It presents a plausible unified theory of how psychedelics work.
It’s a wonderful jumping-off point into the literature. Every paragraph is full of pointers to research that’s come out in the last 5 years, and boy are there a lot of rabbit holes to go down – it’s filled out my reading list for the next several months.
REBUS is a (somewhat dubious) acronym for RElaxed Beliefs Under pSychedelics. The basic idea: psychedelics reduce the weight of held beliefs and increase the weight of incoming sensory input, allowing the beliefs to be more readily changed by the new sensory information.
REBUS pulls together Carhart-Harris’ Entropic Brain theory and Friston’s Free Energy Principle, both of which relate to the hierarchical predictive coding model of cognition. There’s a lot of jargon & nuance here, but the essential idea of hierarchical predictive coding is pretty straightforward:
The brain generates mental models that predict upcoming sensory inputs. (The predictions are called “priors,” as in “prior beliefs.”)
These predictive models are layered on top of each other in a hierarchy – the higher levels send predictions down the hierarchy; the lower levels report sense data upwards.
In cases where the model’s top-down predictions do not match the bottom-up sensory input, the model either (a) updates its priors based on the new sense data, or (b) ignores the sense data and maintains its priors.
Carhart-Harris & Friston theorize that the main thing psychedelics are doing is relaxing the weight of the brain’s top-down prediction-making (“REBUS”) and increasing the weight of the bottom-up sense information (“the Anarchic Brain”). This allows bottom-up information to have more influence on our conscious experience, and also on the configuration of the hierarchy overall.
Carhart-Harris & Friston analogize this process to annealing – heating up a metal dissolves its crystalline structure, then a new structure recrystallizes as the metal cools:
The hypothesized flattening of the brain’s (variational free) energy landscape under psychedelics can be seen as analogous to the phenomenon of simulated annealing in computer science – which itself is analogous to annealing in metallurgy, whereby a system is heated (i.e., instantiated by increased neural excitability), such that it attains a state of heightened plasticity, in which the discovery of new energy minima (relatively stable places/trajectories for the system to visit/reside in for a period of time) is accelerated (Wang and Smith, 1998).
Subsequently, as the drug is metabolized and the system cools, its dynamics begin to stabilize – and attractor basins begin to steepen again (Carhart-Harris et al., 2017). This process may result in the emergence of a new energy landscape with revised properties.
Psychedelics “heat up” the brain, increasing plasticity and weakening the influence of prior beliefs. As the psychedelic stops being active, the brain “cools” – the hierarchy re-forms, though perhaps in a different configuration than the pre-psychedelic configuration.
This explains how psychedelic trips can cause changes that last long after the substance has exited the body – in those cases, the psychedelic facilitated a change in the organization of the brain’s cognitive hierarchy.
Psychedelic therapy is showing promise for mental disorders associated with too-rigid thought patterns – depression, anxiety, addictions, maybe OCD, maybe eating disorders. In predictive-coding lingo, “disorders that may rest on particularly rigid high-level priors that dominate cognition.”
In these disorders, new information can’t revise the existing story of how things are, because strong priors suppress the new info before it can update anything.
The REBUS model straightforwardly explains how psychedelics help with disorder like this – by relaxing the strong top-down priors and boosting the bottom-up inputs, bottom-up inputs have more ability to effect the system. Here’s an illustration from the paper:
The top sketch is a brain where strong top-down priors dominate. New sensory inputs are suppressed and can’t update the hierarchy. The bottom sketch is the same brain while on a psychedelic – the top-down priors have been relaxed and bottom-up sensory information flows more freely through the system, causing a bigger impact.
Okay, nice theory, but can we observe this in the brain? Is there any evidence for it?
Carhart-Harris & Friston place the default mode network at top of the brain’s predictive hierarchy. The default mode network is the network of brain regions that’s most active when the brain isn’t engaged with any specific task. It also appears to be the seat of one’s sense of self. The default mode network is intensely relaxed by strong psychedelic experiences – this is subjectively felt as ego dissolution, and allows for the propagation of bottom-up sense data (which are also boosted by psychedelics).
Carhart-Harris & Friston identify two mechanisms by which psychedelics may relax the default mode network – activation of 5-HT2AR serotonin receptors (there are lots of these receptors in the default mode network), and disruption of α and βwave patterns, which seem to propagate top-down expectations through the brain (and are correlated with default mode network activity).
In addition to the brain-scan-style evidence they cite throughout the paper, Carhart-Harris & Friston dedicate a long section to behavioral evidence (“Behavioral Evidence of Relaxed Priors under Psychedelics”). Briefly, there are several studies showing that surprise & consistency-making responses to sensory stimuli are reduced while on psychedelics, which is what we’d expect if the influence of top-down priors was lessened.
To sum up, REBUS and the Anarchic Brain places psychedelics in a predictive coding framework to give a unified theory of what psychedelics do – they decrease the influence of top-down prediction-making and increase the influence of bottom-up sense data. The theory has the nice quality of tying many disparate psychedelic phenomena together with an underlying explanation of what’s going on. Plus, it gives a brain-based explanation for why psychedelic therapy is helpful for disorders like depression, anxiety, and addiction.
Our first mention of Neural Annealing in relation to psychedelics was in Algorithmic Reduction of Psychedelic States in 2016, and we are pleased to see that the concept is becoming a live idea in academic neuroscience in 2019.*
From our point of view, an extremely promising area of research that mainstream neuroscience has yet to explore is the Symmetry Theory of Valence. In particular, we claim that the very reason why Neural Annealing improves not only global control, belief, and behavioral consistency, but also mood and sense of wellbeing is because it smooths and symmetrifies your neural patterns of activation. Will this turn out to become part of mainstream neuroscience in the future? Well, since QRI was calling Neural Annealing years in advance, perhaps in retrospect you’ll also see that we were on the money when it came to the mathematics of valence. Only time (and funding) will tell.
Last year I wrote a 13,000 word essay about my experience at Burning Man. This year I will also share some thoughts and insights concerning my experience while being brief and limiting myself to seven thousand words. I decided to write this piece stand-alone in such a way that you do not need to have read the previous essay in order to make sense of the present text.
Camp Soft Landing
I have been wanting to attend Burning Man for several years, but last year was the first time I had both the time and resources to do so. Unfortunately I was not able to get a ticket in the main sale, so I thought I would have to wait another year to have the experience. Out of the blue, however, I received an email from someone from Camp Soft Landing asking me if I would be interested in giving a talk at Burning Man in their Palenque Norte speaker series. My immediate response was “I would love to! But I don’t have a ticket and I don’t have a camp.” The message I received in return was “Great! Well, we have extra tickets, and you can stay at our camp.” So just like that I suddenly had the opportunity to not only attend, but also be at a wonderful camp and give a talk about consciousness research.
Full Circle Teahouse
The camp I’ve been a part of turned out to be an extremely good fit for me both as a researcher and as a person. Camp Soft Landing is one of the largest camps at Burning Man, featuring a total of 150 participants every year. Its two main contributions to the playa are the Full Circle Teahouse and Palenque Norte. The Full Circle Teahouse is a place in which we serve adaptogen herbal tea blends and Pu’er tea in a peaceful setting that emphasizes presence, empathy, and listening. It’s also full of pillows and cozy blankets and serves as a place for people who are overwhelmed to calm down or crash after a hectic night. (During training we were advised to expect that some people “may not know where they are or how they got here when they wake up in the early morning” and to “help them get oriented and offer them tea”). Here are a few telling words by the Teahouse founder Annie Oak:
The real secret sauce to our camp’s collective survival has been our focus on the well being of everyone who steps inside Soft Landing. While the ancestral progenitor who occupied our location before us, Camp Above the Limit, ran a lively bar, we made a decision not to serve alcohol in our camp. I enjoy an occasional cocktail, but I believe that the conflating of the gift economy with free alcohol has compromised the public health and social cohesion of Black Rock City. We do not prohibit alcohol at Soft Landing, but we do not permit bars inside our camp. Instead, we run a tea bar at our Tea House for those seeking a place to rest, hydrate and receive compassionate care. We also give away hundreds of gallons of water to Tea House visitors. We don’t want to undermine their self-sufficiency, but we can proactively reduce the number of guests who become ill from dehydration. We keep our Tea House open until Monday after the Burn to help weary people stay alert on the perilous drive back home.
Palenque Norte schedule 2018 (Tuesday & Wednesday)
Palenque Norte schedule 2018 (Thursday & Friday)
Thanks to the Full Circle Teahouse and Palenque Norte, the social and memetic composition of Camp Soft Landing is one that is characterized by a mixture of veteran scientists and community builders in their 50s and 60s, science and engineering nerds with advanced degrees in their late 20s and early 30s, and a dash of millennials and Gen-Z-ers in the rationalist/Effective Altruist communities.
Lorenzo Hagerty, Sasha Shulgin, and Bruce Damer (Burning Man, Palenque Norte c. 2007)
The people of Camp Soft Landing are near and dear to my heart given that they take consciousness seriously, they have a scientific focus, and they emit a strong intellectual vibe. As a budding qualia researcher myself, I feel completely at home there. As it turns out, this type of vibe is not at all out of place at Burning Man…
Burning Man Attendees
I would hazard the guess that Burning Man attendees are on average much more open to experience, conscientious, cognitively oriented, and psychologically robust than people in the general population. In particular, the combination of conscientiousness and openness to experience is golden. These are people who are not only able to think of crazy ideas, but who are also diligent enough to manifest them in the real world in concrete forms. This may account for the high production value and elaborate nature of the art, music, workshops, and collective activities. While the openness to experience aspect of Burning Man is fairly self-evident (it jumps at you if you do a quick google images search), the conscientiousness aspect may be a little harder to believe. Here I will quote a friend to illustrate this component:
Burning Man is the annual meeting of the recreational logistics community. Or maybe it’s a job interview for CEO: how to deal with broken situations and unexpected constraints in a multi-agent setting, just to survive.
[…]
Things I learned / practiced in the last couple of weeks: truck driving, clever packing, impact driver, attaching bike trailer, pumping gas and filling generators, knots, adding hanging knobs to a whiteboard, tying things with wire, quickly moving tents on the last night, finding rides, using ratchet straps, opening & closing storage container, driving to Treasure Island.
Indeed this may be one of the key barriers of entry that defines the culture of Burning Man and explains why the crazy ideas people have in a given year tend to come back in the form of art in the next year… rather than vanishing into thin air.
There are other key features of the people who attend which can be seen by inspecting the Burning Man Census report. Here is a list of attributes, their baserate for Burners, and the baserate in the general population (for comparison): Having an undergraduate degree (73.6% vs. 32%), holding a graduate degree (31% vs. 10%), being gay/lesbian (8.5% vs. 1.3%), bisexual (10% vs. 1.8%), bicurious (11% vs. ??), polyamorous (20% vs. 5%), mixed race (9% vs. 3%), female (40% vs. 50%), median income (62K vs. 30K), etc.
From a bird’s eye view one can describe Burners as much more: educated, LGBT, liberal or libertarian, “spiritual but not religious”, and more mixed race than the average person. There are many more interesting cultural and demographic attributes that define the population of Black Rock City, but I will leave it at that for now for the sake of brevity. That said, feel free to inspect the following Census graphs for further details:
This slideshow requires JavaScript.
Last year at Burning Man I developed a cluster of new concepts including “The Goldilocks Zone of Oneness” and “Hybrid Vigor in the context of post-Darwinian ethics.” I included my conversation with God and instructions for a guided oneness meditation. This year I continued to use the expanded awareness field of the Playa to further these and other concepts. In what follows I will describe some of the main ideas I experienced and then conclude with a summary of the talk I gave at Palenque Norte. If any of the following sections are too dense or uninteresting please feel free to skip them.
The Universal Eigen-Schelling Religion
On one of the nights a group of friends and I went on a journey following an art car, stopping every now and then to dance and to check out some art. At one point we drove through a large crowd of people and by the time the art car was on the other side, a few people from the group were missing. The question then became “what do we do?” We didn’t agree on a strategy for dealing with this situation before we embarked on the trip. After a couple of minutes we all converged on a strategy: stay near the art car and drive around until we find the missing people. The whole situation had a “lost in space” quality. Finding individual people is very hard since from a distance everyone is wearing roughly-indistinguishable multi-colored blinking LEDs all over their body. But since art cars are large and more distinguishable at a distance, they become natural Schelling points for people to converge on. Schelling points are a natural coordination mechanism in the absence of direct communication channels.
We were thus able to re-group almost in our entirety as a group (with only one person missing, who we finally had to give up on) by independently converging on the meta-heuristic of looking for the most natural Schelling point and finding the rest of the group there. For the rest of the night I kept thinking about how this meta-strategy may play out in the grand scheme of things.
If you follow Qualia Computing you may know that our default view on the nature of ethics is valence utilitarianism. People think they want specific things (e.g. ice-cream, a house, to be rich and famous, etc.) but in reality what they want is the high-valence response (i.e. happiness, bliss, and pleasure) that is triggered by such stimuli. When two people disagree on e.g. whether a certain food is tasty, they are not usually talking about the same experience. For one person, such food could induce high degrees of sensory euphoria, while for the other person, the food may leave them cold. But if they had introspective access to each other’s valence response, the disagreement would vanish (“Ah, I didn’t realize mayo produced such a good feeling for you. I was fixated on the aversive reaction I had to it.”). In other words, disagreements about the value of specific stimuli come down to lack of empathetic fidelity between people rather than a fundamental value mismatch. Deep down, we claim, we all like the same states of consciousness, and our disagreements come from the fact that their triggers vary between people. We call the fixation on the stimuli rather than the valence response the Tyranny of the Intentional Object.
In the grand scheme of things, we posit that advanced intelligences across the multiverse will generally converge on valence realism and valence utilitarianism. This is not an arbitrary value choice; it’s the natural outcome of looking for consistency among one’s disparate preferences and trying to investigate the true nature of conscious value. Insofar as curiosity is evolutionarily adaptive, any sufficiently general and sufficiently curious conscious mind eventually reaches the conclusion that value is a structural feature of conscious states and sheds the illusion of intentionality and closed identity. And while in the context of human history one could point at specific philosophers and scientists that have advanced our understanding of ethics (i.e. Plato, Bentham, Singer, Pearce, etc.) there may be a very abstract but universal way of describing the general tendency of curious conscious intelligences towards valence utilitarianism. It would go like this:
In a physicalist panpsychist paradigm, the vast majority of moments of experience do not occur within intelligent minds and leave no records of their phenomenal character for future minds to examine and inspect. A subset of moments of experience, though, do happen to take place within intelligent minds. We can call these conscious eigen-states because their introspective value can be retroactively investigated and compared against the present moment of experience, which has access to records of past experiences. Humans, insofar as they do not experience large amounts of amnesia, are able to experience a wide range of eigen-states throughout their lives. Thus, within a single human mind, many comparisons between the valence of various states of consciousness can be carried out (this is complicated and not always feasible given the state-dependence of memory). Either way, one could visualize how the information about the relative ranking of experiences is gathered across a Directed Acyclic Graph (DAG) of moments of experience that have partial introspective access to previous moments of experience. Furthermore, if the assumption of continuity of identity is made (i.e. that each moment of experience is witnessed by the same transcendental subject) then each evaluation between pairs of states of consciousness contributes a noisy datapoint to a universal ranking of all experiences and values.
After enough comparisons, a threshold number of evaluated experiences may be crossed, at which point a general theory of value can begin to be constructed. Thus a series of natural Schelling points for “what is universally valuable” become accessible to subsequent moments of experience. One of these focal points is the prevention of suffering throughout the entire multiverse. That is, to avoid experiences that do not like existing, independently of their location in space-time. Likewise, we would see another focal point that adds an imperative to realize experiences that value their own existence (“let the thought forms who love themselves reproduce and populate the multiverse”).
I call this approach to ethics the Eigen-Schelling Religion. Any sapient mind in the multiverse with a general enough ability to reason about qualia and reflect about causality is capable of converging to it. In turn, we can see that many concepts at the core of world religions are built around universal Eigen-Schelling points. Thus, we can rest assured that both the Bodhisattva imperative to eliminate suffering and the Christ “world redeeming” sentiment are reflections of a fundamental converging process to which many other intelligent life-forms have access across the entire multiverse. What I like about this framework is that you don’t need to take anyone’s word for what constitutes wisdom in consciousness. It naturally exists as reflective focal points within the state-space of consciousness itself in a way that transcends time and space.
EQ (emotional intelligent quotient) isn’t very good as a formal psychological construct- it’s not particularly predictive, nor very robust when viewed from different perspectives. But there’s clearly something there– empirically, we see that some people are more ‘tuned in’ to the emotional & interpersonal realm, more skilled at feeling the energy of the room, more adept at making others feel comfortable, better at inspiring people to belief and action. It would be nice to have some sort of metric here.
I suggest breaking EQ into entrainment quotient (EnQ) and metronome quotient (MQ). In short, entrainment quotient indicates how easily you can reach entrainment with another person. And by “reach entrainment”, I mean how rapidly and deeply your connectome harmonic dynamics can fall into alignment with another’s. Metronome quotient, on the other hand, indicates how strongly you can create, maintain, and project an emotional frame. In other words, how robustly can you signal your internal connectome harmonic state, and how effectively can you cause others to be entrained to it. […] Most likely, these are reasonably positively correlated; in particular, I suspect having a high MQ requires a reasonably decent EnQ. And importantly, we can likely find good ways to evaluate these with CSHW.
This conceptual framework can be useful for making sense of the novel social dynamics that take place in Black Rock City. In particular, as illustrated by the Census responses, most participants are in a very open and emotionally receptive state at Burning Man:
One could say that by feeling safe, welcomed, and accepted at Burning Man, attendees adopt a very high Entrainment Quotient modus operandi. In tandem, we then see large art pieces, art cars, theme camps, and powerful sound systems blasting their unique distinctive emotional signals throughout the Playa. In a sense the entire place looks like an ecosystem of brightly-lit high-energy metronomes trying to attract the attention of a swarm of people in highly open and sensitive states with the potential to be entrained with these metronomes. Since the competition for attention is ferocious, there is not a single metronome that can dominate or totally brainwash you. All it takes for you to get a bad signal out of your head is to walk 50 meters to another place where the vibe will be, in all likelihood, completely different and overwrite the previous state.
This dynamic reaches its ultimate climax the very night of the Burn, as (almost) everyone gathers around the Man in a maximally receptive state, while at the same time every art car and group vibe surrounds the crowd and blasts their unique signals as loud and as intensely as possible all at the same time. This leads to the reification of the collective Burning Man egregore, which manifests as the sum total of all signals and vibes in mass ecstasy.
It is worth pointing out that not all of the metronomes in the Playa are created equal. Some art cars, for example, send highly specific and culturally-bound signals (e.g. country music, Simon & Garfunkel, Michael Jackson, etc.). While these metronomes will have their specific followings (i.e. you can always find a group of dedicated Pink Floyd fans) their ability to interface with the general Burner vibe is limited by their specificity and temporal irregularity. The more typical metronomic texture you will find scattered all around the Playa will be art forms that make use of more general patternceutical Schelling points with a stronger and more general metronomic capacity. Of note is the high degree of prevalence of house music and other 110 to 140 bpm (beats per minute) music that is able to entrain your brain from a distance and motivate you to move towards it- whether or not you are able to recognize the particular song. If you listen carefully to e.g. Palenque Norte recordings you will notice the occasional art car driving by, and the music it is blasting will usually have its tempo within that range, with a strong, repeating, and easily recognizable beat structure. I suspect that this tendency is the natural emergent effect of the evolutionary selection pressures that art forms endure from one Burn to another, which benefit patterns that can captivate a lot of human attention in a competitive economy of recreational states of consciousness.
Android Jones’ Samskara at Camp Mystic 2017 (an example of the Open Individualist Schelling Vibe – i.e. the religion of the ego-dissolving LSD frequency of consciousness)
And then there are the extremely general metronome strategies that revolve around universal principles. The best example I found of this attention-capturing approach was the aesthetic of oneness, which IMO seemed to reach its highest expression at Camp Mystic:
Inspired by a sense of mystery & wonder, we perceive the consciousness of “We Are All One”. Mystics encourage the enigmatic spirit to explore a deeper connection not only on this planet and all that exists within, but the realm of the entire Universe.
At their Wednesday night “White Dance Party” (where you are encouraged to dress in white) Camp Mystic was blasting the strongest vibes of Open Individualism I witnessed this year. I am of the mind that philosophy is the soul of poetry, and that massive party certainly had as its underlying philosophy the vibe of oneness and unity. This vibe is itself a Schelling point in the state-space of consciousness… the religion of the boundary-dissolving LSD frequency is not a random state, but a central hub in the super-highway of the mind. I am glad these focal points made prominent appearances at Burning Man.
Uncontrollable Feedback Loops
It is worth pointing out that at an open field as diverse as Burning Man we are likely to encounter positive feedback systems with both good and bad effects on human wellbeing. An example of a positive feedback loop with bad effects would be the incidents that transpired around the “Carkebab” art installation:
The sculpture consisted of a series of cars piled on top of each other held together by a central pole. The setup was clearly designed to be climbed given the visible handles above the cars leading to a view cart at the top. However, in practice it turned out to be considerably more dangerous and hard to climb than it seemed. Now you may anticipate the problem. If you are told that this art piece is climbable but dangerous, one can easily conjure a mental image of a future event in which someone falls and gets hurt. And as soon as that happens, access to the art installation will be restricted. Thus, one reasons that there is a limited amount of time left in which one will be able to climb the structure. Now imagine a lot of people having that train of thought. As more people realize that an accident is imminent, more people are motivated to climb it before that happens, thus creating an incentive to go as soon as possible, leading to crowding, which in turn increases the chance of an accident. The more people approach the installation, the more imminent the final point seems, and the more pressing it becomes to climb the structure before it becomes off-limits, and the more dangerous it becomes. Predictably, the imminent accident did take place. Thankfully it only involved a broken shoulder rather than something more severe. And yet, why did we let it get to that point? Perhaps in the future we should have methods to detect positive feedback loops like this and put the brakes on before it’s too late…
This leads to the topic of danger:
Counting Microlives
Can Burning Man be a place in which an abolitionist ethic can put down roots for long-term civilizational planning? Let’s briefly examine some of the potential acute, medium-term, and long-term costs of attending. Everyone has a limit, right? Some may want to think: “well, you only live once, let’s have fun”. But if you are one of the few who carries the wisdom, will, and love to move consciousness forward this should not be how you think. What would be an acceptable level of risk that an Effective Altruist should be able to accept to experience the benefits of Burning Man? I think that the critical question here is not “Is Burning Man dangerous?” but rather “How bad is it for you?”
Thankfully actuaries, modern medicine, and economists have already developed a theoretical framework for putting a number on this question. Namely, this is the concept of micromorts (i.e. 1 in a million chance of dying) and its sister concept of microlife (a cost of 1 millionth of a lifespan lost or gained by performing some activity). My preference is that of using microlives because they translate more easily into time and are, IMO, more conceptually straightforward. So here is the question: How many microlives should we be willing to spend to attend Burning Man? 10 microlives? 100 microlives? 1,000 microlives? 10,000 microlives?
Based on the fact that there are many long-term burners still alive I guesstimate that the upper bound cannot possibly be higher than 10,000 or we would know about it already. I.e. the percentage of people who get e.g. skin cancer, lung disease, or die in other ways would probably be already apparent in the community. Alternatively, it’s also possible that a reduced life expectancy as a result of attending e.g. 10+ Burns is an open secret among long-term burners… they see their friends die at an inexplicably higher rate but are too afraid to talk about it honestly. After all, people tend to be very clingy to their main sources of meaning (what we call “emotionally load-bearing activities”) so a large amount of denial can be expected in this domain.
Additionally, discussing Burning Man micromorts might be a particularly touchy and difficult subject for a number of attendees. The reason being that part of the psychological value that Burning Man provides is a felt sense of the confrontation with one’s fragility and mortality. Many older burners seem to have come to terms with their own mortality quite well already. Indeed, perhaps accepting death as part of life may be one of the very mechanisms of action for the reduction in neuroticism caused by intense experiences like psychedelics and Burning Man.
But that is not my jazz. I would personally not want to recommend an activity that costs a lot of microlives to other people in team consciousness. While I want to come to terms with death as much as your next Silicon Valley mystically-inclined nerd, I also recognize that death-acceptance is a somewhat selfish desire. Paradoxically, living a long, healthy, and productive life is one of the best ways for us to improve our chances of helping consciousness-at-large given our unwavering commitment to the eradication of all sentient suffering.
The main acute risks of Burning Man could be summarized as: dehydration, sleep deprivation, ODing (especially via accidental dosing, which is not uncommon, sadly), being run over by large vehicles (especially by art cars, trucks, and RVs), and falling from art or having art fall on you. These risks can be mitigated by the motto of “doing only one stupid thing at a time” (cf. How not to die at Burning Man). It’s ok to climb a medium-sized art piece if you are fully sober, or to take a psychedelic if you have sitters and don’t walk around art cars, etc. Most stories of accidents one hears about start along the lines of: “So, I was drunk, and high, and on mushrooms, and holding my camera, and I decided to climb on top of the thunderdome, and…”. Yes, of course that went badly. Doing stupid things on top of each other has multiplicative risk effects.
In the medium term, a pretty important risk is that of being busted by law enforcement. After all, the financial, psychological, and physiological effects of going to prison are rather severe on most people. On a similar note, a non-deadly but psychologically devastating danger of living in the desert for a week is an increased risk of kidney stones due to dehydration. The 10/10 pain you are likely to experience while passing a kidney stone may have far-reaching traumatic effects on one’s psyche and should not be underestimated (sufferers experience an increased risk of heart disease and, I would suspect, suicide).
But of all of the risks, the ones that concern me the most are the long term ones given their otherwise silent nature. In particular, we have skin cancer due to UV exposure and lung/heart disease caused by high levels of PM2.5 particles. With respect to the skin component, it is worth observing that a large majority of Burning Man attendees are caucasian and thus at a significantly higher risk. Me being a redhead, I’ve taken rather extreme precautions in this area. I apply SPF50+ sunscreen every couple of hours, use a wide-rim hat, wear arm sleeves [and gloves] for UV sun protection, wear sunglasses, stay in the shade as often as I can, etc. I recommend that other people also follow these precautions.
And with regards to dust… here I would have to say we have the largest error bars. Does Burning Man dust cause lung cancer? Does it impair lung function? Does it cause heart disease? As far as I can tell nobody knows the answer to these questions. A lot of people seem to believe that the air-borne particles are too large to pose a problem, but I highly doubt that is the case. The only source I’ve been able to find that tried to quantify dangerous particles at Burning Man comes from Camp Particle, which unfortunately does not seem to have published its results (and only provides preliminary data without the critical measure of PM2.5 I was looking for). Here are two important thoughts in this area. First, let’s hope that the clay-like alkaline composition of Playa dust turns out to be harmless to the lungs. And second, like most natural phenomena, chances are that the concentration of dangerous particles in, e.g. 1 minute buckets, follows a power law. I would strongly expect that at least 80% of the dust one inhales comes from 20% of the time in which it is most present. More so, during dust storms and especially in white-outs, I would expect the concentration of dust in the air to be at least 1,000 times higher than the median concentration. If that’s true, breathing without protection during a white-out for as little as two minutes would be equivalent to breathing in “typical conditions” without protection for more than 24 hours. In other words, being strategic and diligent about wearing a heavy and cumbersome PN100 mask may be far more effective than lazily taking on and off a more convenient (but less effective) mask throughout the day. Personally, I chose to always have on hand an M3 half facepiece with PN100 filters ready in case the dust suddenly became thicker. This did indeed save me from breathing dust during all dust storms. The difference in the quality of air while wearing it was like day and night. I will also say that while I prefer my look when I have a beard, I chose to fully shave during the event in order to guarantee a good seal with the mask. In retrospect, the fashion sacrifice does seem to be worth it, though at the time I certainly missed having a beard.
The question remaining is: with a realistic amount of protection, what is the acceptable level of risk? I propose that you make up your mind before we find out with science how dangerous Burning Man actually is. In my case, I am willing to endure up to 100 negative microlives per day at Burning Man (for a total of ~800 microlives) as the absolute upper bound. Anything higher than that and the experience wouldn’t be worth it for me, and I would not recommend it to memetic allies. Thankfully, I suspect that the actual danger is lower than that, perhaps in the range of 40 negative microlives per day (mostly in the form of skin cancer and lung disease). But the problem remains that this estimate has very wide error bars. This needs to be addressed.
And if the danger does turn out to be unacceptable, then we can still look to recreate the benefits of Burning Man in a safer way: Your Legacy Could Be To Move Burning Man to a Place With A Fraction of Its Micromorts Cost.
Dangerous Bonding
In the ideal case Burning Man would be an event that triggers our brains to produce “danger signals” without there actually being much danger at all. This is because with our current brain implementation, experiencing perceived danger is helpful for bonding, trust building, and a sense of self-efficacy and survival ability.
And now on to my talk…
Andrés Gómez Emilsson – Consciousness vs. Replicators
The video above documents my talk, which includes an extended Q&A with the audience. Below is a quick summary of the main points I touched throughout the talk:
Intro to Qualia Computing
I started out by asking the audience if they had read any Qualia Computing articles. About 30% of them raised a hand. I then asked them how they found out about my talk, and it seems that the majority of the attendees (50%+) found it through the “What Where When” booklet. Since the majority of the people didn’t know about Qualia Computing before the talk, I decided to provide a quick introduction to some of the main concepts:
What is qualia? – The raw way in which consciousness feels. Like the blueness of blue. Did you ever wonder as a kid whether other people saw the same colors as you? Qualia is that ineffable quality of experience that we currently struggle to communicate.
Personal Identity:
Closed Individualism – you start existing when you are born, stop existing when you die.
Empty Individualism – brains are “experience machines” and you really are just a “moment of experience” disconnected from every other “moment of experience” your brain has generated or will generate.
Open Individualism – we are all the “light of consciousness”. Reality has only one numerically identical subject of experience who is everyone, but which takes all sorts of forms and shapes.
For the purpose of this talk I assume that Open Individualism is true, which provides a strong reason to care about the wellbeing of all sentient beings, even from a “selfish” point of view.
Valence – This is the pleasure-pain axis. We take a valence realist view which means that we assume that there is an objective matter of fact about how much an experience is in pain/suffering vs. experiencing happiness/pleasure. There are pure heavenly experiences, pure hellish experiences, mixed states (e.g. enjoying music you love on awful speakers while wanting to pee), and neutral states (e.g. white noise, mild apathy, etc.).
Evolutionary advantages of consciousness as part of the information processing pipeline – I pointed out that we also assume that consciousness is a real and computationally relevant phenomena. And in particular, that the reason why consciousness was recruited by natural selection to process information has to do with “phenomenal binding”. I did not go into much detail about it at the time, but if you are curious I elaborated about this during the Q&A.
Spirit of our research:
Exploration + Knowledge/Synthesis. Many people either over-focus on exploration (especially people very high in openness to experience) or on synthesis (like conservatives who think “the good days are gone, let’s study history”). The spirit of our research combines both open-ended exploration and strong synthesis. We encourage people to both expand their evidential base and make serious time to synthesize and cross-examine their experiences.
A lot of people treat consciousness research like people used to treat alchemy. That is, they have a psychological need to “keep things magical”. We don’t. We think that consciousness research is due to transition into a hard science and that many new possibilities will be unlocked after this transition, not unlike how chemistry is thousands of times more powerful than alchemy because it allows you to create synthesis pathways from scratch using chemistry principles.
How People Think and Why Few Say Meaningful Things:
What most people say and talk about is a function of the surrounding social status algorithm (i.e. what kind of things award social recognition) and deep-seated evolutionarily adaptive programs (such as survival, reproductive, and affective consistency programs).
Nerds and people on the autism spectrum do tend to circumvent this general mental block and are able to discuss things without being motivated by status or evolutionary programs only, instead being driven by open-ended curiosity. We encourage our collaborators to have that approach to consciousness research.
What the Economy is Based on:
Right now there are three main goods that are exchanged in the global economy. These are:
Survival – resources that help you survive, like food, shelter, safety, etc.
Power – resources that allow you to acquire social and physical power and thus increase your chances of reproducing.
Consciousness – information about the state-space of consciousness. Right now people are willing to spend their “surplus” resources on experiences even if they do not increase their reproductive success. A possible dystopian scenario is one in which people do not do this anymore – everyone spends all of their available time and energy pursuing jobs for the sake of maximizing their wealth and increasing their reproductive success. This leads us to…
Pure Replicators – In Wireheading Done Right we introduced the concept of a Pure Replicator: I will define a pure replicator, in the context of agents and minds, to be an intelligence that is indifferent towards the valence of its conscious states and those of others. A pure replicator invests all of its energy and resources into surviving and reproducing, even at the cost of continuous suffering to themselves or others. Its main evolutionary advantage is that it does not need to spend any resources making the world a better place. (e.g. crystals, viruses, programs, memes, genes)
It is reasonable to expect that in the absence of evolutionary selection pressures that favor the wellbeing of sentient beings, in the long run everyone alive will be playing a Pure Replicator strategy.
States vs. Stages vs. Theory of Morality
Ken Wilber emphasizes that there is a key difference between states and stages. Whereas states of consciousness involve various degrees of oneness and interconnectedness (from normal everyday sober experiences all the way to unity consciousness and satori), how you interpret these states will ultimately depend on your own level of moral development and maturity. This is very true and important. But I propose a further axis:
Levels of intellectual understanding of ethics. While stages of consciousness refer to the degree to which you are comfortable with ambiguity, can synthesize large amounts of seemingly contradictory experiences, and are able to be emotionally stable in the face of confusion, we think that there is another axis worth exploring that has more to do with one’s intellectual model of ethics.
The 4 levels are:
Good vs. evil – the most common view which personifies/essentializes evil (e.g. “the devil”)
Balance between good and evil – the view that most people who take psychedelics and engage in eastern meditative practices tend to arrive at. People at this level tend to think that good implies evil, and that the best we can do is to reach a state of balance and equanimity. I argue that this is a rationalization to be able to deal with extremes of suffering; the belief itself is used as an anti-depressant, which shows the intrinsic contradictoriness and motivated reasoning behind adopting this ethical worldview. You believe in the balance between good and evil in general so that you, right now, can feel better about your life. You are still, implicitly, albeit in a low-key way, trying to regulate your mood like everyone else.
Gradients of wisdom – this is the view that people like Sam Harris, Ken Wilber, John Lilly, David Chapman, Buddha, etc. seem to converge on. They don’t have a deontological “if-then” ethical programming like the people at the first level. Rather, they have general heuristics and meta-heuristics for navigating complex problems. They do not claim to know “the truth” or be able to identify exactly what makes a society “better for human flourishing” but they do accept that some environments and states of consciousness are more healthy and conducive to wisdom than others. The problem with this view is that it does not give you a principled way to resolve disagreements or a way forward for designing societies from first principles.
Consciousness vs. pure replicators – this view is the culmination of intellectual ethical development (although you could still be very neurotic and unenlightened otherwise) which arises when one identifies the source of everything that is systematically bad as caused by patterns that are good at making copies of themselves but that either don’t add conscious value or actively increase suffering. In this framework, it is possible for consciousness to win, which would happen if we create a full-spectrum super-sentient super-intelligent singleton that explores the entire state-space of consciousness and rationally decides what experiences to instantiate at a large scale based on the empirically revealed total order of consciousness.
New Reproductive Strategies
Given that we on team consciousness are in a race against Pure Replicator Hell scenarios it is important to explore ways in which we could load the dice in the favor of consciousness. One way to do so would be to increase the ways in which prosocial people are able to reproduce and pass on their pro-consciousness genes going forward. Here are a few interesting examples:
Gay + Lesbian couple – for gay and lesbian couples with long time horizons we could help them have biological kids with the following scheme: Gay couple A + B and lesbian couple X + Z could combine their genes and have 4 kids A/X, A/Z, B/X, B/Z. This would create the genetic and game-theoretical incentives for this new kind of family structure to work in the long term.
Genetic spellchecking – one of the most promising ways of increasing sentient welfare is to apply genetic spellchecking to embryos. This means that we would be reducing the mutational load of one’s offspring without compromising one’s genetic payload (and thus selfish genes would agree to the procedure and lead to an evolutionarily stable strategy). You wouldn’t ship code to production without testing and debugging, you wouldn’t publish a book without someone proof-reading it first, so why do we push genetic code to production without any debugging? As David Pearce says, right now every child is a genetic experiment. It’s terrible that such a high percentage of them lead to health and mental problems.
A reproductive scheme in which 50% of the genes come from an “intelligently vetted gene pool” and the other 50% come from the parents’ genes. This would be very unpopular at first, but after a generation or two we would see that all of the kids who are the result of this procedure are top of the class, win athletic competitions, start getting Nobel prizes and Fields medals, etc. So soon every parent will want to do this… and indeed from a selfish gene point of view there will be no option but to do so, as it will make the difference between passing on some copies vs. none.*
Dispassionate evaluation of the merits and drawbacks of one’s genes in a collective of 100 or more people where one recombines the genetic makeup of the “collective children” in order to maximize both their wellbeing and the information gained. In order to do this analysis in a dispassionate way we might need to recruit 5-meo-dmt-like states of consciousness that make you identify with consciousness rather than with your particular genes, and also MDMA-like states of mind in order to create a feeling of connection to source and universal love even if your own patterns lose out at some point… which they will after long enough, because eventually the entire gene pool would be replaced by a post-human genetic make-up.
Consciousness vs. Replicators as a lens – I discussed how one can use the 4th stage of intellectual ethical development as a lens to analyze the value of different patterns and aesthetics. For example:
Conservatives vs. Liberals (stick to your guns and avoid cancer vs. be adaptable but expose yourself to nasty dangers)
Rap Music vs. Classical or Electronic music (social signaling vs. patternistic valence exploration)
Hyperstition – Finally, I discussed the concept of hyperstition, which is a concept that refers to “ideas that make themselves real”. I explored it in the first Burning Man article. The core idea is that states of consciousness can indeed transform the history of the cosmos. In particular, high-energy states of mind like those experienced under psychedelics allow for “bigger ideas” and thus increase the upper bound of “irreducible complexity” for one’s thoughts. An example of this is coming up with further alternative reproductive strategies, which I encouraged the audience to do in order to increase the chances that team consciousness wins in the long term…
The End.
Bonus content: things I overheard virgin burners say:
“Intelligent people build intelligent civilizations. I now get what a society made of brilliant people would look like.”
“Burning Man is a magical place. It seems like it is one of the only places on Earth where the Spirit World and the Physical World intersect and play with each other.”
“It is not every day that you engage in a deeply transformative conversation before breakfast.”
How do psychedelic drugs produce their characteristic range of acute effects in perception, emotion, cognition, and sense of self? How do these effects relate to the clinical efficacy of psychedelic-assisted therapies? Efforts to understand psychedelic phenomena date back more than a century in Western science. In this article I review theories of psychedelic drug effects and highlight key concepts which have endured over the last 125 years of psychedelic science. First, I describe the subjective phenomenology of acute psychedelic effects using the best available data. Next, I review late 19th-century and early 20th-century theories—model psychoses theory, filtration theory, and psychoanalytic theory—and highlight their shared features. I then briefly review recent findings on the neuropharmacology and neurophysiology of psychedelic drugs in humans. Finally, I describe recent theories of psychedelic drug effects which leverage 21st-century cognitive neuroscience frameworks—entropic brain theory, integrated information theory, and predictive processing—and point out key shared features that link back to earlier theories. I identify an abstract principle which cuts across many theories past and present: psychedelic drugs perturb universal brain processes that normally serve to constrain neural systems central to perception, emotion, cognition, and sense of self. I conclude that making an explicit effort to investigate the principles and mechanisms of psychedelic drug effects is a uniquely powerful way to iteratively develop and test unifying theories of brain function.
Subjective rating scale items selected after psilocybin (blue) and placebo (red) (n = 15) (Muthukumaraswamy et al., 2013). “Items were completed using a visual analog scale format, with a bottom anchor of ‘no, not more than usually’ and a top anchor of ‘yes, much more than usually’ for every item, with the exception of ‘I felt entirely normal,’ which had bottom and top anchors of ‘No, I experienced a different state altogether’ and ‘Yes, I felt just as I normally do,’ respectively. Shown are the mean ratings for 15 participants plus the positive SEMs. All items marked with an asterisk were scored significantly higher after psilocybin than placebo infusion at a Bonferroni-corrected significance level of p < 0.0022 (0.5/23 items)” (Muthukumaraswamy et al., 2013, p. 15176).
Neuropharmacology and Neurophysiological Correlates of Psychedelic Drug Effects
Klee recognized that his above hypotheses, inspired by psychoanalytic theory and LSD effects, required neurophysiological evidence. “As far as I am aware, however, adequate neurophysiological evidence is lacking … The long awaited millennium in which biochemical, physiological, and psychological processes can be freely correlated still seems a great distance off” (Klee, 1963, p. 466, 473). What clues have recent investigations uncovered?
A psychedelic drug molecule impacts a neuron by binding to and altering the conformation of receptors on the surface of the neuron (Nichols, 2016). The receptor interaction most implicated in producing classic psychedelic drug effects is agonist or partial agonist activity at serotonin (5-HT) receptor type 2A (5-HT2A) (Nichols, 2016). A molecule’s propensity for 5-HT2A affinity and agonist activity predicts its potential for (and potency of) subjective psychedelic effects (Glennon et al., 1984; McKenna et al., 1990; Halberstadt, 2015; Nichols, 2016; Rickli et al., 2016). When a psychedelic drug’s 5-HT2A agonist activity is intentionally blocked using 5-HT2Aantagonist drugs (e.g., ketanserin), the subjective effects are blocked or attenuated in humans under psilocybin (Vollenweider et al., 1998; Kometer et al., 2013), LSD (Kraehenmann et al., 2017a,b; Preller et al., 2017), and ayahuasca (Valle et al., 2016). Importantly, while the above evidence makes it clear that 5-HT2A activation is a necessary (if not sufficient) mediator of the hallmark subjective effects of classic psychedelic drugs, this does not entail that 5-HT2A activation is the sole neurochemical cause of all subjective effects. For example, 5-HT2A activation might trigger neurochemical modulations ‘downstream’ (e.g., changes in glutamate transmission) which could also play causal roles in producing psychedelic effects (Nichols, 2016). Moreover, most psychedelic drug molecules activate other receptors in addition to 5-HT2A (e.g., 5-HT1A, 5-HT2C, dopamine, sigma, etc.) and these activations may importantly contribute to the overall profile of subjective effects even if 5-HT2A activation is required for their effects to occur (Ray, 2010, 2016).
How does psychedelic drug-induced 5-HT2A receptor agonism change the behavior of the host neuron? Generally, 5-HT2A activation has a depolarizing effect on the neuron, making it more excitable (more likely to fire) (Andrade, 2011; Nichols, 2016). Importantly, this does not necessarily entail that 5-HT2Aactivation will have an overall excitatory effect throughout the brain, particularly if the excitation occurs in inhibitory neurons (Andrade, 2011). This important consideration (captured by the adage ‘one neuron’s excitation is another neuron’s inhibition’) should be kept in mind when tracing causal links in the pharmaco-neurophysiology of psychedelic drug effects.
In mammalian brains, neurons tend to ‘fire together’ in synchronized rhythms known as temporal oscillations (brain waves). MEG and EEG equipment measure the electromagnetic disturbances produced by the temporal oscillations of large neural populations and these measurements can be quantified according to their amplitude (power) and frequency (timing) (Buzsáki and Draguhn, 2004). Specific combinations of frequency and amplitude can be correlated with distinct brain states, including waking ‘resting’ state, various attentional tasks, anesthesia, REM sleep, and deep sleep (Tononi and Koch, 2008; Atasoy et al., 2017a). In what ways do temporal oscillations change under psychedelic drugs? MEG and EEG studies consistently show reductions in oscillatory power across a broad frequency range under ayahuasca (Riba et al., 2002, 2004; Schenberg et al., 2015; Valle et al., 2016), psilocybin (Muthukumaraswamy et al., 2013; Kometer et al., 2015; Schartner et al., 2017), and LSD (Carhart-Harris et al., 2016c; Schartner et al., 2017). Reductions in the power of alpha-band oscillations, localized mainly to parietal and occipital cortex, have been correlated with intensity of subjective visual effects—e.g., ‘I saw geometric patterns’ or ‘My imagination was extremely vivid’—under psilocybin (Kometer et al., 2013; Muthukumaraswamy et al., 2013; Schartner et al., 2017) and ayahuasca (Riba et al., 2004; Valle et al., 2016). Under LSD, reductions in alpha power still correlated with intensity of subjective visual effects but associated alpha reductions were more widely distributed throughout the brain (Carhart-Harris et al., 2016c). Furthermore, ego-dissolution effects and mystical-type experiences (e.g., ‘I experienced a disintegration of my “self” or “ego”’ or ‘The experience had a supernatural quality’) have been correlated with reductions in alpha power localized to anterior and posterior cingulate cortices and the parahippocampal regions under psilocybin (Muthukumaraswamy et al., 2013; Kometer et al., 2015) and throughout the brain under LSD (Carhart-Harris et al., 2016c).
The concept of functional connectivity rests upon fMRI brain imaging observations that reveal temporal correlations of activity occurring in spatially remote regions of the brain which form highly structured patterns (brain networks) (Buckner et al., 2013). Imaging of brains during perceptual or cognitive task performance reveals patterns of functional connectivity known as functional networks; e.g., control network, dorsal attention network, ventral attention network, visual network, auditory network, and so on. Imaging brains in taskless resting conditions reveals resting-state functional connectivity (RSFC) and structured patterns of RSFC known as resting state networks (RSNs; Deco et al., 2011). One particular RSN, the default mode network (DMN; Buckner et al., 2008), increases activity in the absence of tasks and decreases activity during task performance (Fox and Raichle, 2007). DMN activity is strong during internally directed cognition and a variety of other ‘metacognitive’ functions (Buckner et al., 2008). DMN activation in normal waking states exhibits ‘inverse coupling’ or anticorrelation with the activation of task-positive functional networks, meaning that DMN and functional networks are often mutually exclusive; one deactivates as the other activates and vice versa (Fox and Raichle, 2007).
Taken together, the recently discovered neurophysiological correlates of subjective psychedelic effects present an important puzzle for 21st-century neuroscience. A key clue is that 5-HT2A receptor agonism leads to desynchronization of oscillatory activity, disintegration of intrinsic integrity in the DMN and related brain networks, and an overall brain dynamic characterized by increased between-network global functional connectivity, expanded signal diversity, and a larger repertoire of structured neurophysiological activation patterns. Crucially, these characteristic traits of psychedelic brain activity have been correlated with the phenomenological dynamics and intensity of subjective psychedelic effects.
21st-Century Theories of Psychedelic Drug Effects
Entropic Brain Theory
Entropic Brain Theory (EBT; Carhart-Harris et al., 2014) links the phenomenology and neurophysiology of psychedelic effects by characterizing both in terms of the quantitative notions of entropy and uncertainty. Entropy is a quantitative index of a system’s (physical) disorder or randomness which can simultaneously describe its (informational) uncertainty. EBT “proposes that the quality of any conscious state depends on the system’s entropy measured via key parameters of brain function” (Carhart-Harris et al., 2014, p. 1). Their hypothesis states that hallmark psychedelic effects (e.g., perceptual destabilization, cognitive flexibility, ego dissolution) can be mapped directly onto elevated levels of entropy/uncertainty measured in brain activity, e.g., widened repertoire of functional connectivity patterns, reduced anticorrelation of brain networks, and desynchronization of RSN activity. More specifically, EBT characterizes the difference between psychedelic states and normal waking states in terms of how the underlying brain dynamics are positioned on a scale between the two extremes of order and disorder—a concept known as ‘self-organized criticality’ (Beggs and Plenz, 2003). A system with high order (low entropy) exhibits dynamics that resemble ‘petrification’ and are relatively inflexible but more stable, while a system with low order (high entropy) exhibits dynamics that resemble ‘formlessness’ and are more flexible but less stable. The notion of ‘criticality’ describes the transition zone in which the brain remains poised between order and disorder. Physical systems at criticality exhibit increased transient ‘metastable’ states, increased sensitivity to perturbation, and increased propensity for cascading ‘avalanches’ of metastable activity. Importantly, EBT points out that these characteristics are consistent with psychedelic phenomenology, e.g., hypersensitivity to external stimuli, broadened range of experiences, or rapidly shifting perceptual and mental contents. Furthermore, EBT uses the notion of criticality to characterize the difference between psychedelic states and normal waking states as it “describes cognition in adult modern humans as ‘near critical’ but ‘sub-critical’—meaning that its dynamics are poised in a position between the two extremes of formlessness and petrification where there is an optimal balance between order and flexibility” (Carhart-Harris et al., 2014, p. 12). EBT hypothesizes that psychedelic drugs interfere with ‘entropy-suppression’ brain mechanisms which normally sustain sub-critical brain dynamics, thus bringing the brain “closer to criticality in the psychedelic state” (Carhart-Harris et al., 2014, p. 12).
Integrated Information Theory
Integrated Information Theory (IIT) is a general theoretical framework which describes the relationship between consciousness and its physical substrates (Oizumi et al., 2014; Tononi, 2004, 2008). While EBT is already loosely consistent with the core principles of IIT, Gallimore (2015) demonstrates how EBT’s hypotheses can be operationalized using the technical concepts of the IIT framework. Using EBT and recent neuroimaging data as a foundation, Gallimore develops an IIT-based model of psychedelic effects. Consistent with EBT, this IIT-based model describes the brain’s continual challenge of minimizing entropy while retaining flexibility. Gallimore formally restates this problem using IIT parameters: brains attempt to optimize the give-and-take dynamic between cause-effect information and cognitive flexibility. In IIT, a (neural) system generates cause-effect information when the mechanisms which make up its current state constrain the set of states which could casually precede or follow the current state. In other words, each mechanistic state of the brain: (1) limits the set of past states which could have causally given rise to it, and (2) limits the set of future states which can causally follow from it. Thus, each current state of the mechanisms within a neural system (or subsystem) has an associated cause-effect repertoire which specifies a certain amount of cause-effect information as a function of how stringently it constrains the unconstrained state repertoire of all possible system states. Increasing the entropy within a cause-effect repertoire will in effect constrain the system less stringently as the causal possibilities are expanded in both temporal directions as the system moves closer to its unconstrained repertoire of all possible states. Moreover, increasing the entropy within a cause-effect repertoire equivalently increases the uncertainty associated with its past (and future) causal interactions. Using this IIT-based framework, Gallimore (2015)argues that, compared with normal waking states, psychedelic brain states exhibit higher entropy, higher cognitive flexibility, but lower cause-effect information.
Predictive Processing
The first modern brain imaging measurements in humans under psilocybin yielded somewhat unexpected results: reductions in oscillatory power (MEG) and cerebral blood flow (fMRI) correlated with the intensity of subjective psychedelic effects (Carhart-Harris et al., 2012; Muthukumaraswamy et al., 2013). In their discussion, the authors suggest that their findings, although surprising through the lens of commonly held beliefs about how brain activity maps to subjective phenomenology, may actually be consistent with a theory of brain function known as the free energy principle (FEP; Friston, 2010).
In one model of global brain function based on the free-energy principle (Friston, 2010), activity in deep-layer projection neurons encodes top-down inferences about the world. Speculatively, if deep-layer pyramidal cells were to become hyperexcitable during the psychedelic state, information processing would be biased in the direction of inference—such that implicit models of the world become spontaneously manifest—intruding into consciousness without prior invitation from sensory data. This could explain many of the subjective effects of psychedelics (Muthukumaraswamy et al., 2013, p. 15181).
What is FEP? “In this view, the brain is an inference machine that actively predicts and explains its sensations. Central to this hypothesis is a probabilistic model that can generate predictions, against which sensory samples are tested to update beliefs about their causes” (Friston, 2010). FEP is a formulation of a broader conceptual framework emerging in cognitive neuroscience known as predictive processing (PP; Clark, 2013)10. PP has links to bayesian brain hypothesis (Knill and Pouget, 2004), predictive coding (Rao and Ballard, 1999), and earlier theories of perception and cognition (MacKay, 1956; Neisser, 1967; Gregory, 1968) dating back to Helmholtz (1925) who was inspired by Kant (1996; see Swanson, 2016). At the turn of the 21st century, the ideas of Helmholtz catalyzed innovations in machine learning (Dayan et al., 1995), new understandings of cortical organization (Mumford, 1992; Friston, 2005), and theories of how perception works (Kersten and Yuille, 2003; Lee and Mumford, 2003).
Conclusion
The four key features identified in filtration and psychoanalytic accounts from the late 19th and early 20th century continue to operate in 21st-century cognitive neuroscience: (1) psychedelic drugs produce their characteristic diversity of effects because they perturb adaptive mechanisms which normally constrain perception, emotion, cognition, and self-reference, (2) these adaptive mechanisms can develop pathologies rooted in either too much or too little constraint (3) psychedelic effects appear to share elements with psychotic symptoms because both involve weakened constraints (4) psychedelic drugs are therapeutically useful precisely because they offer a way to temporarily inhibit these adaptive constraints. It is on these four points that EBT, IIT, and PP seem consistent with each other and with earlier filtration and psychoanalytic accounts. EBT and IIT describe psychedelic brain dynamics and link them to phenomenological dynamics, while PP describes informational principles and plausible neural information exchanges which might underlie the larger-scale dynamics described by EBT and IIT. Certain descriptions of neural entropy-suppression mechanisms (EBT), cause-effect information constraints (IIT), or prediction-error minimization strategies (PP, FEP) are loosely consistent with Freud’s ego and Huxley’s cerebral reducing valve.
Qualia Computing comment: As you can see above, 21st century theories of psychedelic action have a lot of interesting commonalities. A one-line summary of what they all agree on could be: Psychedelics increase the available state-space of consciousness by removing constraints that are normally imposed by standard brain functioning. That said, they do not make specific predictions about valence. That is, they leave the question of “which alien states of consciousness will feel good and which ones will feel bad” completely unaddressed. In the following posts about the presentations of members of the Qualia Research Institute at The Science of Consciousness 2018 you will see how, unlike other modern accounts, our Qualia Formalist approach to consciousness can elucidate this matter.