10 Ways Perception Distorts Reality

by David Pearce (Quora response)


If the doors of perception were cleansed every thing would appear to man as it is, Infinite.

– William Blake

1. You don’t perceive the environment. There is no public world. Instead, your local environment partially selects your brain states, some of which are experienced as your external surroundings. Mind-independent reality is a speculative metaphysical inference (sadly a strong one, IMO). Contra William Blake (and Aldous Huxley), there are no see-through doors of perception in need of a good wash, just cranial prisons.

2. Whether you are awake or dreaming, your world-simulation is populated by zombies. When you are awake, these zombies are the avatars of sentient beings, but the imposters loom larger than their hypothetical real-world counterparts.

3. Your egocentric world-simulation resembles a grotesque cartoon. Within the cartoon, you are the hub of reality, the most important being in the universe, followed by your close genetic relatives, lovers, friends and allies. On theoretical grounds, you may wonder if this fitness-enhancing hallucination can be trusted. After all, trillions of other sentient beings apparently share an analogous illusion. In practice, the idea of your playing a humble role in the great scheme of things can be hard to take seriously, unless the hub of the universe is psychologically depressed. Wikipedia’s List of Messiah Claimants could be enlarged.

4. Perceptual direct realism spawns a “magical” theory of reference. If direct realism is delusional, then what is the mysterious relationship between thought-episodes internal to your world-simulation and the external world? (cf. What is the current state of affairs in philosophy concerning the symbol grounding problem?).

5. A realistic interpretation of the formalism of quantum physics confirms that not just the Lockean “secondary” properties of material objects are mind-dependent, but also their “primary” properties (cf. Primary/secondary quality distinction). Shades of Bishop Berkeley? (“Esse est percipi” – “to be is to be perceived”) Kant? Not exactly, but classical physics and Copenhagen-style positivism alike are false theories of reality.

6. According to “no-collapse” quantum mechanics (Everett), you have no unique future, and no unique past. You are not the same person as your countless ancestral namesakes nor the countless folk who wake up tomorrow with an approximation of your memories (cf. Was Parfit correct about consciousness and how we’re not the same person that we were when we were born?).

7. You experience the illusion of embodiment. “In-the-body” hallucinations in biological minds pervade the animal kingdom. As out-of-body experiences on dissociative anaesthetics like ketamine reveal, physical bodies as normally conceived are cross-modally-matched illusions generated by the CNS. Or alternatively, dualism is true. Actually, not everyone has the chronic illusion of embodiment. People with negative autoscopy can stare into a virtual mirror in their phenomenal world-simulation and not see themselves. For evolutionary reasons, negative autoscopy is rare.

8. You experience the illusion of four-dimensional space-time, not high-dimensional Hilbert space. This idea is more controversial. Hilbert space is a generalisation of ordinary Euclidian space to an intuitively huge number of dimensions – conventionally infinite, though the holographic entropy bound suggests the dimensionality of what naïve realists call the observable universe is finite. Quantum mechanics may be understood via the mathematical structure of Hilbert space (cf. Nothing happens in the Universe of the Everett Interpretation). Typically, Hilbert space is treated instrumentally as a mere mathematical abstraction, even by Everettians. As David Wallace, a critic, puts it: “Very few people are willing to defend Hilbert-space realism in print.” In the interests of mental health, such self-censorship may be wise.

9. Experienced psychonauts would echo William James, “…our normal waking consciousness, rational consciousness as we call it, is but one special type of consciousness, whilst all about it, parted from it by the flimsiest of screens, there lie potential forms of consciousness entirely different.” Quite so. Our posthuman successors may regard everyday Darwinian consciousness as delusive in ways that transcend the expressive power of a human conceptual scheme.

10. We do not understand reality. Any account of our misperceptions must pass over the unknown unknowns. I fear we’re missing not only details, but the key to the plot.

Atman Retreat: Safe, Legal Psilocybin Experiences in Jamaica

Atman Retreat provides safe, legal psychedelic experiences outside of Montego Bay, Jamaica.

  • Upcoming retreat dates:
    • September 23-26 (7 spots left; as of September 2nd)
    • September 27-30 (5 spots left; as of September 2nd)
    • November 13-16
    • November 17-20
       
  • Atman recently introduced tiered pricing and a low-income ticket program.

About Atman Retreat (source)

Psychedelics are known to produce profound, meaningful, transformative experiences when used in a safe and intentional manner.1 However, many people don’t have access to psychedelics, or to a safe setting within which to use them. Others simply don’t want to break the law. Until we adopt more compassionate, evidence-based drug policy, there are few ways for people to experience these extraordinary states of consciousness safely and legally. Atman Retreat exists to fill this gap.

Our core mission is to help people explore the full potential of the psychedelic experience, in all its healing, transformative, and transcendent qualities. Retreats are held in Jamaica, where psilocybin mushrooms are legal. Participants stay at a spacious villa, with comfortable rooms and a scenic private beachfront. Our team of experienced facilitators is passionate about creating space for inner transformation, insight, and breakthroughs.

Whether you’re completely new to psychedelics, or a seasoned psychonaut interested in a different kind of journey, Atman Retreat is a complete 4-day experience that allows you to explore psychedelics safely, legally, and in a setting designed to maximize their benefits.

When you feel ready, you can apply here.



Why am I sharing this announcement? I think that Atman Retreat is especially suited to Qualia Computing readers for the following three reasons:

  1. I know some of the people who started it and I can confirm that they are good, rational, and tactful people trying to make the world a better place.
  2. The retreat is open-ended in nature. Sadly, most legal psychedelic retreats come with heavy “memetic baggage” in the form of unquestioned beliefs about spirituality or strong ideological commitments. At the very least, the focus of most legal psychedelic retreats is explicitly therapeutic. Atman Retreat is a good place to simply explore your own mind and study the nature of consciousness without having to accept any spiritual, therapeutic, or ideological framework. For example, their website has a research section which lists and summarizes recent studies on the effects of psilocybin, which shows a willingness by the staff to engage with a scientific approach to psychedelics.
  3. The participants in previous cohorts of Atman Retreat have been very aligned with both Effective Altruism and the scientific study of consciousness. In other words, the attendees are typically smart, curious, ethical, and epistemologically sound.

To this, I will add that one of the visions of the Qualia Research Institute is to create an empirical consciousness research center in which psychedelics are taken by the brightest scientists, philosophers, and engineers to explore alien state-spaces of consciousness directly.

Indeed, consciousness research is currently at a pre-Galilean state, where brain scientists refuse to “look through the telescope” so to speak (or at least if they do, they are not talking about it publicly). Scientific culture is such that discussing the EEG measurements of members of the general public under the influence of psychedelics is acceptable but as soon as one talks about one’s own direct experience with such compounds one’s scientific credibility becomes suspect.

We can change this, and one of the first steps is to establish a legal framework for consciousness researchers to be able to engage in fruitful self-experimentation. Real scientific progress on consciousness will only take place with a twin track that combines both analysis of third-person data and the use of an empirical research methodology of direct experience by the researchers themselves. By pointing to the Atman Retreat I am hoping to elevate it to the status of a sort of Schelling point for rational psychonauts to converge on for the time being.

Perhaps this is a crucial first step in establishing a legally-viable Super-Shulgin Academy* for a post-Galilean science of consciousness.

b1axth3hfk221

Jamaica is waiting for you!



*From the QRI Glossary

Super-Shulgin Academy (coined by David Pearce; ref: 12345678): This is a hypothetical future intellectual society that investigates consciousness empirically. Rather than merely theorizing about it or having people from the general population describe their odd experiences, the Super-Shulgin Academy directly studies the state-space of consciousness by putting the brightest minds on the task. The Super-Shulgin Academy (1) trains high-quality consciousness researchers and psychonauts, (2) investigates the computational trade-offs between different states of consciousness, (3) finds new socially-useful applications for exotic states of consciousness, (4) practices the art and craft of creating ultra-blissful experiences, and (5) develops and maintains a full-stack memeplex that incorporates the latest insights about the state-space of consciousness into the most up-to-date Theory of Everything.

Featured image: source.

Why I think the Foundational Research Institute should rethink its approach

by Mike Johnson

The following is my considered evaluation of the Foundational Research Institute, circa July 2017. I discuss its goal, where I foresee things going wrong with how it defines suffering, and what it could do to avoid these problems.

TL;DR version: functionalism (“consciousness is the sum-total of the functional properties of our brains”) sounds a lot better than it actually turns out to be in practice. In particular, functionalism makes it impossible to define ethics & suffering in a way that can mediate disagreements.

I. What is the Foundational Research Institute?

The Foundational Research Institute (FRI) is a Berlin-based group that “conducts research on how to best reduce the suffering of sentient beings in the near and far future.” Executive Director Max Daniel introduced them at EA Global Boston as “the only EA organization which at an organizational level has the mission of focusing on reducing s-risk.” S-risks are, according to Daniel, “risks where an adverse outcome would bring about suffering on an astronomical scale, vastly exceeding all suffering that has existed on Earth so far.”

Essentially, FRI wants to become the research arm of suffering-focused ethics, and help prevent artificial general intelligence (AGI) failure-modes which might produce suffering on a cosmic scale.

What I like about FRI:

While I have serious qualms about FRI’s research framework, I think the people behind FRI deserve a lot of credit- they seem to be serious people, working hard to build something good. In particular, I want to give them a shoutout for three things:

  • First, FRI takes suffering seriously, and I think that’s important. When times are good, we tend to forget how tongue-chewingly horrific suffering can be. S-risks seem particularly horrifying.
  • Second, FRI isn’t afraid of being weird. FRI has been working on s-risk research for a few years now, and if people are starting to come around to the idea that s-risks are worth thinking about, much of the credit goes to FRI.
  • Third, I have great personal respect for Brian Tomasik, one of FRI’s co-founders. I’ve found him highly thoughtful, generous in debates, and unfailingly principled. In particular, he’s always willing to bite the bullet and work ideas out to their logical end, even if it involves repugnant conclusions.

What is FRI’s research framework?

FRI believes in analytic functionalism, or what David Chalmers calls “Type-A materialism”. Essentially, what this means is there’s no ’theoretical essence’ to consciousness; rather, consciousness is the sum-total of the functional properties of our brains. Since ‘functional properties’ are rather vague, this means consciousness itself is rather vague, in the same way words like “life,” “justice,” and “virtue” are messy and vague.

Brian suggests that this vagueness means there’s an inherently subjective, perhaps arbitrary element to how we define consciousness:

Analytic functionalism looks for functional processes in the brain that roughly capture what we mean by words like “awareness”, “happy”, etc., in a similar way as a biologist may look for precise properties of replicators that roughly capture what we mean by “life”. Just as there can be room for fuzziness about where exactly to draw the boundaries around “life”, different analytic functionalists may have different opinions about where to define the boundaries of “consciousness” and other mental states. This is why consciousness is “up to us to define”. There’s no hard problem of consciousness for the same reason there’s no hard problem of life: consciousness is just a high-level word that we use to refer to lots of detailed processes, and it doesn’t mean anything in addition to those processes.

Finally, Brian argues that the phenomenology of consciousness is identical with the phenomenology of computation:

I know that I’m conscious. I also know, from neuroscience combined with Occam’s razor, that my consciousness consists only of material operations in my brain — probably mostly patterns of neuronal firing that help process inputs, compute intermediate ideas, and produce behavioral outputs. Thus, I can see that consciousness is just the first-person view of certain kinds of computations — as Eliezer Yudkowsky puts it, “How An Algorithm Feels From Inside“. Consciousness is not something separate from or epiphenomenal to these computations. It is these computations, just from their own perspective of trying to think about themselves.

 

In other words, consciousness is what minds compute. Consciousness is the collection of input operations, intermediate processing, and output behaviors that an entity performs.

And if consciousness is all these things, so too is suffering. Which means suffering is computational, yet also inherently fuzzy, and at least a bit arbitrary; a leaky high-level reification impossible to speak about accurately, since there’s no formal, objective “ground truth”.

II. Why do I worry about FRI’s research framework?

In short, I think FRI has a worthy goal and good people, but its metaphysics actively prevent making progress toward that goal. The following describes why I think that, drawing heavily on Brian’s writings (of FRI’s researchers, Brian seems the most focused on metaphysics):

Note: FRI is not the only EA organization which holds functionalist views on consciousness; much of the following critique would also apply to e.g. MIRI, FHI, and OpenPhil. I focus on FRI because (1) Brian’s writings on consciousness & functionalism have been hugely influential in the community, and are clear enough *to* criticize; (2) the fact that FRI is particularly clear about what it cares about- suffering- allows a particularly clear critique about what problems it will run into with functionalism; (3) I believe FRI is at the forefront of an important cause area which has not crystallized yet, and I think it’s critically important to get these objections bouncing around this subcommunity.

Objection 1: Motte-and-bailey

Brian: “Consciousness is not a thing which exists ‘out there’ or even a separate property of matter; it’s a definitional category into which we classify minds. ‘Is this digital mind really conscious?’ is analogous to ‘Is a rock that people use to eat on really a table?’ [However,] That consciousness is a cluster in thingspace rather than a concrete property of the world does not make reducing suffering less important.”

The FRI model seems to imply that suffering is ineffable enough such that we can’t have an objective definition, yet sufficiently effable that we can coherently talk and care about it. This attempt to have it both ways seems contradictory, or at least in deep tension.

Indeed, I’d argue that the degree to which you can care about something is proportional to the degree to which you can define it objectively. E.g., If I say that “gnireffus” is literally the most terrible thing in the cosmos, that we should spread gnireffus-focused ethics, and that minimizing g-risks (far-future scenarios which involve large amounts of gnireffus) is a moral imperative, but also that what is and what and isn’t gnireffus is rather subjective with no privileged definition, and it’s impossible to objectively tell if a physical system exhibits gnireffus, you might raise any number of objections. This is not an exact metaphor for FRI’s position, but I worry that FRI’s work leans on the intuition that suffering is real and we can speak coherently about it, to a degree greater than its metaphysics formally allow.

Max Daniel (personal communication) suggests that we’re comfortable with a degree of ineffability in other contexts; “Brian claims that the concept of suffering shares the allegedly problematic properties with the concept of a table. But it seems a stretch to say that the alleged tension is problematic when talking about tables. So why would it be problematic when talking about suffering?” However, if we take the anti-realist view that suffering is ‘merely’ a node in the network of language, we have to live with the consequences of this: that ‘suffering’ will lose meaning as we take it away from the network in which it’s embedded (Wittgenstein). But FRI wants to do exactly this, to speak about suffering in the context of AGIs, simulated brains, even video game characters.

We can be anti-realists about suffering (suffering-is-a-node-in-the-network-of-language), or we can argue that we can talk coherently about suffering in novel contexts (AGIs, mind crime, aliens, and so on), but it seems inherently troublesome to claim we can do both at the same time.

Objection 2: Intuition duels

Two people can agree on FRI’s position that there is no objective fact of the matter about what suffering is (no privileged definition), but this also means they have no way of coming to any consensus on the object-level question of whether something can suffer. This isn’t just an academic point: Brian has written extensively about how he believes non-human animals can and do suffer extensively, whereas Yudkowsky (who holds computationalist views, like Brian) has written about how he’s confident that animals are not conscious and cannot suffer, due to their lack of higher-order reasoning.

And if functionalism is having trouble adjudicating the easy cases of suffering–whether monkeys can suffer, or whether dogs can— it doesn’t have a sliver of a chance at dealing with the upcoming hard cases of suffering: whether a given AGI is suffering, or engaging in mind crime; whether a whole-brain emulation (WBE) or synthetic organism or emergent intelligence that doesn’t have the capacity to tell us how it feels (or that we don’t have the capacity to understand) is suffering; if any aliens that we meet in the future can suffer; whether changing the internal architecture of our qualia reports means we’re also changing our qualia; and so on.

In short, FRI’s theory of consciousness isn’t actually a theory of consciousness at all, since it doesn’t do the thing we need a theory of consciousness to do: adjudicate disagreements in a principled way. Instead, it gives up any claim on the sorts of objective facts which could in principle adjudicate disagreements.

This is a source of friction in EA today, but it’s mitigated by the sense that

(1) The EA pie is growing, so it’s better to ignore disagreements than pick fights;

(2) Disagreements over the definition of suffering don’t really matter yet, since we haven’t gotten into the business of making morally-relevant synthetic beings (that we know of) that might be unable to vocalize their suffering.

If the perception of one or both of these conditions change, the lack of some disagreement-adjudicating theory of suffering will matter quite a lot.

Objection 3: Convergence requires common truth

Mike: “[W]hat makes one definition of consciousness better than another? How should we evaluate them?”

Brian: “Consilience among our feelings of empathy, principles of non-discrimination, understandings of cognitive science, etc. It’s similar to the question of what makes one definition of justice or virtue better than another.”

Brian is hoping that affective neuroscience will slowly converge to accurate views on suffering as more and better data about sentience and pain accumulates. But convergence to truth implies something (objective) driving the convergence- in this way, Brian’s framework still seems to require an objective truth of the matter, even though he disclaims most of the benefits of assuming this.

Objection 4: Assuming that consciousness is a reification produces more confusion, not less

Brian: “Consciousness is not a reified thing; it’s not a physical property of the universe that just exists intrinsically. Rather, instances of consciousness are algorithms that are implemented in specific steps. … Consciousness involves specific things that brains do.”

Brian argues that we treat conscious/phenomenology as more ‘real’ than it is. Traditionally, whenever we’ve discovered something is a leaky reification and shouldn’t be treated as ‘too real’, we’ve been able to break it down into more coherent constituent pieces we can treat as real. Life, for instance, wasn’t due to élan vital but a bundle of self-organizing properties & dynamics which generally co-occur. But carrying out this “de-reification” process on consciousness– enumerating its coherent constituent pieces– has proven difficult, especially if we want to preserve some way to speak cogently about suffering.

Speaking for myself, the more I stared into the depths of functionalism, the less certain everything about moral value became– and arguably, I see the same trajectory in Brian’s work and Luke Muehlhauser’s report. Their model uncertainty has seemingly become larger as they’ve looked into techniques for how to “de-reify” consciousness while preserving some flavor of moral value, not smaller. Brian and Luke seem to interpret this as evidence that moral value is intractably complicated, but this is also consistent with consciousness not being a reification, and instead being a real thing. Trying to “de-reify” something that’s not a reification will produce deep confusion, just as surely trying to treat a reification as ‘more real’ than it actually is will.

Edsger W. Dijkstra famously noted that “The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise.” And so if our ways of talking about moral value fail to ‘carve reality at the joints’- then by all means let’s build better ones, rather than giving up on precision.

Objection 5: The Hard Problem of Consciousness is a red herring

Brian spends a lot of time discussing Chalmers’ “Hard Problem of Consciousness”, i.e. the question of why we’re subjectively conscious, and seems to base at least part of his conclusion on not finding this question compelling— he suggests “There’s no hard problem of consciousness for the same reason there’s no hard problem of life: consciousness is just a high-level word that we use to refer to lots of detailed processes, and it doesn’t mean anything in addition to those processes.” I.e., no ‘why’ is necessary; when we take consciousness and subtract out the details of the brain, we’re left with an empty set.

But I think the “Hard Problem” isn’t helpful as a contrastive centerpiece, since it’s unclear what the problem is, and whether it’s analytic or empirical, a statement about cognition or about physics. At the Qualia Research Institute (QRI), we don’t talk much about the Hard Problem; instead, we talk about Qualia Formalism, or the idea that any phenomenological state can be crisply and precisely represented by some mathematical object. I suspect this would be a better foil for Brian’s work than the Hard Problem.

Objection 6: Mapping to reality

Brian argues that consciousness should be defined at the functional/computational level: given a Turing machine, or neural network, the right ‘code’ will produce consciousness. But the problem is that this doesn’t lead to a theory which can ‘compile’ to physics. Consider the following:

Imagine you have a bag of popcorn. Now shake it. There will exist a certain ad-hoc interpretation of bag-of-popcorn-as-computational-system where you just simulated someone getting tortured, and other interpretations that don’t imply that. Did you torture anyone? If you’re a computationalist, no clear answer exists- you both did, and did not, torture someone. This sounds like a ridiculous edge-case that would never come up in real life, but in reality it comes up all the time, since there is no principled way to *objectively derive* what computation(s) any physical system is performing.

I don’t think this is an outlandish view of functionalism; Brian suggests much the same in How to Interpret a Physical System as a Mind“Physicalist views that directly map from physics to moral value are relatively simple to understand. Functionalism is more complex, because it maps from physics to computations to moral value. Moreover, while physics is real and objective, computations are fictional and ‘observer-relative’ (to use John Searle’s terminology). There’s no objective meaning to ‘the computation that this physical system is implementing’ (unless you’re referring to the specific equations of physics that the system is playing out).”

Gordon McCabe (McCabe 2004) provides a more formal argument to this effect— that precisely mapping between physical processes and (Turing-level) computational processes is inherently impossible— in the context of simulations. First, McCabe notes that:

[T]here is a one-[to-]many correspondence between the logical states [of a computer] and the exact electronic states of computer memory. Although there are bijective mappings between numbers and the logical states of computer memory, there are no bijective mappings between numbers and the exact electronic states of memory.

This lack of an exact bijective mapping means that subjective interpretation necessarily creeps in, and so a computational simulation of a physical system can’t be ‘about’ that system in any rigorous way:

In a computer simulation, the values of the physical quantities possessed by the simulated system are represented by the combined states of multiple bits in computer memory. However, the combined states of multiple bits in computer memory only represent numbers because they are deemed to do so under a numeric interpretation. There are many different interpretations of the combined states of multiple bits in computer memory. If the numbers represented by a digital computer are interpretation-dependent, they cannot be objective physical properties. Hence, there can be no objective relationship between the changing pattern of multiple bit-states in computer memory, and the changing pattern of quantity-values of a simulated physical system.

McCabe concludes that, metaphysically speaking,

A digital computer simulation of a physical system cannot exist as, (does not possess the properties and relationships of), anything else other than a physical process occurring upon the components of a computer. In the contemporary case of an electronic digital computer, a simulation cannot exist as anything else other than an electronic physical process occurring upon the components and circuitry of a computer.

Where does this leave ethics? In Flavors of Computation Are Flavors of Consciousness, Brian notes that “In some sense all I’ve proposed here is to think of different flavors of computation as being various flavors of consciousness. But this still leaves the question: Which flavors of computation matter most? Clearly whatever computations happen when a person is in pain are vastly more important than what’s happening in a brain on a lazy afternoon. How can we capture that difference?”

But if Brian grants the former point- that “There’s no objective meaning to ‘the computation that this physical system is implementing’”– then this latter task of figuring out “which flavors of computation matter most” is provably impossible. There will always be multiple computational (and thus ethical) interpretations of a physical system, with no way to figure out what’s “really” happening. No way to figure out if something is suffering or not. No consilience; not now, not ever.

Note: despite apparently granting the point above, Brian also remarks that:

I should add a note on terminology: All computations occur within physics, so any computation is a physical process. Conversely, any physical process proceeds from input conditions to output conditions in a regular manner and so is a computation. Hence, the set of computations equals the set of physical processes, and where I say “computations” in this piece, one could just as well substitute “physical processes” instead.

This seems to be (1) incorrect, for the reasons I give above, or (2) taking substantial poetic license with these terms, or (3) referring to hypercomputation (which might be able to salvage the metaphor, but would invalidate many of FRI’s conclusions dealing with the computability of suffering on conventional hardware).

This objection may seem esoteric or pedantic, but I think it’s important, and that it ripples through FRI’s theoretical framework with disastrous effects.

 

Objection 7: FRI doesn’t fully bite the bullet on computationalism

Brian suggests that “flavors of computation are flavors of consciousness” and that some computations ‘code’ for suffering. But if we do in fact bite the bullet on this metaphor and place suffering within the realm of computational theory, we need to think in “near mode” and accept all the paradoxes that brings. Scott Aaronson, a noted expert on quantum computing, raises the following objections to functionalism:

I’m guessing that many people in this room side with Dennett, and (not coincidentally, I’d say) also with Everett. I certainly have sympathies in that direction too. In fact, I spent seven or eight years of my life as a Dennett/Everett hardcore believer. But, while I don’t want to talk anyone out of the Dennett/Everett view, I’d like to take you on a tour of what I see as some of the extremely interesting questions that that view leaves unanswered. I’m not talking about “deep questions of meaning,” but about something much more straightforward: what exactly does a computational process have to do to qualify as “conscious”?

 

 

There’s this old chestnut, what if each person on earth simulated one neuron of your brain, by passing pieces of paper around. It took them several years just to simulate a single second of your thought processes. Would that bring your subjectivity into being? Would you accept it as a replacement for your current body? If so, then what if your brain were simulated, not neuron-by-neuron, but by a gigantic lookup table? That is, what if there were a huge database, much larger than the observable universe (but let’s not worry about that), that hardwired what your brain’s response was to every sequence of stimuli that your sense-organs could possibly receive. Would that bring about your consciousness? Let’s keep pushing: if it would, would it make a difference if anyone actually consulted the lookup table? Why can’t it bring about your consciousness just by sitting there doing nothing?

To these standard thought experiments, we can add more. Let’s suppose that, purely for error-correction purposes, the computer that’s simulating your brain runs the code three times, and takes the majority vote of the outcomes. Would that bring three “copies” of your consciousness into being? Does it make a difference if the three copies are widely separated in space or time—say, on different planets, or in different centuries? Is it possible that the massive redundancy taking place in your brain right now is bringing multiple copies of you into being?

 

 

Maybe my favorite thought experiment along these lines was invented by my former student Andy Drucker.  In the past five years, there’s been a revolution in theoretical cryptography, around something called Fully Homomorphic Encryption (FHE), which was first discovered by Craig Gentry.  What FHE lets you do is to perform arbitrary computations on encrypted data, without ever decrypting the data at any point.  So, to someone with the decryption key, you could be proving theorems, simulating planetary motions, etc.  But to someone without the key, it looks for all the world like you’re just shuffling random strings and producing other random strings as output.

 

You can probably see where this is going.  What if we homomorphically encrypted a simulation of your brain?  And what if we hid the only copy of the decryption key, let’s say in another galaxy?  Would this computation—which looks to anyone in our galaxy like a reshuffling of gobbledygook—be silently producing your consciousness?

 

When we consider the possibility of a conscious quantum computer, in some sense we inherit all the previous puzzles about conscious classical computers, but then also add a few new ones.  So, let’s say I run a quantum subroutine that simulates your brain, by applying some unitary transformation U.  But then, of course, I want to “uncompute” to get rid of garbage (and thereby enable interference between different branches), so I apply U-1.  Question: when I apply U-1, does your simulated brain experience the same thoughts and feelings a second time?  Is the second experience “the same as” the first, or does it differ somehow, by virtue of being reversed in time? Or, since U-1U is just a convoluted implementation of the identity function, are there no experiences at all here?

 

Here’s a better one: many of you have heard of the Vaidman bomb.  This is a famous thought experiment in quantum mechanics where there’s a package, and we’d like to “query” it to find out whether it contains a bomb—but if we query it and there is a bomb, it will explode, killing everyone in the room.  What’s the solution?  Well, suppose we could go into a superposition of querying the bomb and not querying it, with only ε amplitude on querying the bomb, and √(1-ε2) amplitude on not querying it.  And suppose we repeat this over and over—each time, moving ε amplitude onto the “query the bomb” state if there’s no bomb there, but moving ε2 probability onto the “query the bomb” state if there is a bomb (since the explosion decoheres the superposition).  Then after 1/ε repetitions, we’ll have order 1 probability of being in the “query the bomb” state if there’s no bomb.  By contrast, if there is a bomb, then the total probability we’ve ever entered that state is (1/ε)×ε2 = ε.  So, either way, we learn whether there’s a bomb, and the probability that we set the bomb off can be made arbitrarily small.  (Incidentally, this is extremely closely related to how Grover’s algorithm works.)

 

OK, now how about the Vaidman brain?  We’ve got a quantum subroutine simulating your brain, and we want to ask it a yes-or-no question.  We do so by querying that subroutine with ε amplitude 1/ε times, in such a way that if your answer is “yes,” then we’ve only ever activated the subroutine with total probability ε.  Yet you still manage to communicate your “yes” answer to the outside world.  So, should we say that you were conscious only in the ε fraction of the wavefunction where the simulation happened, or that the entire system was conscious?  (The answer could matter a lot for anthropic purposes.)

To sum up: Brian’s notion that consciousness is the same as computation raises more issues than it solves; in particular, the possibility that if suffering is computable, it may also be uncomputable/reversible, would suggest s-risks aren’t as serious as FRI treats them.

Objection 8: Dangerous combination

Three themes which seem to permeate FRI’s research are:

(1) Suffering is the thing that is bad.

(2) It’s critically important to eliminate badness from the universe.

(3) Suffering is impossible to define objectively, and so we each must define what suffering means for ourselves.

Taken individually, each of these seems reasonable. Pick two, and you’re still okay. Pick all three, though, and you get A Fully General Justification For Anything, based on what is ultimately a subjective/aesthetic call.

Much can be said in FRI’s defense here, and it’s unfair to single them out as risky: in my experience they’ve always brought a very thoughtful, measured, cooperative approach to the table. I would just note that ideas are powerful, and I think theme (3) is especially pernicious if incorrect.

III. QRI’s alternative

Analytic functionalism is essentially a negative hypothesis about consciousness: it’s the argument that there’s no order to be found, no rigor to be had. It obscures this with talk of “function”, which is a red herring it not only doesn’t define, but admits is undefinable. It doesn’t make any positive assertion. Functionalism is skepticism- nothing more, nothing less.

But is it right?

Ultimately, I think these a priori arguments are much like people in the middle ages arguing whether one could ever formalize a Proper System of Alchemy. Such arguments may in many cases hold water, but it’s often difficult to tell good arguments apart from arguments where we’re just cleverly fooling ourselves. In retrospect, the best way to *prove* systematized alchemy was possible was to just go out and *do* it, and invent Chemistry. That’s how I see what we’re doing at QRI with Qualia Formalism: we’re assuming it’s possible to build stuff, and we’re working on building the object-level stuff.

What we’ve built with QRI’s framework

Note: this is a brief, surface-level tour of our research; it will probably be confusing for readers who haven’t dug into our stuff before. Consider this a down-payment on a more substantial introduction.

My most notable work is Principia Qualia, in which I lay out my meta-framework for consciousness (a flavor of dual-aspect monism, with a focus on Qualia Formalism) and put forth the Symmetry Theory of Valence (STV). Essentially, the STV is an argument that much of the apparent complexity of emotional valence is evolutionarily contingent, and if we consider a mathematical object isomorphic to a phenomenological experience, the mathematical property which corresponds to how pleasant it is to be that experience is the object’s symmetry. This implies a bunch of testable predictions and reinterpretations of things like what ‘pleasure centers’ do (Section XI; Section XII). Building on this, I offer the Symmetry Theory of Homeostatic Regulation, which suggests understanding the structure of qualia will translate into knowledge about the structure of human intelligence, and I briefly touch on the idea of Neuroacoustics.

Likewise, my colleague Andrés Gómez Emilsson has written about the likely mathematics of phenomenology, including The Hyperbolic Geometry of DMT Experiences, Tyranny of the Intentional Object, and Algorithmic Reduction of Psychedelic States. If I had to suggest one thing to read in all of these links, though, it would be the transcript of his recent talk on Quantifying Bliss, which lays out the world’s first method to objectively measure valence from first principles (via fMRI) using Selen Atasoy’s Connectome Harmonics framework, the Symmetry Theory of Valence, and Andrés’s CDNS model of experience.

These are risky predictions and we don’t yet know if they’re right, but we’re confident that if there is some elegant structure intrinsic to consciousness, as there is in many other parts of the natural world, these are the right kind of risks to take.

I mention all this because I think analytic functionalism- which is to say radical skepticism/eliminativism, the metaphysics of last resort- only looks as good as it does because nobody’s been building out any alternatives.

IV. Closing thoughts

FRI is pursuing a certain research agenda, and QRI is pursuing another, and there’s lots of value in independent explorations of the nature of suffering. I’m glad FRI exists, everybody I’ve interacted with at FRI has been great, I’m happy they’re focusing on s-risks, and I look forward to seeing what they produce in the future.

On the other hand, I worry that nobody’s pushing back on FRI’s metaphysics, which seem to unavoidably lead to the intractable problems I describe above. FRI seems to believe these problems are part of the territory, unavoidable messes that we just have to make philosophical peace with. But I think that functionalism is a bad map, that the metaphysical messes it leads to are much worse than most people realize (fatal to FRI’s mission), and there are other options that avoid these problems (which, to be fair, is not to say they have no problems).

Ultimately, FRI doesn’t owe me a defense of their position. But if they’re open to suggestions on what it would take to convince a skeptic like me that their brand of functionalism is viable, or at least rescuable, I’d offer the following:

Re: Objection 1 (motte-and-bailey), I suggest FRI should be as clear and complete as possible in their basic definition of suffering. In which particular ways is it ineffable/fuzzy, and in which particular ways is it precise? What can we definitely say about suffering, and what can we definitely never determine? Preregistering ontological commitments and methodological possibilities would help guard against FRI’s definition of suffering changing based on context.

Re: Objection 2 (intuition duels), FRI may want to internally “war game” various future scenarios involving AGI, WBE, etc, with one side arguing that a given synthetic (or even extraterrestrial) organism is suffering, and the other side arguing that it isn’t. I’d expect this would help diagnose what sorts of disagreements future theories of suffering will need to adjudicate, and perhaps illuminate implicit ethical intuitions. Sharing the results of these simulated disagreements would also be helpful in making FRI’s reasoning less opaque to outsiders, although making everything transparent could lead to certain strategic disadvantages.

Re: Objection 3 (convergence requires common truth), I’d like FRI to explore exactly what might drive consilience/convergence in theories of suffering, and what precisely makes one theory of suffering better than another, and ideally to evaluate a range of example theories of suffering under these criteria.

Re: Objection 4 (assuming that consciousness is a reification produces more confusion, not less), I would love to see a historical treatment of reification: lists of reifications which were later dissolved (e.g., élan vital), vs scattered phenomena that were later unified (e.g., electromagnetism). What patterns do the former have, vs the latter, and why might consciousness fit one of these buckets better than the other?

Re: Objection 5 (the Hard Problem of Consciousness is a red herring), I’d like to see a more detailed treatment of what kinds of problem people have interpreted the Hard Problem as, and also more analysis on the prospects of Qualia Formalism (which I think is the maximally-empirical, maximally-charitable interpretation of the Hard Problem). It would be helpful for us, in particular, if FRI preregistered their expectations about QRI’s predictions, and their view of the relative evidence strength of each of our predictions.

Re: Objection 6 (mapping to reality), this is perhaps the heart of most of our disagreement. From Brian’s quotes, he seems split on this issue; I’d like clarification about whether he believes we can ever precisely/objectively map specific computations to specific physical systems, and vice-versa. And if so— how? If not, this seems to propagate through FRI’s ethical framework in a disastrous way, since anyone can argue that any physical system does, or does not, ‘code’ for massive suffering, and there’s no principled way to derive any ‘ground truth’ or even pick between interpretations in a principled way (e.g. my popcorn example). If this isn’t the case— why not?

Brian has suggested that “certain high-level interpretations of physical systems are more ‘natural’ and useful than others” (personal communication); I agree, and would encourage FRI to explore systematizing this.

It would be non-trivial to port FRI’s theories and computational intuitions to the framework of “hypercomputation”– i.e., the understanding that there’s a formal hierarchy of computational systems, and that Turing machines are only one level of many– but it may have benefits too. Namely, it might be the only way they could avoid Objection 6 (which I think is a fatal objection) while still allowing them to speak about computation & consciousness in the same breath. I think FRI should look at this and see if it makes sense to them.

Re: Objection 7 (FRI doesn’t fully bite the bullet on computationalism), I’d like to see responses to Aaronson’s aforementioned thought experiments.

Re: Objection 8 (dangerous combination), I’d like to see a clarification about why my interpretation is unreasonable (as it very well may be!).

 


In conclusion- I think FRI has a critically important goal- reduction of suffering & s-risk. However, I also think FRI has painted itself into a corner by explicitly disallowing a clear, disagreement-mediating definition for what these things are. I look forward to further work in this field.

 

Mike Johnson

Qualia Research Institute


Acknowledgements: thanks to Andrés Gómez Emilsson, Brian Tomasik, and Max Daniel for reviewing earlier drafts of this.

Sources:

My sources for FRI’s views on consciousness:
Flavors of Computation are Flavors of Consciousness:
https://foundational-research.org/flavors-of-computation-are-flavors-of-consciousness/
Is There a Hard Problem of Consciousness?
http://reducing-suffering.org/hard-problem-consciousness/
Consciousness Is a Process, Not a Moment
http://reducing-suffering.org/consciousness-is-a-process-not-a-moment/
How to Interpret a Physical System as a Mind
http://reducing-suffering.org/interpret-physical-system-mind/
Dissolving Confusion about Consciousness
http://reducing-suffering.org/dissolving-confusion-about-consciousness/
Debate between Brian & Mike on consciousness:
https://www.facebook.com/groups/effective.altruists/permalink/1333798200009867/?comment_id=1333823816673972&comment_tracking=%7B%22tn%22%3A%22R9%22%7D
Max Daniel’s EA Global Boston 2017 talk on s-risks:
https://www.youtube.com/watch?v=jiZxEJcFExc
Multipolar debate between Eliezer Yudkowsky and various rationalists about animal suffering:
https://rationalconspiracy.com/2015/12/16/a-debate-on-animal-consciousness/
The Internet Encyclopedia of Philosophy on functionalism:
http://www.iep.utm.edu/functism/
Gordon McCabe on why computation doesn’t map to physics:
http://philsci-archive.pitt.edu/1891/1/UniverseCreationComputer.pdf
Toby Ord on hypercomputation, and how it differs from Turing’s work:
https://arxiv.org/abs/math/0209332
Luke Muehlhauser’s OpenPhil-funded report on consciousness and moral patienthood:
http://www.openphilanthropy.org/2017-report-consciousness-and-moral-patienthood
Scott Aaronson’s thought experiments on computationalism:
http://www.scottaaronson.com/blog/?p=1951
Selen Atasoy on Connectome Harmonics, a new way to understand brain activity:
https://www.nature.com/articles/ncomms10340
My work on formalizing phenomenology:
My meta-framework for consciousness, including the Symmetry Theory of Valence:
http://opentheory.net/PrincipiaQualia.pdf
My hypothesis of homeostatic regulation, which touches on why we seek out pleasure:
http://opentheory.net/2017/05/why-we-seek-out-pleasure-the-symmetry-theory-of-homeostatic-regulation/
My exploration & parametrization of the ‘neuroacoustics’ metaphor suggested by Atasoy’s work:
http://opentheory.net/2017/06/taking-brain-waves-seriously-neuroacoustics/
My colleague Andrés’s work on formalizing phenomenology:
A model of DMT-trip-as-hyperbolic-experience:
https://qualiacomputing.com/2017/05/28/eli5-the-hyperbolic-geometry-of-dmt-experiences/
June 2017 talk at Consciousness Hacking, describing a theory and experiment to predict people’s valence from fMRI data:
https://qualiacomputing.com/2017/06/18/quantifying-bliss-talk-summary/
A parametrization of various psychedelic states as operators in qualia space:
https://qualiacomputing.com/2016/06/20/algorithmic-reduction-of-psychedelic-states/
A brief post on valence and the fundamental attribution error:
https://qualiacomputing.com/2016/11/19/the-tyranny-of-the-intentional-object/
A summary of some of Selen Atasoy’s current work on Connectome Harmonics:
https://qualiacomputing.com/2017/06/18/connectome-specific-harmonic-waves-on-lsd/

Qualia Computing at Consciousness Hacking (June 7th 2017)

I am delighted to announce that I will be presenting at Consciousness Hacking in San Francisco on 2017/6/7 (YMD notation).

Consciousness Hacking (CoHack) is an extremely awesome community that blends a genuine interest in benevolence, scientific rationality, experiential spirituality, self-experimentation, and holistic wellbeing together with an unceasing focus on consciousness. Truth be told, CohHack is one of the reasons why I love living in the Bay Area.

Here are the relevant event links: Eventbrite, FacebookMeetup.

And the event description:


What would happen if a bliss technology capable of inducing a constant MDMA-like state of consciousness with no negative side effects were available? What makes an experience good or bad? Is happiness a spiritual trick, or is spirituality a happiness trick?

At this month’s speaker presentation, Consciousness Hacking invites Data Science Engineer, Andrés Gómez Emilsson to discuss current research, including his own, concerning the measurement of bliss, how blissful brain states can be induced, and what implications this may have on quality of life and our relationship with the world around us.

Emilsson’s research aims to create a mathematical theory of the pleasure-pain axis that can take information about a person’s brain at a given point in time and return the approximate (or even true) level of happiness and suffering for that person. Emilsson will explore two dimensions that have been studied in affective neuroscience for decades:

  • Arousal: how much energy and activation a given emotion has
  • Valence: the “feel good or feel bad” dimension of emotion

If the purpose of life is to feel happy and to make others happy, then figuring out how valence is implemented in the brain may take us a long way in that direction. Current approaches to valence, while helpful, usually don’t address the core of the problem (ie. usually just measuring the symptoms of pleasure such as the neurotransmitters that trigger it, brain regions, positive reinforcement, etc. rather than getting at the experience of pleasure itself).

A real science of valence would not only be able to integrate and explain why the things people report as pleasurable are pleasant, it would also make a precise, empirically falsifiable hypothesis about whether arbitrary brain states will feel good or bad. This is what Emilsson aims to do.

You will take away:

  • An understanding about the current scientific consensus on the nature of happiness in the brain, and why it is incomplete
  • A philosophical case for both the feasibility and desirability of a world devoid of intense suffering
  • A new candidate mathematical formula that can be used to predict the psychological wellbeing of a brain at a given point in time
  • An argument for why bliss technology that puts us in a constant MDMA-like state of consciousness with no negative side effects is likely to become available within the next two to five decades
  • The opportunity to network with other people who are serious about figuring out the meaning of life through introspection and neuroscience

About our speaker:

Andrés Gómez Emilsson was born in México City in 1990. From an early age, he developed an interest in philosophy, mathematics, and science, leading him to compete nationally and internationally in Math and Science Olympiads. At 16, his main interest was mathematics, but after an unexpected “mystical experience”, he turned his attention to consciousness and the philosophical problems that it poses. He studied Symbolic Systems with an Artificial Intelligence concentration at Stanford, and later finished a masters in Computational Psychology at the same university. During his time at Stanford he co-founded the Stanford Transhumanist Association and became good friends with transhumanist philosopher David Pearce, taking on the flag of the Hedonistic Imperative (HI). In order to pursue the long-term goals of HI, his current primary intellectual interest is to reverse-engineer the functional, biochemical and/or quantum signatures of pure bliss.

He is currently working at a Natural Language Processing company in San Francisco, creating quantitative measures of employee happiness, productivity, and ethics at companies, with the long-term intent of creating a consciousness research institute that’s also a great place to work for (i.e. one in which employees are happy, productive, and ethical). In his free time he develops psychophysical tools to study the computational properties of consciousness.

Schedule:

6:30: Check in, snacks

6:45: Structured schmoozing

6:55: Event intro and meditation

7:00: Andrés Gómez Emilsson

7:50: Break

8:00: Break-out Sessions (small group discussion)

9:00: Break-out Recap

9:15: Closing meditation

About our venue:

ECO-SYSTM is a dynamic community of creative professionals, startups, and freelancers, founded on the idea that entertainment, creativity and business can come together to offer a truly unique work experience for Bay Area professionals. Check out membership plans here: http://eco-systm.com/


 

Principia Qualia: Part II – Valence

Extract from Principia Qualia (2016) by my colleague Michael E. Johnson (from Qualia Research Institute). This is intended to summarize the core ideas of chapter 2, which proposes a precise, testable, simple, and so far science-compatible theory of the fundamental nature of valence (also called hedonic tone or the pleasure-pain axis; what makes experiences feel good or bad).

 

VII. Three principles for a mathematical derivation of valence

We’ve covered a lot of ground with the above literature reviews, and synthesizing a new framework for understanding consciousness research. But we haven’t yet fulfilled the promise about valence made in Section II- to offer a rigorous, crisp, and relatively simple hypothesis about valence. This is the goal of Part II.

Drawing from the framework in Section VI, I offer three principles to frame this problem: ​

1. Qualia Formalism: for any given conscious experience, there exists- in principle- a mathematical object isomorphic to its phenomenology. This is a formal way of saying that consciousness is in principle quantifiable- much as electromagnetism, or the square root of nine is quantifiable. I.e. IIT’s goal, to generate such a mathematical object, is a valid one.

2. Qualia Structuralism: this mathematical object has a rich set of formal structures. Based on the regularities & invariances in phenomenology, it seems safe to say that qualia has a non-trivial amount of structure. It likely exhibits connectedness (i.e., it’s a unified whole, not the union of multiple disjoint sets), and compactness, and so we can speak of qualia as having a topology.

More speculatively, based on the following:

(a) IIT’s output format is data in a vector space,

(b) Modern physics models reality as a wave function within Hilbert Space, which has substantial structure,

(c) Components of phenomenology such as color behave as vectors (Feynman 1965), and

(d) Spatial awareness is explicitly geometric,

…I propose that Qualia space also likely satisfies the requirements of being a metric space, and we can speak of qualia as having a geometry.

Mathematical structures are important, since the more formal structures a mathematical object has, the more elegantly we can speak about patterns within it, and the closer our words can get to “carving reality at the joints”. ​

3. Valence Realism: valence is a crisp phenomenon of conscious states upon which we can apply a measure.

–> I.e. some experiences do feel holistically better than others, and (in principle) we can associate a value to this. Furthermore, to combine (2) and (3), this pleasantness could be encoded into the mathematical object isomorphic to the experience in an efficient way (we should look for a concise equation, not an infinitely-large lookup table for valence). […]

valence_structuralism

I believe my three principles are all necessary for a satisfying solution to valence (and the first two are necessary for any satisfying solution to consciousness):

Considering the inverses:

If Qualia Formalism is false, then consciousness is not quantifiable, and there exists no formal knowledge about consciousness to discover. But if the history of science is any guide, we don’t live in a universe where phenomena are intrinsically unquantifiable- rather, we just haven’t been able to crisply quantify consciousness yet.

If Qualia Structuralism is false and Qualia space has no meaningful structure to discover and generalize from, then most sorts of knowledge about qualia (such as which experiences feel better than others) will likely be forever beyond our empirical grasp. I.e., if Qualia space lacks structure, there will exist no elegant heuristics or principles for interpreting what a mathematical object isomorphic to a conscious experience means. But this doesn’t seem to match the story from affective neuroscience, nor from our everyday experience: we have plenty of evidence for patterns, regularities, and invariances in phenomenological experiences. Moreover, our informal, intuitive models for predicting our future qualia are generally very good. This implies our brains have figured out some simple rules-of-thumb for how qualia is structured, and so qualia does have substantial mathematical structure, even if our formal models lag behind.

If Valence Realism is false, then we really can’t say very much about ethics, normativity, or valence with any confidence, ever. But this seems to violate the revealed preferences of the vast majority of people: we sure behave as if some experiences are objectively superior to others, at arbitrarily-fine levels of distinction. It may be very difficult to put an objective valence on a given experience, but in practice we don’t behave as if this valence doesn’t exist.

[…]

VIII. Distinctions in qualia: charting the explanation space for valence

Sections II-III made the claim that we need a bottom-up quantitative theory like IIT in order to successfully reverse-engineer valence, Section VI suggested some core problems & issues theories like IIT will need to address, and Section VII proposed three principles for interpreting IIT-style output:

  1. We should think of qualia as having a mathematical representation,
  2. This mathematical representation has a topology and probably a geometry, and perhaps more structure, and
  3. Valence is real; some things do feel better than others, and we should try to explain why in terms of qualia’s mathematical representation.

But what does this get us? Specifically, how does assuming these three things get us any closer to solving valence if we don’t have an actual, validated dataset (“data structure isomorphic to the phenomenology”) from *any* system, much less a real brain?

It actually helps a surprising amount, since an isomorphism between a structured (e.g., topological, geometric) space and qualia implies that any clean or useful distinction we can make in one realm automatically applies in the other realm as well. And if we can explore what kinds of distinctions in qualia we can make, we can start to chart the explanation space for valence (what ‘kind’ of answer it will be).

I propose the following four distinctions which depend on only a very small amount of mathematical structure inherent in qualia space, which should apply equally to qualia and to qualia’s mathematical representation:

  1. Global vs local
  2. Simple vs complex
  3. Atomic vs composite
  4. Intuitively important vs intuitively trivial

[…]

Takeaways: this section has suggested that we can get surprising mileage out of the hypothesis that there will exist a geometric data structure isomorphic to the phenomenology of a system, since if we can make a distinction in one domain (math or qualia), it will carry over into the other domain ‘for free’. Given this, I put forth the hypothesis that valence may plausibly be a simple, global, atomic, and intuitively important property of both qualia and its mathematical representation.

IX. Summary of heuristics for reverse-engineering the pattern for valence

Reverse-engineering the precise mathematical property that corresponds to valence may seem like finding a needle in a haystack, but I propose that it may be easier than it appears. Broadly speaking, I see six heuristics for zeroing in on valence:

A. Structural distinctions in Qualia space (Section VIII);

B. Empirical hints from affective neuroscience (Section I);

C. A priori hints from phenomenology;

D. Empirical hints from neurocomputational syntax;

E. The Non-adaptedness Principle;

F. Common patterns across physical formalisms (lessons from physics). None of these heuristics determine the answer, but in aggregate they dramatically reduce the search space.

IX.A: Structural distinctions in Qualia space (Section VIII):

In the previous section, we noted that the following distinctions about qualia can be made: Global vs local; Simple vs complex; Atomic vs composite; Intuitively important vs intuitively trivial. Valence plausibly corresponds to a global, simple, atomic, and intuitively important mathematical property.

[…]

Music is surprisingly pleasurable; auditory dissonance is surprisingly unpleasant. Clearly, music has many adaptive signaling & social bonding aspects (Storr 1992; Mcdermott and Hauser 2005)- yet if we subtract everything that could be considered signaling or social bonding (e.g., lyrics, performative aspects, social bonding & enjoyment), we’re still left with something very emotionally powerful. However, this pleasantness can vanish abruptly- and even reverse– if dissonance is added.

Much more could be said here, but a few of the more interesting data points are:

  1. Pleasurable music tends to involve elegant structure when represented geometrically (Tymoczko 2006);
  2. Non-human animals don’t seem to find human music pleasant (with some exceptions), but with knowledge of what pitch range and tempo their auditory systems are optimized to pay attention to, we’ve been able to adapt human music to get animals to prefer it over silence (Snowdon and Teie 2010).
  3. Results suggest that consonance is a primary factor in which sounds are pleasant vs unpleasant in 2- and 4-month-old infants (Trainor, Tsang, and Cheung 2002).
  4. Hearing two of our favorite songs at once doesn’t feel better than just one; instead, it feels significantly worse.

More generally, it feels like music is a particularly interesting case study by which to pick apart the information-theoretic aspects of valence, and it seems plausible that evolution may have piggybacked on some fundamental law of qualia to produce the human preference for music. This should be most obscured with genres of music which focus on lyrics, social proof & social cohesion (e.g., pop music), and performative aspects, and clearest with genres of music which avoid these things (e.g., certain genres of classical music).

[…]

X. A simple hypothesis about valence

To recap, the general heuristic from Section VIII was that valence may plausibly correspond to a simple, atomic, global, and intuitively important geometric property of a data structure isomorphic to phenomenology. The specific heuristics from Section IX surveyed hints from a priori phenomenology, hints from what we know of the brain’s computational syntax, introduced the Non-adaptedness Principle, and noted the unreasonable effectiveness of beautiful mathematics in physics to suggest that the specific geometric property corresponding to pleasure should be something that involves some sort of mathematically-interesting patterning, regularity, efficiency, elegance, and/or harmony.

We don’t have enough information to formally deduce which mathematical property these constraints indicate, yet in aggregate these constraints hugely reduce the search space, and also substantially point toward the following:

Given a mathematical object isomorphic to the qualia of a system, the mathematical property which corresponds to how pleasant it is to be that system is that object’s symmetry.

[…]

XI. Testing this hypothesis today

In a perfect world, we could plug many peoples’ real-world IIT-style datasets into a symmetry detection algorithm and see if this “Symmetry in the Topology of Phenomenology” (SiToP) theory of valence successfully predicted their self-reported valences.

Unfortunately, we’re a long way from having the theory and data to do that.

But if we make two fairly modest assumptions, I think we should be able to perform some reasonable, simple, and elegant tests on this hypothesis now. The two assumptions are:

  1. We can probably assume that symmetry/pleasure is a more-or-less fractal property: i.e., it’ll be evident on basically all locations and scales of our data structure, and so it should be obvious even with imperfect measurements. Likewise, symmetry in one part of the brain will imply symmetry elsewhere, so we may only need to measure it in a small section that need not be directly contributing to consciousness.
  2. We can probably assume that symmetry in connectome-level brain networks/activity will roughly imply symmetry in the mathematical-object-isomorphic-to-phenomenology (the symmetry that ‘matters’ for valence), and vice-versa. I.e., we need not worry too much about the exact ‘flavor’ of symmetry we’re measuring.

So- given these assumptions, I see three ways to test our hypothesis:

1. More pleasurable brain states should be more compressible (all else being equal).

Symmetry implies compressibility, and so if we can measure the compressibility of a brain state in some sort of broad-stroke fashion while controlling for degree of consciousness, this should be a fairly good proxy for how pleasant that brain state is.

[…]

2. Highly consonant/harmonious/symmetric patterns injected directly into the brain should feel dramatically better than similar but dissonant patterns.

Consonance in audio signals generally produces positive valence; dissonance (e.g., nails-on-a-chalkboard) reliably produces negative valence. This obviously follows from our hypothesis, but it’s also obviously true, so we can’t use it as a novel prediction. But if we take the general idea and apply it to unusual ways of ‘injecting’ a signal into the brain, we should be able to make predictions that are (1) novel, and (2) practically useful.

TMS is generally used to disrupt brain functions by oscillating a strong magnetic field over a specific region to make those neurons fire chaotically. But if we used it on a lower-powered, rhythmic setting to ‘inject’ a symmetric/consonant pattern directly into parts of the brain involved directly with consciousness, the result should produce good feeling- or at least, much better valence than a similar dissonant pattern.

Our specific prediction: direct, low-power, rhythmic stimulation (via TMS) of the thalamus at harmonic frequencies (e.g., @1hz+2hz+4hz+6hz+8hz+12hz+16hz+24hz+36hz+48hz+72hz+96hz+148hz) should feel significantly more pleasant than similar stimulation at dissonant frequencies (e.g., @1.01hz+2.01hz+3.98hz+6.02hz+7.99hz+12.03hz+16.01hz+24.02hz+35.97hz+48.05hz+72.04hz+95.94hz+ 147.93hz).

[…]

3. More consonant vagus nerve stimulation (VNS) should feel better than dissonant VNS.

The above harmonics-based TMS method would be a ‘pure’ test of the ‘Symmetry in the Topology of Phenomenology’ (SiToP) hypothesis. It may rely on developing custom hardware and is also well outside of my research budget.

However, a promising alternative method to test this is with consumer-grade vagus nerve stimulation (VNS) technology. Nervana Systems has an in-ear device which stimulates the Vagus nerve with rhythmic electrical pulses as it winds its way past the left ear canal. The stimulation is synchronized with either user-supplied music or ambient sound. This synchronization is done, according to the company, in order to mask any discomfort associated with the electrical stimulation. The company says their system works by “electronically signal[ing] the Vagus nerve which in turn stimulates the release of neurotransmitters in the brain that enhance mood.”

This explanation isn’t very satisfying, since it merely punts the question of why these neurotransmitters enhance mood, but their approach seems to work– and based on the symmetry/harmony hypothesis we can say at least something about why: effectively, they’ve somewhat accidentally built a synchronized bimodal approach (coordinated combination of music+VNS) for inducing harmony/symmetry in the brain. This is certainly not the only component of how this VNS system functions, since the parasympathetic nervous system is both complex and powerful by itself, but it could be an important component.

Based on our assumptions about what valence is, we can make a hierarchy of predictions:

  1. Harmonious music + synchronized VNS should feel the best;
  2. Harmonious music + placebo VNS (unsynchronized, simple pattern of stimulation) should feel less pleasant than (1);
  3. Harmonious music + non-synchronized VNS (stimulation that is synchronized to a different kind of music) should feel less pleasant than (1);
  4. Harmonious music + dissonant VNS (stimulation with a pattern which scores low on consonance measures such as (Chon 2008) should feel worse than (2) and (3));
  5. Dissonant auditory noise + non-synchronized, dissonant VNS should feel pretty awful.

We can also predict that if a bimodal approach for inducing harmony/symmetry in the brain is better than a single modality, a trimodal or quadrimodal approach may be even more effective. E.g., we should consider testing the addition of synchronized rhythmic tactile stimulation and symmetry-centric music visualizations. A key question here is whether adding stimulation modalities would lead to diminishing or synergistic/accelerating returns.

The Most Important Philosophical Question

Albert Camus famously claimed that the most important philosophical question in existence was whether to commit suicide. I would disagree.

For one, if Open Individualism is true (i.e. that deep down we are all one and the same consciousness) then ending one’s life will not accomplish much. The vast majority of “who you are” will remain intact, and if there are further problems to be solved, and questions to be answered, doing this will simply delay your own progress. So at least from a certain point of view one could argue that the most important question is, instead, the question of personal identity. I.e. Are you, deep down, an individual being who starts existing when you are born and stops existing when you die (Closed Individualism), something that exists only for a single time-slice (Empty Individualism), or maybe something that is one and the same with the rest of the universe (Open Individualism)?

I think that is a very important question. But probably not the most important one. Instead, I’d posit that the most important question is: “What is good, and is there a ground truth about it?”

In the case that we are all one consciousness maybe what’s truly good is whatever one actually truly values from a first-person point of view (being mindful, of course, of the deceptive potential that comes from the Tyranny of the Intentional Object). And in so far as this has been asked, I think that there are two remaining possibilities: Does ultimate value come down to the pleasure-pain axis, or does it come down to spiritual wisdom?

Thus, in this day and age, I’d argue that the most important philosophical (and hence most important, period) question is: “Is happiness a spiritual trick, or is spirituality a happiness trick?”

What would it mean for happiness to be a spiritual trick? Think, for example, of the possibility that the reason why we exist is because we are all God, and God would be awfully bored if It knew that It was all that ever existed. In such a case, maybe bliss and happiness comes down to something akin to “Does this particular set of life experiences make God feel less lonely”? Alternatively, maybe God is “divinely self-sufficient”, as some mystics claim, and all of creation is “merely a plus on top of God”. In this case one could think that God is the ultimate source of all that is good, and thus bliss may be synonymous with “being closer to God”. In turn, as mystics have claimed over the ages, the whole point of life is to “get closer to God”.

Spirituality, though, goes beyond God: Within (atheistic) Buddhism the view that “bliss is a spiritual trick” might take another form: Bliss is either “dirty and a sign of ignorance” (as in the case of karma-generating pleasure) or it is “the results of virtuous merit conducive to true unconditioned enlightenment“. Thus, the whole point of life would be to become free from ignorance and reap the benefits of knowing the ultimate truth.

And what would it mean for spirituality to be a happiness trick? In this case one could imagine that our valence (i.e. our pleasure-pain axis) is a sort of qualia variety that evolution recruited in order to infuse the phenomenal representation of situations that predict either higher or lower chances of making copies of oneself (or spreading one’s genes, in the more general case of “inclusive fitness”). If this is so, it might be tempting to think that bliss is, ultimately, not something that “truly matters”. But this would be to think that bliss is “nothing other than the function that bliss plays in animal behavior”, which couldn’t be further from the truth. After all, the same behavior could be enacted by many methods. Instead, the raw phenomenal character of bliss reveals that “something matters in this universe”. Only people who are anhedonic (or are depressed) will miss the fact that “bliss matters”. This is self-evident and self-intimating to anyone currently experiencing ecstatic rapture. In light of these experiences we can conclude that if anything at all does matter, it has to do with the qualia varieties involved in the experiences that feel like the world has meaning. The pleasure-pain axis makes our existence significant.

Now, why do I think this is the most important question? IF we discover that happiness is a spiritual trick and that God is its source then we really ought to follow “the spiritual path” and figure out with science “what is it that God truly wants”. And under an atheistic brand of spirituality, what we ought to figure out is the laws of valence-charged spiritual energy. For example, if reincarnation and karma are involved in the expected amount of future bliss and suffering, so be it. Let’s all become Bodhisattvas and help as many sentient beings as possible throughout the eons to come.

On the other hand, IF we discover (and can prove with a good empirical argument) that spirituality is just the result of changes in valence/happiness, then settling on this with a high certainty would change the world. For starters, any compassionate (and at least mildly rational) Buddhist would then come along and help us out in the pursuit of creating a pan-species welfare state free of suffering with the use of biotechnology. I.e. The 500 odd million Buddhists world-wide would be key allies for the Hedonistic Imperative (a movement that aims to eliminate suffering with biotechnology).

Recall Dalai Lama’s quote: “If it was possible to become free of negative emotions by a riskless implementation of an electrode – without impairing intelligence and the critical mind – I would be the first patient.” [Dalai Lama (Society for Neuroscience Congress, Nov. 2005)].

If Buddhist doctrine concerning the very nature of suffering and its causes is wrong from a scientific point of view and we can prove it with an empirically verified physicalist paradigm, then the very Buddhist ethic of “focusing on minimizing suffering” ought to compel Buddhists throughout the world to join us in the battle against suffering by any means necessary. And most likely, given the physicalist premise, this would take the form of creating a technology that puts us all in a perpetual pro-social clear-headed non-addictive MDMA-like state of consciousness (or, in a more sophisticated vein, a well-balanced version of rational wire-heading).

Raising the Table Stakes for Successful Theories of Consciousness

What should we expect out of a theory of consciousness?

For a scientific theory of consciousness to have even the slightest chance at being correct it must be able to address- at the very least– the following four questions*:

  1. Why consciousness exists at all (i.e. “the hard problem“; why we are not p-zombies)
  2. How it is possible to experience multiple pieces of information at once in a unitary moment of experience (i.e. the phenomenal binding problem; the boundary problem)
  3. How consciousness exerts the causal power necessary to be recruited by natural selection and allow us to discuss its existence (i.e. the problem of causal impotence vs. causal overdetermination)
  4. How and why consciousness has its countless textures (e.g. phenomenal color, smell, emotions, etc.) and the interdependencies of their different values (i.e. the palette problem)

In addition the theory must be able to generate experimentally testable predictions. In Popper’s sense the theory must make “risky” predictions. In a Bayesian sense the theory must be able to generate predictions that have a much higher likelihood given that the theory is correct versus not so that the a posteriori probabilities of the different hypotheses are substantially different from their priors once the experiment is actually carried out.

As discussed in a previous article most contemporary philosophies of mind are unable to address one or more of these four problems (or simply fail to make any interesting predictions). David Pearce’s non-materialist physicalist idealism (not the schizophrenic word-salad that may seem at first) is one of the few theories that promises to meet this criteria and makes empirical predictions. This theory addresses the above questions in the following way:

(1) Why does consciousness exist?

Consciousness exists because reality is made of qualia. In particular, one might say that physics is implicitly the science that studies the flux of qualia. This would imply that in fact all that exists is a set of experiences whose interrelationships are encoded in the Universal Wavefunction of Quantum Field Theory. Thus we are collapsing two questions (“why does consciousness arise in our universe?” and “why does the universe exist?”) into a single question (“why does anything exist?”). More so, the question “why does anything exist?” may ultimately be solved with Zero Ontology. In other words, all that exists is implied by the universe having literally no information whatsoever. All (apparent) information is local; universally we live in an information-less quantum Library of Babel.

(2) Why and how is consciousness unitary?

Due to the expansion of the universe the universal wavefunction has topological bifurcations that effectively create locally connected networks of quantum entanglement that are unconnected to the rest of reality. These networks meet the criteria of being ontologically unitary while having the potential to hold multiple pieces of information at once. In other words, Pearce’s theory of consciousness postulates that the world is made of a large number of experiences, though the vast majority of them are incredibly tiny and short-lived. The overwhelming bulk of reality is made of decohered micro-experiences which are responsible for most of the phenomena we see in the macroscopic world ranging from solidity to Newton’s laws of motion.

A few of these networks of entanglement are us: you, right now, as a unitary “thin subject” of experience, according to this theory, are one of these networks (cf. Mereological Nihilism). Counter-intuitively, while a mountain is in some sense much bigger than yourself, at a deeper level you are bigger than the biggest object you will find in a mountain. Taking seriously the phenomenal binding problem we have to conclude that a mountain is for the most part just made of fields of decohered qualia, and thus, unlike a given biologically-generated experience, it is not “a unitary subject of experience”. In order to grasp this point it is necessary to contemplate a very extreme generalization of Empty Individualism: not only is it that every moment of a person’s experience is a different subject of experience, but the principle applies to every single network of entanglement in the entire multiverse. Only a tiny minority of these have anything to do with minds representing worlds. And even those that participate in the creation of a unitary experience exist within an ecosystem that gives rise to an evolutionary process in which quintillions of slightly different entanglement networks compete in order to survive in the extreme environments provided by nervous systems. Your particular experience is an entanglement network that evolved in order to survive in the specific brain state that is present right now. In other words, macroscopic experiences are the result of harnessing the computational power of Quantum Darwinism by applying it to a very particular configuration of the CNS. Brain states themselves encode Constraint Satisfaction Problems with the networks of electric gradients across firing neurons in sub-millisecond scales instantiating constraints whose solutions are found with sub-femtosecond quantum darwinism.

(3) How can consciousness be causally efficacious?

Consciousness exerts its causal power by virtue of being the only thing that exists. If anything is causal at all, it must, in the final analysis, be consciousness. No matter one’s ultimate theory of causality, assuming that physics describes the flux of qualia, then what instantiates such causality has to be this very flux.

Even under Eternalism/block view of the universe/Post-Everettian QM you can still meaningfully reconstruct causality in terms of the empirical rules for statistical independence across certain dimensions of fundamental reality. The dimensions that have time-like patterns of statistical independence will subjectively be perceived as being the arrows of time in the multiverse (cf. Timeless Causality).

Now an important caveat with this view of the relationship between qualia and causality is that it seems as if at least a weak version of epiphenomenalism must be true. The inverted spectrum thought experiment (ironically usually used in favor of the existence of qualia) can be used to question the causal power of qualia. This brings us to the fourth point:

(4) How do we explain the countless textures of consciousness?

How and why does consciousness have its countless textures and what determines its interrelationships? Pearce anticipates that someday we will have a Rosetta Stone for translating patterns of entanglement in quantum fields to corresponding varieties of qualia (e.g. colors, smells, sounds, etc.). Now, admittedly it seems far fetched that the different quantum fields and their interplay will turn out to be the source of the different qualia varieties. But is there something that in principle precludes this ontological correspondence? Yes, there are tremendous philosophical challenges here, the most salient of which might be the “being/form boundary”. This is the puzzle concerning why states of being (i.e. networks of entangled qualia) would act a certain way by virtue of their phenomenal character in and of itself (assuming its phenomenal character is what gives them reality to begin with). Indeed, what could possibly attach at a fundamental level the behavior of a given being and its intrinsic subjective texture? A compromise between full-fledged epiphenomenalism and qualia-based causality is to postulate a universal principle concerning the preference for full-spectrum states over highly differentiated ones. Consider for example how negative and positive electric charge “seek to cancel each other out”. Likewise, the Quantum Chromodynamics of quarks inside protons and neutrons works under a similar but generalized principle: color charges seek to cancel/complement each other out and become “white” or “colorless”. This principle would suggest that the causal power of specific qualia values comes from the gradient ascent towards more full-spectrum-like states rather than from the specific qualia values on their own.  If this were to be true, one may legitimately wonder whether hedonium and full-spectrum states are perhaps one and the same thing (cf. Valence structuralism). In some way this account of the “being/form boundary” is similar to process philosophy,  but unlike process philosophy, here we are also taking mereological nihilism and wavefuction monism seriously.

However far-fetched it may be to postulate intrinsic causal properties for qualia values, if the ontological unity of science is to survive, there might be no other option. As we’ve seen, simple “patterns of computation” or “information processing” cannot be the source of qualia, since nothing that isn’t a quantum coherent wavefunction actually has independent existence. Unitary minds cannot supervene on decohered quantum fields. Thus the various kinds of qualia have to be searched for in networks of quantum entanglement; within a physicalist paradigm there is nowhere else for them to be.

Alternative Theories

I am very open to the possibility that other theories of consciousness are able to address these four questions. I have yet to see any evidence of this, though. But, please, change my mind if you can! Does your theory of consciousness rise to the challenge?


* This particular set of criteria was proposed by David Pearce (cf. Qualia Computing in Tucson). I would agree with him that these are crucial questions; indeed they make up the bare minimum that such a theory must satisfy. That said, we can formulate more comprehensive sets of problems to solve. An alternative framework that takes this a little further can be found in Michael Johnson’s book Principia Qualia (Eight Problems for a New Science of Consciousness).

Why does anything exist?

 

387800625-Ocean_Beach

 

By David Pearce

Intuitively, there shouldn’t be anything to explain. Bizarrely, this doesn’t seem to be the case. One clue to the answer may be our difficulty in rigorously specifying a default state of “nothingness” from which any departure stands in need of an explanation. A dimensionless point? A timeless void? A quantum vacuum? All attempts to specify an alternative reified “nothingness” – an absence of laws, properties, objects, or events – just end up smuggling in something else instead. Specifying anything at all, including the truth-conditions for our sense of “nothingness”, requires information. Information is fundamental in physics. Information is physical. Information, physics tells us, cannot be created or destroyed. Thus wave functions in quantum mechanics don’t really collapse to yield single definite classical outcomes (cf. Wigner’s friend). Decoherence – the scrambling of phase angles between the components of a quantum superposition – doesn’t literally destroy superpositions. Not even black holes really destroy information. (cf. Black hole information paradox)

So naturally we may ask: where did information come from in the first place?

Perhaps the answer is that it didn’t. The total information content of reality is necessarily zero: the superposition principle of QM formalises inexistence.

On this story, one timeless logico-physical principle explains everything, including itself. The superposition principle of quantum mechanics formalises an informationless zero ontology – the default condition from which any notional departure would need to be explained.  In 2002, Physics World readers voted Young’s double-slit experiment with single electrons as the “most beautiful experiment in physics”. (cf. Feynman’s double-slit experiment gets a makeover). Richard Feynman liked to remark that all of quantum mechanics can be understood by carefully thinking through the implications of the double-slit experiment. Quite so; only maybe Feynman could have gone further. If Everettian QM (cf. Everett’s Relative-State Formulation of Quantum Mechanics) is correct, reality consists of a single vast quantum-coherent superposition. Each element in the superposition, each orthogonal relative state, each “world”, is equally real. (cf. Universe Splitter) Most recently, the decoherence program in post-Everett quantum mechanics explains the emergence of quasi-classical branches (“worlds”) like ours from the underlying quantum field-theoretic formalism. (cf. Wojciech Zurek) The universal validity of the superposition principle in post-Everett QM suggests that the mystery of our existence has a scientific rather than theological explanation.

What does it mean to say that the information content of reality may turn out to be zero? Informally, perhaps consider the (classical) Library of Babel. (cf. The Library of Babel) The Library of Babel contains all possible books with all possible words and letters in all possible combinations. The Library of Babel has zero information content. Yet somewhere amid the nonsense lies the complete works of Shakespeare – and you and me. However, the Library of Babel is classical. Withdrawing a book from the Library of Babel yields a single definite classical outcome – thereby creating information. Withdrawing more books creates more information. If we sum two ordinary non-zero probabilities, then we always get a bigger probability. All analogies break down somewhere. Evidently we aren’t literally living in Borges’ Library of Babel.

So instead of the classical Library of Babel, let us tighten the analogy. Imagine the quantum Library of Babel. Just as in standard probability theory, if there are two ways in QM that something can happen, then we get the total amplitude for something by summing the amplitudes for each of the two ways. If we sum two ordinary non-zero probabilities, then we always get a bigger probability. Yet because amplitudes in QM are complex numbers, summing two amplitudes can yield zero. Having two ways to do something in quantum mechanics can make it not happen. Recall again the double-slit experiment. Adding a slit to the apparatus can make particles less likely to arrive somewhere despite there being more ways to get there. Now scale up the double-slit experiment to the whole of reality. The information content of the universal state vector is zero. (cf. Jan-Markus Schwindt, “Nothing happens in the Universe of the Everett Interpretation“).

The quantum Library of Babel has no information.

Caveats? Loose ends? The superposition principle has been experimentally tested only up to the level of fullerenes, though more ambitious experiments are planned (cf. “Physicists propose ‘Schrödinger’s virus’ experiment“). Some scientists still expect the unitary Schrödinger dynamics will need to be supplemented or modified for larger systems – violating the information-less zero ontology that we’re exploring here.

Consciousness? Does the superposition principle break down in our minds? After all, we see live or dead cats, not live-and-dead-cat superpositions. Yet this assumption of classical outcomes – even non-unique classical outcomes – presupposes that we have direct perceptual access to the mind-independent world. Controversially (cf. Max Tegmark, “Why the brain is probably not a quantum computer“), perhaps the existence of our phenomenally-bound classical world-simulations itself depends on ultra-rapid quantum-coherent neuronal superpositions in the CNS. For if the superposition principle really broke down in the mind-brain, as classical neuroscience assumes, then we’d at most be so-called “micro-experiential zombies” – just patterns of discrete, decohered Jamesian neuronal “mind-dust” incapable of phenomenally simulating a live or a dead classical cat. (cf. David Chalmers’ “The Combination Problem for Panpsychism“)
This solution to the phenomenal binding problem awaits experimental falsification with tomorrow’s tools of molecular matter-wave interferometry. (cf. an experimentally testable conjecture.)

What about the countless different values of consciousness? How can an informationless zero ontology possibly explain the teeming diversity of our experience? This is a tough one. Yet just as the conserved constants in physics cancel out to zero, and just as all of mathematics can in principle be derived from the properties of the empty set, perhaps the solutions to the field-theoretic equations of QFT mathematically encode the textures of consciousness. If we had a cosmic analogue of the Rosetta stone, then we’d see that these values inescapably “cancel out” to zero too. Unfortunately, it’s hard to think of any experimental tests for this highly speculative conjecture.

“A theory that explains everything explains nothing”, protests the critic of Everettian QM. To which we may reply, rather tentatively: yes, precisely.

——————————————–

Original source.

David Pearce is a personal inspiration. He recently had a conversation with Peter Singer, Hilary Greaves and Justin Oakley. I encourage anyone interested in hard core stuff to watch it 🙂