

Left: 030T, Right: 030C (source)

The triads above are 030T, which is transitive, and 030C, which is a loop. The higher the degree of agreement between people and the higher the probability of the existence of an underlying shared scale, we would expect to see more triads of the type 030T relative to 030C. That said, a simple ratio is not enough, since the expected proportion between these two triads can be an artifact of the way the graph is constructed and/or its general shape (and hence the importance of comparing against randomized graphs that preserve as many other statistical features as possible). With our graph, we noticed that the very way in which the edges were introduced generated an artifact of a very strong difference between these two types of triads:

In the case of pain there are 105 ‘030T’, and 3 ‘030C’. And for the pleasure questions there were 98 ‘030T’, and 9 ‘030C’. That said, many of these triads are the artifact of taking into account the top three experiences, which already generates a transitive triad by default when n = 1 for that particular triad of experiences. To avoid this artifact, we filtered the graph by only adding edges when a pair of experiences appeared at least twice (and discounting the edges where w(a, b) = 0). With this adjustment we got 2 ‘030T’, and 1 ‘030C’ for the pain questions, and 1 ‘030T’, and 0 ‘030C’ for the pleasure question. Clearly there is not enough data to meaningfully conduct this type of analysis. If we extend the study and get a larger sample size, this analysis might be much more informative.

Latent Trait Ratings

A final approach I tried for deriving a global ranking of experiences was to assume a latent parameter for pain or pleasure of different experiences and treating the rankings as the tournament results of participants with skill equal to this latent trait. So when someone says that an experience of sex was better than an experience of getting a new bike we imagine that “sex” had a match with “getting bike” and that “sex” won that match. If we do this, then we can import any of the many tournament algorithms that exist (such as the Elo rating system) in order to approximate the latent “skill” trait of each experience (except that here it is the “skill” to cause you pleasure or pain, rather than any kind of gaming ability).

Interestingly, this strategy has also been used in other areas outside of actual tournaments, such as deriving university rankings based on the choices made by students admitted to more than one college (see: Revealed Preference Rankings of US Colleges and Universities).

I should mention that the fact that we are asking about peak experiences likely violates some of the assumptions of these algorithms, since the fact that a match takes place is already information that both experiences made it into the top 3. That said, if the patterns of deference are very strong, this might not represent a problem.

To come up with this tournament-style ranking I decided to go for a state-of-the-art algorithm. The one that I was able to find and use was Microsoft Research’s algorithm called TrueSkill (which is employed to rank players in Xbox LIVE). According to their documentation, to arrive at a conservative “leaderboard” that balances the estimated “true skill” and the uncertainty around it, they recommend ranking by the expected skill level minus three times the standard error around this estimate. If we do this, we arrive at the following experience “leaderboards”:

pleasure_97_trueskill_conservative

Conservative TrueSkill scores for best experiences (mu – 3*sigma)

pain_97_trueskill_conservative

Conservative TrueSkill scores for worst experiences (mu – 3*sigma)

Long-tails in Responses to “How Many Times Better/Worse” Question

The survey included four questions aimed at comparing the relative hedonic values of peak experiences: “Relative to the 1st most pleasant experience, how many times better was the 2nd most pleasant experience?” (This was one, the other three were the permutations of also asking about 2nd vs. 3rd and about the bad experiences):

(Note: I’ll ignore the responses to the comparison between the 2nd and 3rd worst pains because I messed up the question -I forgot to substitute “better” for “worse”).

I would understand the skepticism about these graphs. But at the same time, I don’t think it is absurd that for many people the worst experience they’ve had is indeed 10 or 100 times worse than the second worst. For example, someone who has endured a bad Cluster Headache will generally say that the pain of it is tens or hundreds of times worse than any other kind of pain they have had (say, breaking a bone or having skin burns).

The above distributions suggest a long-tail for the hedonic quality of experiences: say that the hedonic quality of each day is distributed along a log-normal distribution. A 45 year old has experienced roughly 17,000 days. Let’s say that such a person’s experience of pain each day is sampled from a log-normal distribution with a Gaussian exponent with a mean of 10 and a standard deviation of 5. If we take 100 such people, and for each of them we take the single worst and the second worst days of their lives, and then take the ratio between them, we will have a distribution like this (simulated in R):

If you smooth the empirical curves above you would get a distribution that looks like these simulations. You really need a long-tail to be able to get results like “for 25% of the participants the single worst experience was at least 4 times as bad as the 2nd worst experience.” Compare that to the sort of pattern that you get if the distribution was normal rather than log-normal:

As you can see (zooming in on the y-axis), the ratios simply do not reach very high values. With the normal distribution simulated here, we see that the highest ratio we achieve is around 1.3, as opposed to the empirical ratios of 10+.*** If you are inclined to believe the survey responses- or at least assign some level of credibility to the responses in the 90th-percentile and below-, the data is much more consistent with a long-tail distribution for hedonic values relative to a normal distribution.

Discussion

Key Pleasures Surfaced

Birth of children

I have heard a number of mothers and father say that having kids was the best thing that ever happened to them. The survey showed this was a very strong pattern, especially among women. In particular, a lot of the reports deal with the very moment in which they held their first baby in their arms for the first time. Some quotes to illustrate this pattern:

The best experience of my life was when my first child was born. I was unsure how I would feel or what to expect, but the moment I first heard her cry I fell in love with her instantly. I felt like suddenly there was another person in this world that I cared about and loved more than myself. I felt a sudden urge to protect her from all the bad in the world. When I first saw her face it was the most beautiful thing I had ever seen. It is almost an indescribable feeling. I felt like I understood the purpose and meaning of life at that moment. I didn’t know it was possible to feel the way I felt when I saw her. I was the happiest I have ever been in my entire life. That moment is something that I will cherish forever. The only other time I have ever felt that way was with the subsequent births of my other two children. It was almost a euphoric feeling. It was an intense calm and contentment.

—————

I was young and had a difficult pregnancy with my first born. I was scared because they had to do an emergency c-section because her health and mine were at risk. I had anticipated and thought about how the moment would be when I finally got to hold my first child and realize that I was a mother. It was unbelievably emotional and I don’t think anything in the world could top the amount of pleasure and joy I had when I got to see and hold her for the first time.

—————

I was 29 when my son was born. It was amazing. I never thought I would be a father. Watching him come into the world was easily the best day of my life. I did not realize that I could love someone or something so much. It was at about 3am in the morning so I was really tired. But it was wonderful nonetheless.

—————

I absolutely loved when my child was born. It was a wave of emotions that I haven’t felt by anything before. It was exciting and scary and beautiful all in one.

No luck for anti-natalists… the super-strong drug-like effects of having children will presumably continue to motivate most humans to reproduce no matter how strong the ethical case against doing so may be. Coming soon: a drug that makes you feel like “you just had 10,000 children”.

Falling in Love

The category of “falling in love” was also a very common top experience. I should note that the experiences reported were not merely those of “having a crush”, but rather, they typically involved unusually fortunate circumstances. For instance, a woman reported being friends with her crush for 7 years. She thought that he was not interested in her, and so she never dared to confess her love for him… until one day, out of the blue, he confessed his love for her. Other experiences of falling in involve chance encounters with childhood friends that led to movie-deserving romantic escapades, forbidden love situations, and cases where the person was convinced the lover was out of his or her league.

Travel/Vacation

The terms “travel” and “vacation” may sound relatively frivolous in light of some of the other pleasures listed. That said, these were not just any kind of travel or vacation. The experiences described do seem rather extraordinary and life-changing. For example, talking about back-packing alone in France for a month, biking across the US with your best friend, or a long trip in South East Asia with your sibling that goes much better than planned.

MDMA/LSD/Psilocybin

It is significant that out of 97 people four of them listed MDMA as one of the most pleasant experiences of their lives. This is salient given the relatively low base rate of usage of this drug (some surveys saying about 12%, which is probably not too far off from the base rate for Mechanical Turk workers using MDMA). This means that a high percentage of people who have tried MDMA will rate it as as one of their top experiences, thus implying that this drug produces experiences sampled from an absurdly long-tailed high-valence distribution. This underscores the civilizational significance of inventing a method to experience MDMA-like states of consciousness in a sustainable fashion (cf. Cooling It Down To Partying It Up).

Likewise, the appearance of LSD and psilocybin is significant for the same reason. That said, measures of the significance of psychedelic experiences in psychedelic studies have shown that a high percentage of those who experience such states rate them among their top most meaningful experiences.

About-two-thirds-of-participants-who-received-psilocybin-reported-a-mystical-experience

Games of Chance Earnings

Four participants mentioned earnings in games of chance. These cases involved earning amounts ranging from $2,000 all the way to a truck (which was immediately sold for money). What I find significant about this is that these experiences are at times ranked above “college graduation” and other classically meaningful life moments. This brings about a crazy utilitarian idea: if indeed education is as useless as many people in the intellectual elite are saying these days (ex. The Case Against Education) we might as well stop subsidizing higher education and instead make people participate in opt-out games of chance rigged in their favor. Substitute the Department of Education for a Department of Lucky Moments and give people meaningful life experiences at a fraction of the cost.

Key Pains Surfaced

Kidney Stones and Migraines

The fact that these two medical issues were surfaced is, I think, extremely significant. This is because the lifetime incidence of kidney stones is about 10% (~13% for men, 7% for women) and for migraines it is around 13% (9% for men, 18% for women). In the survey we saw 9/93 people mentioning kidney stones, and the same number of people mentioning migraines. In other words, there is reason to believe that a large fraction of the people who have had either of these conditions will rate them as one of their top 3 most painful experiences. This fact alone underscores the massive utilitarian benefit that would come from being able to reduce the incidence of these two medical problems (luckily, we have some good research leads for addressing these problems at a large scale and in a cost-effective way: DMT for migraines, and frequency specific microcurrent for kidney stones)

Childbirth

Childbirth was mentioned 16 times, meaning that roughly 30% of women rate it as one of their three most painful experiences. While many people may look at this and simply nod their heads while saying “well, that’s just life”, here at Qualia Computing we do not condone that kind of defeatism and despicable lack of compassion. As it turns out, there are fascinating research leads to address the pain of childbirth. In particular, Jo Cameron, a 70 year old vegan schoolteacher, described her childbirth by saying that it “felt like a tickle”. She happens to have a mutation in the FAAH gene, which is usually in charge of breaking down anandamine (a neurotransmitter implicated in pain sensitivity and hedonic tone). As we’ve argued before, every child is a complete genetic experiment. In the future, we may as well try to at least make educated guesses about our children’s genes associated with low mood, anxiety, and pain sensitivity. In defiance of common sense (and the Bible) the future of childbirth could indeed be one devoid of intense pain.

Car accidents

Car accidents are extremely common (the base rate is so high that by the age of 40 or so we can almost assume that most people have been in at least one car accident, possibly multiple). More so, it seems likely that the health-damaging effects of car accidents, by their nature, follow a long-tail distribution. The high base rate of people mentioning car accidents in their top 3 most painful experiences underscores the importance of streamlining the process of transitioning into the era of self-driving cars.

Death of Father and Mother

This one does not come as a surprise, but what may stand out is the relatively higher frequency of mentions of “death of father” relative to “death of mother”. I think this is an artifact of the longevity difference between men and women. This is in agreement with the observed effect of age: about 15% vs. 25% of people under and over 40 had mentioned the death of their father, as opposed to a difference of 5% vs. 25% for death of mother. The reason why the father might be over-represented might simply be due to the lower life expectancy of men relative to women, and hence the father, on average, dying earlier. Thus, it being reported more frequently by a younger population.

Future Directions for Methodological Approaches:

Graphical Models with Log-normal Priors

After trying so many analytic angles on this dataset, what else is there to do? I think that as a proof of concept the analysis presented here is pretty well-rounded. If the Qualia Research Institute does well in the funding department, we can expect to extend this pilot study into a more comprehensive analysis of the pleasure-pain axis both in the general population and among populations who we know have endured or enjoyed extremes of valence (such as cluster headache sufferers or people who have tried 5-MeO-DMT).

In terms of statistical models, an adequate amount of data would enable us to start using probabilistic graphical models to determine the most likely long-tail distributions for all of the key parameters of pleasure and pain. For instance, we might want to develop a model similar to Item Response Theory where:

  1. Each participant samples experiences from a distribution.
  2. Each experience category generates samples with an empirically-determined base rate probability (e.g. chances that it happens in a given year), along with a latent hedonic value distribution.
  3. A “discrimination function” f(a, b) that gives the probability that experience of hedonic value a is rated as more pleasant (or painful) relative an experience with a hedonic value of b.
  4. And a generative model that estimates the likelihood of observing experiences as the top 3 (or top x) based on the parameters provided.

In brief, with an approach like the above we can potentially test the model fit for different distribution types of hedonic values per experience. In particular, we would be able to determine if the model fit is better if the experiences are drawn from a Gaussian vs. a log-normal (or other long-tailed) distribution.

Finally, it might be fruitful to explicitly ask about whether participants have had certain experiences in order to calibrate their ratings, or even have them try a battery of standardized pain/pleasure-inducing stimuli (capsaicin extract, electroshocks, stings, massage, orgasm, etc.). We could also find the way to combine (a) the numerical ratings, (2) the ranking information, and (3) the “how many times better/worse” responses into a single model. And for best results, restrict the analysis to very recent experiences in order to reduce recall biases.

Closing Thoughts on the Valence Scale

To summarize, I believe that the case for a long-tail account of the pleasure-pain axis is very defensible. This picture is supported by:

  1. The long-tailed nature of neuronal cascades,
  2. The phenomenological accounts of intense pleasure and pain (w/ phenomenological accounts of time and space expansion),
  3. The way in which pain scales are constructed by those who developed them, and
  4. The analytic results of the pilot study we conducted and presented here.

In turn, these results give rise to a new interpretation of psychophysical observations such as Weber’s Law. Namely, that Just Noticeable Differences may correspond to geometric differences in qualia, not only in sensory stimuli. That is, that the exponential nature of many cases where Weber’s Law appears are not merely the result of a logarithmic compression on the patterns of stimulation at the “surface” of our sense organs. Rather, the observations presented here suggest that these long-tails deal directly with the quality and intensity of conscious experience itself.


Additional Material

Dimensionality of Pleasure and Pain

Pain and pleasure may have an intrinsic “dimensionality”. Without elaborating, we will merely state that a generative definition for the “dimensionality of an experience” is the highest “virtual dimension” implied by the patterns of correlation between degrees of freedom. The hot pepper hands account I related suggested a kind of dimensional phase transition between 4/10 and 5/10 pain, where the patterns of a certain type (4/10 “sparks” of pain) would sometimes synchronize and generate a new type of higher-dimensional sensation (5/10 “solitons” of pain). To illustrate this idea further:

First, in Hot Ones, Kumail Nanjiani describes several “leaps” in the spiciness of the wings, first at around 30,000 Scoville (“this new ghost that appears and only here starts to visit you”), and second at around 130k Scoville (paraphrasing: “like how NES to Super Nintendo felt like a big jump, but then Super Nintendo to N64 was an even bigger leap” – “Now we are playing in the big leagues motherfucker! This is fucking real!”). This hints at a change in dimensionality, too.

And second, Shinzen Young‘s advice about dealing with pain involves not resisting it. He discusses how suffering is generated by the coordination between emotional, cognitive, and physical mental formations. If you can keep each of these mental formations happening independently and don’t allow their coordinated forms, you will avoid some of what makes the experience bad. This also suggests that higher-dimensional pain is qualitatively worse. Pragmatically, training to do this may make sense for the time being, since we are still some years away from sustainable pain-relief for everyone.

Mixed States

We have yet to discuss in detail how mixed states come into play for a log-normal valence scale. The Symmetry Theory of Valence would suggest that most states are neutral in nature and that only processes that reduce entropy locally such as neural annealing would produce highly-valenced states. In particular, we would see that high-valence states have very negative valence states nearby in configuration space; if you take a very good high-energy state and distort it in a random direction it will likely feel very unpleasant. The points in between would be mixed valence, which account for the majority of experiences in the wild.

Qualia Formalism

Qualia Formalism posits that for any given system that sustains experiences, there is a mathematical object such that the mathematical features of that object are isomorphic to the system’s phenomenology. In turn, Valence Structuralism posits that the hedonic nature of experience is encoded in a mathematical feature of this object. It is easier to find something real if you posit that it exists (rather than try to explain it away). We have suggested in the past that valence can be explained in terms of the mathematical property of symmetry, which cashes out in the form of neural dissonance and consonance.

In contrast to eliminativist, illusionist, and non-formal approaches to consciousness, at QRI we simply start by assuming that experience has a deep ground truth structure and we see where we can go from there. Although we currently lack the conceptual schemes, science, and vocabulary needed to talk in precise terms about different degrees of pleasure and pain (though we are trying!), that is not a good reason to dismiss the first-person claims and indirect pieces of evidence concerning the true amounts of various kinds of qualia bound in each moment of experience. If valence does turn out to intrinsically be a mathematical feature of our experience, then both its quality and quantity could very well be precisely measurable, conceptually crisp, and tractable. A scientific fact that, if proven, would certainly have important implications in ethics and meta-ethics.


Notes:

* It’s a shame that Coyote Peterson didn’t rate the pain produced by the various wings he ate on the Hot Ones show relative to insect stings, but that sort of data would be very helpful in establishing a universal valence scale. More generally, stunt-man personalities like the L.A. Beast who subject themselves to extremes of negative valence for Internet points might be an untapped gold mine for experience deference data (e.g. How does eating the most bitter substance known compare with the bullet ant glove? Asking this guy might be the only way to find out, without creating more casualties).

**Base rate of mentions of worst experiences:

[('Father death', 19), ('Childbirth', 16), ('Grandmother death', 13), ('Mother death', 11), ('Car accident', 9), ('Kidney stone', 9), ('Migraine', 9), ('Romantic breakup', 9), ('Broken arm', 6), ('Broken leg', 6), ('Work failure', 6), ('Divorce', 5), ('Pet death', 5), ('Broken foot', 4), ('Broken ankle', 4), ('Broken hand', 4), ('Unspecified', 4), ('Friend death', 4), ('Sister death', 4), ('Skin burns', 3), ('Skin cut needing stitches', 3), ('Financial ruin', 3), ('Property loss', 3), ('Sprained ankle', 3), ('Gallstones', 3), ('Family breakup', 3), ('Divorce of parents', 3), ('C-section recovery', 3), ('Love failure', 2), ('Broken finger', 2), ('Unspecified fracture', 2), ('Broken ribs', 2), ('Unspecified family death', 2), ('Broken collarbone', 2), ('Grandfather death', 2), ('Unspecified illness', 2), ('Period pain', 2), ('Being cheated', 2), ('Financial loss', 2), ('Broken tooth', 2), ('Cousin death', 2), ('Relative with cancer', 2), ('Cluster headache', 2), ('Unspecified leg problem', 2), ('Root canal', 2), ('Back pain', 2), ('Broken nose', 2), ('Aunt death', 2), ('Wisdom teeth', 2), ('Cancer (eye)', 1), ('Appendix operation', 1), ('Dislocated elbow', 1), ('Concussion', 1), ('Mono', 1), ('Sexual assault', 1), ('Kidney infection', 1), ('Hemorrhoids', 1), ('Tattoo', 1), ('Unspecified kidney problem', 1), ('Unspecified lung problem', 1), ('Unspecified cancer', 1), ('Unspecified childhood sickness', 1), ('Broken jaw', 1), ('Broken elbow', 1), ('Thrown out back', 1), ('Lost sentimental item', 1), ('Abortion', 1), ('Ruptured kidney', 1), ('Big fall', 1), ('Torn knee', 1), ('Finger hit by hammer', 1), ('Injured thumb', 1), ('Brother in law death', 1), ('Knocked teeth', 1), ('Unspecified death', 1), ('Ripping off fingernail', 1), ('Personal anger', 1), ('Wrist pain', 1), ('Getting the wind knocked out', 1), ('Blown knee', 1), ('Burst appendix', 1), ('Tooth abscess', 1), ('Tendinitis', 1), ('Altruistic frustration', 1), ('Leg operation', 1), ('Gallbladder infection', 1), ('Broken wrist', 1), ('Stomach flu', 1), ('Running away from family', 1), ('Child beating', 1), ('Sinus infection', 1), ('Broken thumb', 1), ('Family abuse', 1), ('Miscarriage', 1), ('Tooth extraction', 1), ('Feeling like your soul is lost', 1), ('Homelessness', 1), ('Losing your religion', 1), ('Losing bike', 1), ('Family member in prison', 1), ('Crohn s disease', 1), ('Irritable bowel syndrome', 1), ('Family injured', 1), ('Unspecified chronic disease', 1), ('Fibromyalgia', 1), ('Blood clot in toe', 1), ('Infected c-section', 1), ('Suicide of lover', 1), ('Dental extraction', 1), ('Unspecified partner abuse', 1), ('Infertility', 1), ('Father in law death', 1), ('Broken neck', 1), ('Scratched cornea', 1), ('Swollen lymph nodes', 1), ('Sun burns', 1), ('Tooth ache', 1), ('Lost custody of children', 1), ('Unspecified accident', 1), ('Bike accident', 1), ('Broken hip', 1), ('Not being loved by partner', 1), ('Dog bite', 1), ('Broken skull', 1)]

Base rate of mentions of best experiences:

[('Falling in love', 42), ('Children born', 41), ('Marriage', 21), ('Sex', 19), ('College graduation', 13), ('Orgasm', 11), ('Alcohol', 8), ('Vacation', 6), ('Getting job', 6), ('Personal favorite sports win', 6), ('Nature scene', 5), ('Owning home', 5), ('Sports win', 4), ('Graduating highschool', 4), ('MDMA', 4), ('Getting paid for the first time', 4), ('Amusement park', 4), ('Game of chance earning', 4), ('Job achievement', 4), ('Getting engaged', 4), ('Cannabis', 3), ('Eating favorite food', 3), ('Unexpected gift', 3), ('Moving to a better location', 3), ('Travel', 3), ('Divorce', 2), ('Gifting car', 2), ('Giving to charity', 2), ('LSD', 2), ('Won contest', 2), ('Friend reunion', 2), ('Winning bike', 2), ('Kiss', 2), ('Pet ownership', 2), ('Children', 1), ('First air trip', 1), ('First kiss', 1), ('Public performance', 1), ('Hugs', 1), ('Unspecified', 1), ('Recovering from unspecified kidney problem', 1), ('College party', 1), ('Graduate school start', 1), ('Financial success', 1), ('Dinner with loved one', 1), ('Feeling supported', 1), ('Children graduates from college', 1), ('Family event', 1), ('Participating in TV show', 1), ('Psychedelic mushrooms', 1), ('Opiates', 1), ('Having own place', 1), ('Making music', 1), ('Becoming engaged', 1), ('Theater', 1), ('Extreme sport', 1), ('Armed forces graduation', 1), ('Birthday', 1), ('Positive pregnancy test', 1), ('Feeling that God exists', 1), ('Belief that Hell does not exist', 1), ('Getting car', 1), ('Academic achievement', 1), ('Helping others', 1), ('Meeting soulmate', 1), ('Daughter back home', 1), ('Winning custody of children', 1), ('Friend stops drinking', 1), ('Masturbation', 1), ('Friend not dead after all', 1), ('Child learns to walk', 1), ('Attending wedding of loved one', 1), ('Children safe after dangerous situation', 1), ('Unspecified good news', 1), ('Met personal idol', 1), ('Child learns to talk', 1), ('Children good at school', 1)]

For clarity – “Personal favorite sports win” means that the respondent was a participant in the sport as opposed to a spectator (which was labeled as “Sports win”). The difference between “Sex” and “Orgasm” is that Sex refers to the entire act including foreplay and cuddles whereas Orgasm refers to the specific moment of climax. For some reason people would either mention one or the other, and emphasize very different aspects of the experience (e.g. intimacy vs. physical sensation) so I decided to label them differently.

*** It is possible that some fine-tuning of parameters could give rise to long-tail ratios even with a normal distribution (especially if the mean is, say, a negative value and the standard deviation is very wide). But in the general case a normal distribution will have a fairly narrow range for the ratios of the “top value divided by the second top value”. So at least as a general qualitative argument, I think, the simulations do suggest a long-tailed nature for the reported hedonic values.

Using Ibogaine to Create Friendlier Opioids

by Quintin Frerichs

Chronic Pain is a Massive, Debilitating Problem

“A new study by the CDC revealed that 50 million Americans (just under 20% of the age-adjusted adult population) suffered from chronic pain, which was defined as “pain on most days or every day in the past 6 months.” Nearly 20 million (about 7.5%) experienced high-impact chronic pain, defined as “limiting life or work activities on most days or every day in the past 6 months.”

Who Is Hurting? The Prevalence Of Chronic Pain In America

Using IHME’s GBD visualization tool, about 5% of total DALYs come from conditions associated with chronic pain (back pain, neck pain and self-harm), not to mention the implications pain has in a variety of other conditions, from osteoporosis to cancer.

The Most Effective Tool for Pain Management Carries its Own Significant Burdens

Opioids  are highly effective as analgesics for managing chronic and acute pain, and are the most widely used pain treatment[1]. However, consistent use of opioids results in tolerance, dependence, withdrawal and overdose, which claimed the lives of 47,600 people in 2017[2]. Furthermore, the CDC estimates the total economic burden of prescription opioid misuse in the US is $78.5 billion a year, including the costs of health care, lost productivity, addiction treatment, and criminal justice involvement.[4]

Finding a solution for opioids’ dark side would help millions enjoy life, reduce the global health burden by no less than 5%, avoid 10s of thousands of future deaths, and recover billions in lost productivity.

A solution may be to combine variable doses of Ibogaine, the active compound found in the Tabernanthe iboga shrub with safer classes of opioids. 

The proliferation of opioids (specifically, full mu-opioid agonists) has this laundry list of problems: tolerance, addiction, withdrawal, overdose and euphoria (if one chooses to see it as a negative side-effect). In an effort to wean off of opioids, several groups have sought to attack these symptoms. Non-opioid therapeutics include cannabidiol (CBD) and CA-008, a TRPV-1 agonist which acts on nociceptive c-fibers in the peripheral nervous system similarly to capsaicin. These tend to be less habit-forming than opioids (attributed to their lower affinity for nuclei in the mesolimbic system), but also less effective at offering relief from intense neuropathic pain[4]. Other attempts to tame opioids have been made, most of them having the reduction of pleasure as the main target. CARA Therapeutics has created a kappa-opioid agonist which acts selectively on receptors in the peripheral nervous system to “produce little to no CNS-mediated side effects that one sees with traditional CNS-acting mu opioids like nausea/vomiting, sedation, respiratory depression, abuse, addiction or euphoria”. NKTR-181, a novel full mu-opioid agonist, is more direct: “NKTR-181, a first-in-class opioid analgesic, is a new chemical entity (NCE) that is the first full mu-opioid agonist molecule designed to provide potent pain relief without the high levels of euphoria that can lead to abuse and addiction with standard opioids”. As it turns out, addiction and pleasure have a complex relationship; one is not reducible to the other[5]. Euphoria-inducing psychedelic drugs and the jhana states of meditative absorption seem to lack the addictive profile of opioids. Pleasure and habit become decoupled over time in the path of opioid addiction as well, one fading with the other stubbornly immovable. If we can have opioids that forego tolerance, addiction, withdrawal and overdose, but keep the euphoria, wouldn’t that be better?

Capsaicin_chemical_structure

Capsaicin (source)

Ibogaine has a history of being used for the treatment of opioid addiction, but it may also have interesting properties for producing safer opioids as well. While at high doses (1g+) it creates intense psychedelic effects, it also has interesting properties at both lower doses of 500-600mg and at ‘microdoses’ of around 50mg. Ibogaine is illegal in many countries, but unregulated in Mexico, legal in Brazil, Gabon, and Costa Rica, and on the prescription drug list in New Zealand and Canada. For a more in-depth review of the history of Ibogaine and its use in treatment, read this review on Pysmposia. 

In this case study, a patient who had been a long-term opioid user and recently transitioned to methadone (a replacement for harder opioids like heroin, but maintaining the full agonist mu-opioid method of action) was taken off methadone without withdrawal using increasing doses of Ibogaine (150mg, 300mg, 400mg, 500mg, 600mg). As the Ibogaine dose was increased, the methadone was halved each time. We could allow opioid users to substantially decrease their opioid intake without withdrawal, while continuing to use opioids for pain management. After a few applications at the 100-600mg level, users could be maintaining their usage at ¼ of their original intake. Then they could utilize “dirty maintenance”: taking 25-50mg of Ibogaine daily while using a much lower amount of the opioid they typically use. Microdosing ibogaine alone is also potentially mood-enhancing, and some former opioid users have employed “clean maintenance” (i.e. just Ibogaine), to reduce post-acute-withdrawal syndrome (PAWS).

The reason these solutions work is because Ibogaine acts as an ‘anti-tolerance’ drug. It potentiates the effects of opioids and prevents patterns of tolerance and dependence from forming at the neurological level. When combined with full mu-opioid agonists, even in lower doses, this can pose a risk since the dose required to overdose could be more unpredictable with Ibogaine. A ‘best of both worlds’ solution would be to continue microdosing Ibogaine in conjunction with a partial mu-opioid agonist. Partial mu-opioid agonists prevent overdose by creating an upper-bound on activity at the opioid receptor and preventing the respiratory depression that causes death in full agonists.

Agonist_2

Full vs. partial agonists (source)

While existing partial mu-opioid agonists, such as the drug combo of buprenorphine and naloxone are used in opioid replacement therapy settings, they too lack euphoria-producing properties. With this new class of analgesics, patients could choose when to start, stop, and for how long to take their pain medication without fear, along with a depression-preventing hedonic enhancement. For more, see: On Hitting the Actual Target of Hedonic Tone.

A well-known example of a partial mu-opioid agonist is 7-hydroxymitragynine, the active compound in kratom. Brazil is the only country to not prohibitively schedule either kratom or Ibogaine, and so might be an option for conducting research into this new form of non-tolerance-inducing opioid mixture. In the United States, research is being done at DemeRX for approving Ibogaine through the FDA IND process for the detoxification of people afflicted with opioid addiction. Their success would also open the door to further innovation in Ibogaine-assisted pain treatments in the US.

Risks of Ibogaine

Unfortunately, Ibogaine has a harsher risk profile than most psychedelics, and has been associated with about 30 deaths due to cardiac complications. However, many researchers who have worked with Ibogaine for decades believe that these incidents can be minimized or even eliminated by standard medical practices like employing EKG screenings. Medical screenings should not only assess current heart health, but also in-system drugs, which can be potentiated by Ibogaine use, and can lead to unexpected overdose. In a population of drug users to be treated, higher incidences of poor heart health and the presence of other drugs likely contributed to a significant number of the cases of death recorded.

Mash et al. 2018 reviewed 191 cases of ibogaine therapy (all at Dr. Mash’s clinic on Saint Kitts) and found that there were no cases of cardiac-related death at doses used for interrupting addiction. Furthermore, Clear Sky Recovery has administered 1000s of Ibogaine sessions without a single fatality.

Iboga rescheduling in the US may be far off, but its potential shouldn’t be underestimated. As Hamilton Morris notes, Ibogaine is “alien technology”, with the potential to help us humans solve some of our greatest medical mysteries. For now, it’s enough to think that it might be able to a create stable, long-term pain medication with no risk of respiratory depression, tolerance, and minimal withdrawal. Along with risk-free… risk tolerant euphoria. Whether that sustainable euphoria will be available to all, remains to be seen.


[1] https://www.mayoclinic.org/chronic-pain-medication-decisions/art-20360371

[2] https://www.hhs.gov/opioids/about-the-epidemic/index.html

[3] https://www.moveforwardpt.com/resources/detail/7-staggering-statistics-about-america-s-opioid-epi

[4] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1920543/

[5] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782756/

Featured image source: What Is Iboga?