The Hyperbolic Geometry of DMT Experiences: Symmetries, Sheets, and Saddled Scenes

[Content Warning: Trying to understand the contents of this essay may be mind-warping. Proceed with caution. Featured image credit: Paul Nylander]

Friends, right here and now, one quantum away, there is raging a universe of active intelligence that is transhuman, hyperdimensional, and extremely alien.

—Terence McKenna

The Geometry of DMT States

This is an essay on the phenomenology of DMT. The analysis here presented predominantly uses algorithmic, geometric and information-theoretic frameworks, which distinguishes it from purely phenomenological, symbolic, neuroscientific or spiritual accounts. We do not claim to know what ultimately implements the effects here described (i.e. in light of the substrate problem of consciousness), but the analysis does not need to go there in order to have explanatory power. We posit that one can account for a wide array of (apparently diverse) phenomena present on DMT-induced states of consciousness by describing the overall changes in the geometry of one’s spatiotemporal representations (what we will call “world-sheets” i.e. 3D + time surfaces; 3D1T for short). The concrete hypothesis is that the network of subjective measurements of distances we experience on DMT (coming from the relationships between the phenomenal objects one experiences in that state) has an overall geometry that can accurately be described as hyperbolic (or hyperbolic-like). In other words, our inner 3D1T world grows larger than is possible to fit in an experiential field with 3D Euclidean phenomenal space (i.e. an experience of dimension R2.5 representing an R3 scene). This results in phenomenal spaces, surfaces, and objects acquiring a mean negative curvature. Of note is that even though DMT produces this effect in the most consistent and intense way, the effect is also present in states of consciousness induced by tryptamines and to a lesser extent in those induced by all other psychedelics.

Conceptual Framework: Algorithmic Reduction

We will use the reduction framework originally proposed in the article Algorithmic Reductions of Psychedelic States. This means that we will be examining how algorithms and processes (as experienced by a subject of experience) can explain the dynamics of people’s phenomenology in DMT states. We do not claim “the substrate of consciousness” is becoming hyperbolic in any literal sense (though we do not discard that possibility). Rather, we interpret the hyperbolic curvature that experience acquires while on DMT as an emergent effect of a series of more general mechanism of action that can work together to change the geometry of a mind. These same mechanisms of action govern the dynamics of other psychedelic experiences; it is the proportion and intensity of the various “basic” effects that lead to the different outcomes observed. In other words, the hyperbolization of phenomenal space may not be a fundamental effect of DMT, but rather, it may be an emergent effect of more simple effects combined (not unlike how our seemingly smooth macroscopic space-time emerges from the jittery yet fundamental interactions that happen in a microscopic high-dimensional quantum foam).

In particular, we will discuss three candidate models for a more fundamental algorithmic reduction: (1) the synergistic effect of control interruption and symmetry detection resulting in a change of the metric of phenomenal space (analogously to how one can measure the geometry of hyperbolic graph embeddings), (2) the mind as a dynamic system with energy sources, sinks and invariants, in which curvature stores potential energy, and (3) a change in the underlying curvature of the micro-structure of consciousness. These models are not mutually-exclusive, and they may turn out to be compatible. More on this later.

What is Hyperbolic Geometry?

Perhaps the clearest way to describe hyperbolic space is to show examples of it:

 

The picture to the left shows a representation of a “saddle” surface. In geometry, saddle surfaces are 2-dimensional hyperbolic spaces (also called “hyperbolic planes” or H2). For a surface to have “constant curvature” it must look the same at every point. In other words, for a saddle to be a geometric saddle, every point in it must be a “saddle point” (i.e. a point with negative curvature). As you can see, saddles have the property that the angles of a triangle found in them add up to less than 180 degrees (compare that to surfaces with positive curvature such as the 2-sphere, in which the angles of a triangle add up to more than 180 degrees). Generalizing this to higher dimensions, the middle image above shows a cube in H3 (i.e. a hyperbolic space of three dimensions). This cube, since it is in hyperbolic space, has thin edges and pointy corners. More generally, the corners of a polyhedra (and polytopes) will be more pointy in Hn than they are in Rn. This is why you can see in the right image a dodecahedron with right-angled corners, which in this case can tile H3 (cf. Not Knot). Such a thing- people of the past might say- is an insult to the imagination. Times are changing, though, and hyperbolic geometry is now an acceptable subject of conversation.

An important property of hyperbolic spaces is the way in which the area of a circle (or the n-dimensional volume of a hypersphere) increases as a function of its radius. In 2D Euclidean space the area grows quadratically with the radius. But on H2, the area grows exponentially as a function of the radius! As you may imagine, it is easy to get lost in hyperbolic space. A few steps take you to an entirely different scene. More so, your influence over the environment is greatly diminished as a function of distance. For example, the habitable region of solar systems in hyperbolic spaces (i.e.the Goldilocks zone) is extremely thin. In order to avoid getting burned or freezing to death you would have to place your planet within a very narrow distance range from the center star. Most of what you do in hyperbolic space either stays as local news or is quickly dissipated in an ever-expanding environment.

We Can Only Remember What We Can Reconstruct

We cannot experience H2 or H3 manifolds under normal circumstances, but we can at least represent some aspects of them through partial embeddings (i.e. instantiations as subsets of other spaces preserving properties) and projections into more familiar geometries. It is important to note that such representations will necessarily be flawed. As it turns out, it is notoriously hard to truly embed H2 in Euclidean 3D space, since doing so will necessarily distort some properties of the original H2 space (such as distance, angle, area, local curvature, etc.). As we will discuss further below, this difficulty turns out to be crucial for understanding why DMT experiences are so hard to remember. In order to remember the experience you need to create a faithful and memorable 3D Euclidean embedding of it. Thus, if one happens to experience a hyperbolic object and wants to remember as much of it as possible, one will have to think strategically about how to fold, crunch and deform such object so that it can be fit in compact Euclidean representations.

What about DMT suggests hyperbolic geometry?

Why should we believe that phenomenal space on DMT (and to a lesser extent on other psychedelics) becomes hyperbolic-like?  We will argue that the features people use to describe their trips as well as concrete mathematical observations of such features point directly to hyperbolic geometry. Here is a list of such features (arranged from least to most suggestive… you know, for dramatic effect):

  1. Perception of far-out travel (as we said, small movements in hyperbolic space lead to huge changes in the scene).
  2. Feelings of becoming big (you can fit a lot more inside a circle of radius r in hyperbolic space).
  3. The space experienced is often depicted as “more real and more dense than normal”.
  4. The use of terms like “mind-expanding” and “warping” to describe the effects of the drug are very common.
  5. People describing it as “a different kind of space” and frequently using the word “hyperspace” to talk about it.
  6. Difficulty integrating/remembering the objects and scenes experienced (e.g. “they were too alien to recall”).
  7. Constant movement/acceleration and change of perspectives which are often described as “unfolding scenes and expanding patterns” (cf. the chrysanthemum, jitterbox).
  8. Continuous change of the scene’s context through escape routes: A door that leads to a labyrinth that leads to branching underground tunnels that lead to mirror rooms that lead to endless windows, and the one you take leading you to a temple with thirty seven gates which lead you to a kale salad world etc. (example).
  9. Crowding of scene beyond the limits of Euclidean space (users frequently wondering “How was I able to fit so much in my mind? I don’t see any space for my experience to fit in here!”)
  10. Reported similarity with fractals.
  11. Omnipresence of saddles making up the structural constraints of the hallucinated scenes. For example, one often hears about experiencing scenes saturated with: joints, twists, bifurcations, curved alleys, knots, and double helixes.
  12. Looking at self-similar objects (such as cauliflowers) can get you lost in what seems like endless space. (Note: beware of the potential side effects of looking at a cauliflower on DMT*).
  13. PSIS-like experiences where people seem to experience multiple alternative outcomes from each event at the same time (this may be the result of “hyperbolic branching” through time rather than space).
  14. Psychedelic replication pictures usually include features that can be interpreted as hyperbolic objects embedded in Euclidean 3D.
  15. People describe “incredibly advanced mechanisms” and “impossible objects” that cannot be represented in our usual reality (e.g. Terence Mckenna’s self-dribbling basketballs).
  16. At least one mathematician has stated that what one experiences on DMT cannot be translated into Euclidian geometry (unlike what one experiences on LSD).
  17. We received a series of systematic DMT trip-reports by a math enthusiast and experienced psychonaut who claims that the surfaces experienced on DMT are typically composed of hyperbolic tilings (which imply a negative curvature; cf. wallpaper groups).

This article goes beyond claiming a mere connection between DMT and hyperbolic geometry. We will be more specific by addressing the aspects of the experience that can be interpreted geometrically. To do so, let us now turn to a phenomenological description of the way DMT experiences usually unfold:

The Phenomenology of DMT experiences: The 6 Levels

In order to proceed we will give an account of a typical vaporized DMT experience. You can think of the following six sections as stages or levels of a DMT journey. Let me explain. The highest level you get to depends on the dose consumed, and in high doses one experiences all of the levels, one at a time, and in quick succession (i.e. on high doses these levels are perceived as the stages of the experience). If one takes just enough DMT to cross over to the highest level one reaches during the journey for only a brief moment, then that level will probably be described as “the peak of the experience”. If, on the other hand, one takes a dose that squarely falls within the milligram range for producing a given level, it will be felt as more of a “plateau”. Each level is sufficiently distinct from the others that people will rarely miss the transitions between them.

The six levels of a DMT experience are: Threshold, Chrysanthemum, Magic Eye, Waiting Room, Breakthrough, and Amnesia. Let us dive in!

(Note: The following description assumes that the self-experimenter is in good physical and mental health at the time of consuming the DMT. It is well known that negative states of consciousness can lead to incomprehensible hellscapes when “boosted” by DMT (please avoid DMT at all costs while you are drunk, depressed, angry, suicidal, irritable, etc.). The full geometry is best appreciated on a mentally and emotionally balanced set and settings.)

(1) Threshold

The very first alert of something unusual happening may take between 3 to 30 seconds after inhaling the DMT, depending on the dose consumed. Rather than a clear sensorial or cognitive change, the very first hint is a change in the apparent ambiance of one’s setting. You know how at times when you enter a temple, an art museum, a crowd of people, or even just a well decorated restaurant you can abstract an undefinable yet clearly present “vibe of the place”? There’s nothing overt or specific about it. The ambiance of a place is more of an overall gestalt than a localized feeling. An ambiance somehow encodes information about the social, ideological and aesthetic quality of the place or community you just crashed into, and it tells you at a glance which moods are socially acceptable and which ones are discouraged. The specific DMT vibe you feel on a given session can be one of a million different flavors. That said, whether you feel like you entered a circus or joined a religious ceremony, the very first hint of a DMT experience is nonetheless always (or almost always) accompanied with an overall feeling of significance. The feeling that something important is about to happen or is happening is made manifest by the vibe of the state. This vibe is usually present for at least the first 150 seconds or so of the journey. Interestingly, the change in ambiance is shorter-lived than the trip itself; it seems to go away before the visuals vanish quickly declining once the the peak is over.

Within seconds after the change in ambiance, one feels a sudden sharpening of all the senses. Some people describe this as “upgrading one’s experience to an HD version of it”. The level of detail in one’s experience is increased, yet the overall semantic content is still fairly intact. People say things like: “Reality around me seems more crisp” and “it’s like I’m really grasping my surroundings, you know? fully in tune with the smallest textures of the things around me.” Terence Mckenna described this state as follows: “The air appears to suddenly have been sucked out of the room because all the colors brighten visibly, as though some intervening medium has been removed.”

SONY DSC

On a schedule of repeated small doses (below 4 mg; preferably i.m.) one can stabilize this sharpening of the senses for arbitrarily long periods of time. I am a firm believer that this state (quite apart from the alien experiences on higher doses) can already be recruited for a variety of computational and aesthetic tasks that humans do in this day and age. In particular, the state itself seems to enable grasping complex ideas with many parameters without distorting them, which may be useful for learning mathematics at an accelerated pace. Likewise, the sate increases one’s awareness of one’s surroundings (possibly at the expense of consuming many calories). I find it hard to imagine that artists will not be able to use this state for anything valuable.

(2) The Chrysanthemum

If one ups the dose a little bit and lands somewhere in the range between 4 to 8 mg, one is likely to experience what Terrence McKenna called “the Chrysanthemum”. This usually manifests as a surface saturated with a sort of textured fabric composed of intricate symmetrical relationships, bright colors, shifting edges and shimmering pulsing superposition patterns of harmonic linear waves of many different frequencies.

Depending on the dose consumed one may experience either one or several semi-parallel channels. Whereas a threshold dose usually presents you with a single strong vibe (or ambiance), the Chrysanthemum level often has several competing vibes each bidding for your attention. Here are some examples of what the visual component of this state of consciousness may look like.

 

The visual component of the Chrysanthemum is often described as “the best screen saver ever“, and if you happen to experience it in a good mood you will almost certainly agree with that description, as it is usually extremely harmonious, symmetric and beautiful in uncountable ways. No external input can possibly replicate the information density and intricate symmetry of this state; such state has to be endogenously generated as a a sort of harmonic attractor of your brain dynamics.

You can find many replications of Chrysanthemum-level DMT experiences on the internet, and I encourage you to examine their implicit symmetries (this replication is one of my all-times favorite).

In Algorithmic Reduction of Psychedelic States we posited that any one of the 17 wallpaper symmetry groups can be instantiated as the symmetries that govern psychedelic visuals. Unfortunately, unlike the generally slow evolution of usual psychedelic visuals, DMT’s vibrational frequency forces such visuals to evolve at a speed that makes it difficult for most people to spot the implicit symmetry elements that give rise to the overall mathematical structure underneath one’s experience. For this reason it has been difficult to verify that all 17 wallpaper groups are possible in DMT states. Fortunately we were recently able to confirm that this is in fact the case thanks to someone who trained himself to do just this. I.e. detecting symmetry elements in patterns at an outstanding speed.

An anonymous psychonaut (whom we will call researcher A) sent a series of trip report to Qualia Computing detailing the mathematical properties of psychedelic visuals under various substances and dose regimens. A is an experienced psychonaut and a math enthusiast who recently trained himself to recognize (and name) the mathematical properties of symmetrical patterns (such as in works of art or biological organisms). In particular, he has become fluent at naming the symmetries exhibited by psychedelic visuals. In the context of 2D visuals on surfaces, A confirms that the symmetrical textures that arise in psychedelic states can exhibit any one of the 17 wallpaper symmetry groups. Likewise, he has been able to confirm that every possible spherical symmetry group can also be instantiated in one’s mind on these states.

The images below show some examples of the visuals that A has experienced on 2C-B, LSD, 4-HO-MET and DMT (sources: top left, top middle, the rest were made with this service):

 

The Chrysanthemum level interacts with sensory input in an interesting way: the texture of anything one looks at quickly becomes saturated with nested 2-dimensional symmetry groups. If you took enough DMT to take you to this level and you keep your eyes open and look at a patterned surface (i.e. statistical texture), it will symmetrify beyond recognition. A explains that at this level DMT visuals share some qualities with those of, say, LSD, mescaline, and psilocin. Like other psychedelics, DMT’s Chrysanthemum level can instantiate any 2-dimensional symmetry, yet there are important differences from other psychedelics at this dose range. These include the consistent change in ambiance (already present in threshold doses), the complexity and consistency of the symmetrical relationships (much more dense and whole-experience-consistent than is usually possible with other psychedelics), and the speed (with a control-interruption frequency reaching up to 30 hertz, compared to 10-20 hertz for most psychedelics). Thus, people tend to point out that DMT visuals (at this level) are “faster, smaller, more detailed and more globally consistent” than on comparable levels of alteration from similar agents.

Now, if you take a dose that is a little higher (in the ballpark of 8 to 12 mg), the Chrysanthemum will start doing something new and interesting…

(3) The Magic Eye Level

A great way to understand the Magic Eye level of DMT effects is to think of the Chrysanthemum as the texture of an autostereogram (colloquially described as “Magic Eye” pictures). Our visual experience can be easily decomposed into two points-of-view (corresponding to the feed coming from each eye) that share information in order to solve the depth-map problem in vision. This is to map each visual qualia to a space with relative distances so (a) the input is explained and (b) you get recognizable every-day objects represented as implicit shapes beneath the depth-map. You can think of this process as a sort of hand-shake between bottom-up perception and top-down modeling.

In everyday conditions one solves the depth-map problem within a second of opening one’s eyes (minus minor details that are added as one looks around). But on DMT, the “low-level perceptions” looks like a breathing Chrysanthemum, which means that the top-down modeling has that “constantly shifting” stuff to play with. What to make of it? Anything you can think of.

There are three major components of variance on the DMT Magic Eye level:

  1. Texture (dependent on the Chrysanthemum’s evolution)
  2. World-sheet (non-occluding 3D1T depth maps)
  3. Extremely lowered information copying threshold.

 

The image on the left is a lobster, the one on the center is a cone and the one to the right contains furniture (a lamp, a chair and a table). Notice that what you see is a sort of depth-map which encodes shapes. We will call this depth-map together with the appearance of movement and acceleration represented in it, a world-sheet.

World-Sheets

 

The world-sheet encodes the “semantic content” of the scene and is capable of representing arbitrary situations (including information about what you are seeing, where you are, what the entities there are doing, what is happening, etc.).

It is common to experience scenes from usually mundane-looking places like ice-cream stores, play pens, household situations, furniture rooms, apparel, etc.. Likewise, one frequently sees entities in these places, but they rarely seem to mind you because their world is fairly self-contained. As if seeing through a window. People often report that the worlds they saw on a DMT trip were all “made of the same thing”. This can be interpreted as the texture becoming the surfaces of the world-sheet, so that the surfaces of the tables, chairs, ice-cream cones, the bodies of the people, and so on are all patterned with the same texture (just as in actual autostereograms). This texture is indeed the Chrysanthemum completely contorted to accommodate all the curvature of the scene.

Magic Eye level scenes often include 3D geometrical shapes like spheres, cones, cylinders, cubes, etc. The complexity of the scene is roughly dose-dependent. As one ups the highness (but still remaining within the Magic Eye level) complex translucid qualia crystals in three dimensions start to become a possibility.

Whatever phenomenal objects you experience on this level that lives for more than a millisecond needs to have effective strategies for surviving in an ecosystem of other objects adapted to that level. Given the extremely lowered information copying threshold, whatever is good at making copies of itself will begin to tesselate, mutate and evolve, stealing as much of your attention as possible in the way. Cyclic transitions occupy one’s attention: objects quickly become scenes which quickly become gestalts from which a new texture evolves in which new objects are detected and so on ad infinitum.

katoite-hydrogarnet

A reports that at this dose range one can experience at least some of the 230 space groups as objects represented in the world-sheet. For example, A reports having stabilized a structure with a Pm-3m symmetry structure, not unlike the structure of ZIF-71-RHO. Visualizing such complex 3D symmetries, however, does seem to require previous training and high levels of mental concentration (i.e. in order to ensure that all the symmetry elements are indeed what they are supposed to be).

There is so much qualia laying around, though, at times not even your normal space can contain it all. Any regular or semi regular symmetrical structure you construct by focusing on it is prone to overflow if you focus too much on it. What does this mean? If you focus too much on, for example, the number 6, your mind might represent the various ways in which you can arrange six balls in a perfectly symmetrical way. Worlds made of hexagons and octahedrons interlocked in complex but symmetrical ways may begin to tesselate your experiential field. With every second you find more and more ways of representing the number six in interesting, satisfying, metaphorically-sound synesthetic ways (cf. Thinking in Numbers). Now, what happens if you try to represent the number seven in a symmetric way on the plane? Well, the problem is that you will have too many heptagons to fit in Euclidean space (cf. Too Many Triangles). Thus the resulting symmetrical patterns will seem to overflow the plane (which is often felt as a folding and fluid re-arrangement, and when there is no space left in a region it either expands space or it is felt as some sort of synesthetic tension or stress, like a sense of crackling under a lot of pressure).

 

In particular, A claims that in the lower ranges of the DMT Magic Eye level the texture of the Chrysanthemum tends to exhibit heptagonal and triheptagonal tilings (as shown in the picture above). A explains that at the critical point between the Chrysanthemum and the Magic Eye levels the intensity of the rate of symmetry detection of the Chrysanthemum cannot be contained to a 2D surface. Thus, the surface begins to fold, often in semi-symmetric ways. Every time one “recognizes” an object on this “folding Chrysanthemum” the extra curvature is passed on to this object. As the dose increases, one interprets more and more of this extra curvature and ends up shaping a complex and highly dynamic spatiotemporal depth map with hyperbolic folds. In the upper ranges of the Magic Eye level the world-sheet is so curved that the scenes one visualize are intricate and expansive, feeling at times like one is able to peer through one’s horizon in all directions and see oneself and one’s world from a distance. At some critical point one may feel like the space around one is folding into a huge dome where the walls are made of whatever texture + world-sheet combination happened to win the Darwinian selection pressures applied to the qualia patterns on the Magic Eye level. This concentrated hyperbolic synesthetic texture is what becomes the walls of the Waiting Room…

(4) Waiting Room

In the range of 12-25mg of DMT a likely final destination is the so-called Waiting Room. This experience is distinguished from the Magic Eye level in several ways: first, the world-sheet at this level breaks into several quasi-independent components, each evolving semi-autonomously. Second, one goes from “partial immersion” into “full immersion”. The transition between Magic Eye and Waiting Room often looks like “finding a very complex element in the scene and using it as a window into another dimension”. The total 2D surface curvature present (by adding up the curvature of all elements in the scene) is substantially higher than that of the Magic Eye level, and one can start to see actual 3D hyperbolic space. Perhaps a way of describing this transition is as follows: The curvature of the world-sheet gets to be so extreme that in order to accommodate it one’s entire multi-modal experiential field becomes involved, and a feeling of total and complete synchronization of all senses into a unified synesthetic experience is inescapable (often described as the “mmmMMMMMMM+++++!!!” whole-body tone people report). Thus the feeling of entering into an entirely new dimension. This explains what people mean when they say: “I experienced such an intense pressure that my soul could not be contained in my tiny body, and the intense pressure launched me into a bigger world”.

 

The images above, taken together, are meant as an impressionistic replication of what a Waiting Room experience may feel like. On the left you see the textured world-sheet curved in several ways resulting in an enclosed room with shimmering walls and an entity looking at a futuristic-looking contraption. The images on the right are meant to illustrate the ways in which the texture of the world-sheet evolves: you will find that the micro-structure of such texture is constantly unfolding in new symmetrical ways (bottom right), and propagating such changes throughout the entire surface at a striking speed (top right).

DMT Waiting Rooms contain entities that at times do interact directly with you. Their reality is perceived as a much more intense and intimate version of what human interaction normally is, but they do not give the impression of being telepathic. That said, their power is felt as if they could radiate it. One could say that this level of DMT places you in such an intimate, vulnerable and open state that interpreting the entities in a second-person social mode is almost inevitable. It is like interacting with someone you really know (or perhaps someone you really really want to know… or really really don’t want to know), except that the whole world is made of those feelings and some entities inhabit that world.

Serious hard-core psychonauts tend to describe the Waiting Room as a temporary stopgap. Indeed more poetry could ever be written about the Waiting Room states of consciousness than about most human activities, for its state-space is larger, more diverse and more hedonically loaded. But even so, it is important to realize that there are even weirder states. Serious psychonauts exploring the upper ranges of humanly-accessible high energy consciousness research may see Waiting Rooms as a stepping stones to the real deal…

(5) Breakthrough

If one manages to ingest around 20-30mg of DMT there is a decent chance that one will achieve a DMT breakthrough experience (some sources place the dosage as high as 40mg). There is no agreed-upon definition for a “DMT breakthrough”, but most experienced users confirm that there is a qualitative change in the structure and feel of one’s experience on such high doses. Based on A’s observations we postulate that DMT breakthroughs are the result of a world-sheet with a curvature so extreme that topological bifurcations start to happen uncontrollably. In other words, the very topology of one’s world-sheet is forced to change in order to accommodate all of the intense curvature.

 

The geometry of space you experience may suddenly go from a simply-connected space into something else. What does this mean? Suddenly one may feel like space itself is twisting and reconnecting to itself in complex (and often confusing) ways. One may find that given any two points on this “alien world” there may be loops between them. This has drastic effects on one’s every representation (including, of course, the self-other divide). The particular feeling that comes with this may explain the presence of PSIS-like experiences induced by DMT and high dose LSD (cf. LSD and Quantum Measurements). Since the topological bifurcations are happening on a 3D1T world-sheet, this may look like “multiple things happening at once” or “objects taking multiple non-overlapping paths at once in order to get from one place into another”. The entities at this level feel transpersonal: due to the extreme curvature it is hard to distinguish between the information you ascribe to your self-model and the information you ascribe to others. Thus one is all over the place, in a literal topological sense.

While on the Waiting Room one can stabilize the context where the experience seems to be taking place, on a DMT breakthrough state one invariably “moves across vast regions, galaxies, universes, realities, etc.” in a constant uncontrollable way. Why is this? This may be related to whether one can contain the curvature of the objects one attends to. If the curvature is uncontrollable, it will “pass on to the walls” and result in constant “context switches”. In fact, such a large fraction of 3D space is perceived as hyperbolic in one way or another, that one seems to have access to vast regions of reality at the same time. Thus a sense of radical openness is often experienced.

(6) Amnesia Level

Unlike 5-MeO-DMT, “normal DMT” experiences are not typically so mind-warping that they dissolve one’s self-model completely. On the contrary, many people report DMT as having “surprisingly little effect on one’s sense of self except at very high doses” relative to the overall intensity of the alteration. Thus, DMT usually does not produce amnesia due to ego death directly. Rather, the amnesic properties of DMT at high doses can be blamed on the difficulty of instantiating the necessary geometry to make sense of what was experienced. In the case of doses above “breakthrough experiences” there is a chance that the user will not be able to recall anything about the most intense periods of the journey. Unfortunately, we are not likely to learn much from these states (that is, until we live in a community of people who can access other phenomenal geometries in a controlled fashion).

Recalling the Immemorial

We postulate that the difficulty people have remembering the phenomenal quality of a DMT experience is in part the result of not being able to access the geometry required to accurately relive their hallucinations. The few and far apart elements of the experience that people do somehow manage to remember, we posit, are those that happen to be (relatively) easy to embed in 3D Euclidean space. Thus, we predict that what people do manage to “bring back” from hyperspace will be biased towards those things that can be represented in R3.

This explains why people remember experiencing intensely saddled scenes (e.g. fractals, tunnels, kale worlds, recursive processes, and so on). Unfortunately most information-rich and interesting (irreducible, prime) phenomenal objects one experiences on DMT are by their very nature impossible to embed in our normal experiential geometry. This problem reveals an intrinsic limitation that comes from living in a community of intelligences (i.e. contemporary humans) who are constrained in the range of state-spaces of consciousness that they can access. This realization calls for a new epistemological paradigm, one that incorporate state-specific representations into a globally accessible database of states of consciousness, together with the network that emerges from their mutual (in)intelligibility.

DMT Objects

The increased curvature of one’s world-sheet can manifest in endless ways. In some important ways, the state-space of possible scenes that you can experience on DMT is much bigger than what you can experience on normal states of consciousness. Strictly speaking, you can represent more scenes on DMT states than in most other states because the overall amount qualia available is much larger. Of course the very dynamics of these experiences constrains what can be experienced, so there are still many things inaccessible on DMT. For instance, it may be impossible to experience a perfectly uniform blue screen (since the Chrysanthemum texture is saturated with edges, surfaces and symmetrical patterns). Likewise, scenes that are too irregular may be impossible to stabilize given the omnipresent symmetry enhancement found in the state.

What are the nature of the objects and entities one experiences on DMT? Magic Eye level experiences tend to include objects that are usually found in our everyday life. It is at the DMT waiting room level and above that the “truly impossible objects” begin to emerge. In particular, all of these objects are often curved in extreme ways. They condense within them complex networks of interlocking structures sustaining an overall superlative curvature. Here are some example objects that one can experience on Waiting Room and Breakthrough level experiences:

 

Notice that all of these images have many saddles everywhere. Ultimately, the range of objects one can experience on such states includes many other features that are impossible to represent in R3. The objects that people do manage to bring back and recall later on, are precisely those that can be embedded in R3. Thus you often see extremely contorted wrapped-up objects. The most interesting ones (such as quasi-regular H3 tilings or irreducible objects) are next-to-impossible to bring back in any meaningful way, for now at least.

DMT Space Expansion

The expansion of space responsible for the increased curvature happens anywhere you direct your attention (including the objects you see). Here you can see what it may look like to stare at a DMT object: This is called the “jitterbox” mechanism.

DMT entities

DMT entities come in many forms, and their overall quality is extremelly dose-dependent. Rather than describing any specific manifestation we will instead briefly characterize the rough properties of the entities experienced based on the level reached.

  1. Threshold: Usually the ambiance change has a social feel to is. More similar to entering a room of people of an alien culture, than entering an empty cave or a warm pool on your own. In this sense the very beginning of a DMT experience may already frame the experience in social terms and facilitate the expectation of meeting entities.
  2. Chrysanthemum: One can feel perhaps the subtle presence of entities, but they are often interpreted as “feeling connected” to one’s friends, relatives and acquaintances. The feeling does not manifest in any clear spatial way, though. Other than that, this state is apersonal in the sense that one does not see any entity directly.
  3. Magic Eye: Here the entities can be roughly described as having an impersonal relationship with you. They are just there, hanging out on their own, often engrossed with whatever activities your world-sheet is capable of representing for them.
  4. Waiting Room: At this level entities start becoming able to interact with you. They feel like autonomous beings wrapped in mystery. Their intentions, what they know, and their emotional states can be guessed from their behavior, but they are not immediately obvious.
  5. Breakthrough: At this level the entities one meets seem to have what we might call a transpersonal relationship with you. They share their own internal states (emotions, knowledge, wishes, etc) with you. It feels like they can communicate telepathically and “see through” you. One cannot hide one’s “private” mental contents from them at this level.
  6. Amnesia: One cannot remember, of course, exactly what happens here. But if trip reports are any indication, this level is reminiscent of highly “mystical” states in which one’s implicit beliefs about Personal Identity are obliterated and replaced by the feeling of becoming an all-encompassing entity. “Union with God” and “Samadhi” are terms that describe the subjective feeling of self in this state. In other words, at this level it is impossible to distinguish between oneself and other entities, for all is represented as one. (Beware of never trying to go here if you feel bad at the time since negative hedonic tone can be amplified just as much as a good feeling such as Samadhi).

Modeling the Hyperbolic Geometry of DMT

How can we explain the drastic geometric changes of phenomenal space on DMT? As mentioned earlier, we will discuss three (non-mutually exclusive) hypothesis. These hypothesis work at the level of an algorithmic reduction, which means that we will go deeper than just describing information processing and phenomenology. We will stop short of addressing the implementation level of abstraction. It is worth pointing out that describing the ways in which DMT experiences are hyperbolic is in itself an algorithmic reduction. What we are about to do is to develop a more granular algorithmic reduction in which we try to explain why hyperbolic geometry emerges on DMT states by postulating underlying processes. Here are the three reductions:

(1) Control Interruption + Symmetry detection = Change in Metric

Recall that on a previous article we algorithmically reduced general psychedelic states. The building blocks of that reduction were:

  1. Control Interruption (which amounts to a “longer half-life for all qualia”)
  2. Drifting (“breathing walls, eyes moving from their normal place, waving sensations”)
  3. Enhanced Pattern Recognition (pareidolia, cf. Getting Closed to Digital LSD)
  4. Lowered Symmetry Detection Threshold (quasi-symmetric patterns tend to “lock into” perfectly symmetrical structures)

Using this framework one can argue that DMT makes space more hyperbolic in the following way: in high amounts the synergistic effect of control interruption together with extremely lowered symmetry detection thresholds experienced in quick succession makes the subjective distance between the points in the phenomenal objects in the scene evolve a hyperbolic metric. How would this happen? The key thing to realize is that in this model the usual quasi-Euclidean space we experience is an emergent effect of an equilibrium between these two forces. Even in normal circumstances our world-sheet is continuously regenerated; the rate at which symmetrical relationships in the scene are detected is balanced by the rate at which these subjective measurements are forgotten. This usually results in an emergent Euclidean geometry. On DMT the rate of symmetry detection increases while the rate of “forgetting” (inhibiting control) decreases. Attention points out more relationships in quick succession and this creates a network of measured subjective distances that cannot be embedded in Euclidean 3D space. Thus there is an overflow of symmetries. We are currently working on a precise mathematical model of this process in order to reconstruct a hyperbolic metric out of these two parameters. In this model, control interruption is interpreted as a change in the decay for subjective measurements of distance in one’s mind, whereas the lowered symmetry detection threshold is interpreted as a change in the probability of measuring the distance between any two given points as a function of the network of distances already measured.

The curvature increase is most salient where there is already a lot of measurements made, since highly-measured regions focus attention and attention drives symmetry detection. Thus, focusing on any surface will make the surface itself hyperbolic (rather than the 3D space, since measurements are mostly concentrated on the surface). On the other hand, if the curvature is too high to keep on a 2D surface, it will “jump” to 3D or even 3D1T (i.e. branching out the temporal component of one’s experience). The result is that the total curvature of one’s 3D1T world-sheet increases on DMT in a dose-dependent way.

Different doses lead to different states of curvature homeostasis. Each part of the worldsheet has constantly-morphing shapes and sudden curvature changes, but the total curvature is nonetheless more or less preserved on a given dose. It is not easy to get rid of excess curvature. Rather, whenever one tries to reduce the curvature in one part of the scene one is simply pushing it elsewhere. Even when one manages to push most of the curvature out of a given modality (e.g. vision) it is likely to quickly return in another modality (e.g. kinesthetic or auditory landscape) since attention never ceases on a DMT trip. Such apparent dose-dependent global curving of the world-sheet (and its jump from one modality into another) constrains the shape of the objects one can represent on the state (thus leading to alien-looking highly-curved objects similar to the ones shown above).

(2) Dynamic System Account: Energy Sources, Sinks and Invariants

Energy Invariants

Let us define a notion of energy in consciousness so that we can formalize the way experiences warps and transforms on DMT. Assume that one needs “energy” in order to instantiate a given experience (really, this is just an implicit invariant and we could use a different name). Each feature of a given experience needs a certain amount of energy, which roughly corresponds to a weighted sum of the intensity and the information content of an experience. For instance, the brightness of a point of colored light in one’s visual field is energy-dependent. Likewise, the information content in a texture, the number of represented symmetrical relationships, the speed by which an object moves (plus its acceleration), and even the curvature of one’s geometry. All of these features require energy to be instantiated.

Under normal circumstances the brain has many clever and (evolutionarily) appropriate ways of modulating the amount of energy present in different modules of one’s mind. That is, we have many programs that work as energy switches for different mental activities depending on the context. When we think, we have allocated a certain amount of energy to finding a shape/thought-form that satisfies a number of constraints. When it shape-shifting that energy in various ways and finding a solution, we either allocate more energy to it or perhaps give up. However, on DMT the energy cannot be switched off, and it can only pass from one modality into another. In other words, whereas in normal circumstances one uses strategically one’s ability to give energy limits to different tasks, on DMT one simply has constant high energy globally no matter what.

More formally, this model of DMT action says that DMT modifies the structure of one’s mind so that (1) energy freely passes from one form into another, and (2) energy floods the entire system. Let’s talk about energy sources and sinks.

Energy Sources and Sinks

In this algorithmic reduction DMT increases the amount of consciousness in one’s mind by virtue of impairing our normal energy sinks while increasing the throughput of its energy sources. This may frequently manifests as phenomenal spaces becoming hyperbolic in the mathematical-geometric sense of increasing its negative curvature as such curvature is one manifestation of higher levels of energy. Energy sinks are still present and they struggle to capture as much of the energy as possible. In particular, one energy sink is “recognition” of objects on the world-sheet.

This model postulates that attention functions as an energy source, whereas pattern recognition functions as an energy sink.

The Hamiltonian of a World-sheet

The total energy in one’s consciousness increases on DMT, and there is a constant flow between different ways for this energy to take form. That said, one can analyze piecewise the various components of one’s experience, specially if the network of energy exchange clusters well. In particular, we can postulate that world-sheets are fairly self-contained. Relative to other parts of the environment the mind is simulating, the world-sheet itself has a very high within-cluster energy exchange and a relatively low cross-cluster energy exchange. One’s world-sheet is very fluid, and little deformations propagate almost linearly throughout it. In a given dose plateau, if you add up the acceleration, the velocity, the curvature, and so on of every point in the world-sheet you will come up with a number that remains fairly constant over time. Thus studying the Hamiltonian of a world-sheet (i.e. the state-space given by a constant level of energy) can be very informative in describing both the information content and the experiential intensity of DMT experiences.

helicatenoid

You can deform a surface without changing its local curvature. (Source: Gauss’ “Remarkable Theorem” [seriously not my quotes]). Thus on a DMT trip plateau there is still a lot of room for transformations of the world-sheet into different shapes with similar curvature.

Under normal circumstances the curvature of one’s world-sheet is, as far as I can tell, arousal-dependent. Have you noticed how when you feel tired you are more likely to defocus your visual experience? You are tired late at night and you are trying to watch a movie, but bringing the scene in focus is too much of an effort so you defocus for a little bit (still listening to the dialogue). What did you do that for? In the framework here proposed, you did that to diminish the energy it takes you to sustain a curved world-sheet with a lot of information. Doing so may be aesthetically pleasing and rewarding when fully awake or excited, but when tired the returns on doing the focusing are not great given how much effort it needs and the fact that the dialogue is more essential for the plot anyway.

It takes effort and wakefulness to focus on a complex scene with many intricate details. (Reading and trying to comprehend this essay may itself require significant conscious energy expenditure). For this reason we might say that DMT is an exceedingly effective arouser of consciousness.

Bayesian Energy Sinks

One essential property of our minds is that our level of mental arousal decreases when we interpret our experience as “expected”. People who can enjoy their own minds do so, in part, by finding unexpected ways of understanding expected things. In the presence of new information that one cannot easily integrate, however, one’s level of energy is adjusted upwards so that we try out a variety of different models quickly and try to sort out a model that does make the new information expected (though perhaps integrating new assumptions or adding content in other ways). When we cannot manage to generate a mental model that works out a likely model of what we are experiencing we tend to remain in an over-active state.

This general principle applies to the world-sheet. One of the predominant ways in which a world-sheet reduces its energy (locally) is by morphing into something you can recognize or interpret. Thus the world-sheet in some way keeps on producing objects, at first familiar, but in higher energies the whole process can seem desperate or hopeless: one can only recognize things with a stretch of the imagination. Since humans in general lack much experience with hyperbolic geometry, we usually don’t manage to imagine objects that are symmetric on their own native geometry. But when we do, and we fill them up with resonant light-mind-energy, then BAM! New harmonics of consciousness! New varieties of bliss! Music of the angels! OMG! Laughter till infinity and more- shared across the galaxy- in a hyperbolic transpersonal delight! It’s like LSD and N2O! Wow!

Forgive me, it is my first day. Let’s carry on. As one does not know any object that the world-sheet can reasonably be able to generate in high doses, and the world-sheet has so much energy on its own, energy can seem to spiral out of control. This explains in part the non-linear relationship between experienced intensity and DMT dose.

Like all aspects of one’s consciousness, the negative curvature of phenomenal space tends to decay over time (possibly through inhibition by the cortex). In this case, the feeling is one of “smoothing out the curves” and embedding the phenomenal objects in 3D euclidean space. However, this is opposed by the effect that attention and (degrees of) awareness have on our phenomenal sheet, which is to increase its negative curvature. On DMT, anything that attention focuses on will begin branching, copying itself and multiplying, a process that quickly saturates the scene to the point of filling more spatial relationships than would fit in Euclidean 3D. The rate at which this happens is dose-dependent. The higher the dose, the less inhibiting control there is and the more intense the “folding” property of attention will be. Thus, for different dosages one reaches different homeostatic levels of overall curvature in one’s phenomenal space. Since attention does not stop at any point during a DMT trip (it keeps being bright and intense all throughout) there isn’t really any rest period to sit back and see the curvature get smoothed out on its own. Everything one thinks about, perceives or imagines branches out and bifurcate at a high speed.

Every moment during the experience is very hard to “grasp” because the way one normally does that in usual circumstances is by focusing attention on it and shaping one’s world-sheet to account for the input. But here that very attention makes the world-sheet wobble, warp and expand beyond recognition. Thus one might say that during a solid DMT experience one never sees the same thing twice, as the experience continues to evolve. That is, of course, as long as you do not stumble upon (or deliberatively create) stable phenomenal objects whose structure can survive the warping effect of attention.

(3) Hyperbolic Micro-structure of Consciousness

Subjectively, A says, negative curvature is associated with more energy. Perhaps this curvature happens at a very low level? An example to light up the imagination is using heat to fold a sheet of metal (thanks to thermal expansion). Whatever your attention focuses on seems to get heated up (in some sense) and expand as a result. The folding patterns themselves seem to store potential energy. Left on their own, this extra energy stored as negative curvature usually dissipates, but on DMT this process is lowered (while the effect of increasing the energy is heightened). Could this be the result of some very very fine-level micro-experiential change that gradually propagates upwards? With the help of our normal mental processes the change in the micro-structure may propagate all the way into seemingly hyperbolic 2D and 3D surfaces.

Perhaps the most important difference between DMT in high doses and other psychedelics is that the micro-structure of consciousness drifts in such a way that tiny Droste effects bubble up into large Möbius transforms.

As noted already, these three algorithmic reductions are not incompatible. We just present them here due to their apparent explanatory power. A lot more theoretical work will be needed to make them quantitative and precise, but we are optimistic. The aim is now to develop an experimental framework to distinguish between the predictions that each candidate algorithmic reduction makes (including many not presented here). This is a work in progress.

Generalizing hyperbolization to non-spatial experiential fields

In the case of experiential fields such as body feelings, smells and concepts, the “hyperbolization” takes different forms depending on the algorithmic reduction you use. I prefer the very general interpretation that one experiences hyperbolic information geometry rather than just hyperbolic space. In other words, when we talk about body feelings and so on, on a psychedelic one organizes such information in a hyperbolic relational graph, which also exhibits a negative curvature relative to its normal geometry. Arguing in favor of this interpretation would take another article, so we will leave that for another time.

Getting a handle on the DMT state

Gluing a 1-handle is easy on a 2-sphere. Tongue in cheek, sticking a little doughnut on a big ball allows you to grab the sphere and control it in some way. But how do you get a handle on hyperbolic space? The answer is to build hyperbolic manifolds at the core of one’s being, by imagining knots very intensely. The higher one is, the more complex the knot one can imagine in detail. Having practiced visualizations of this sort while sober certainly helps. If you imagine the knot with enough detail, you can then stress the environment surrounding it to represent a warped hyperbolic space. This way you give life to the complement of the knot (which is almost always hyperbolic!). We postulate that it is possible to study in detail the relationship between the knots imagined, and the properties of the experiential worlds that result from their inversion (i.e. thinking about the geometry of the space surrounding the knot rather than the knot itself). A reports that different hyperbolic spaces generated this way (i.e. imagining knots on tryptamines) have different levels of energy, and have unique resonant properties. Different kinds of music feel better in different kinds of hyperbolic manifolds. It takes more energy to “light up” a hyperbolic space like that, mostly due to its openness. This is why using small doses of 2C-B can be helpful to create a positive backbone to the experience (providing the necessary warmth to light up the hyperbolic space). Admittedly MDMA tends to work best, but its use is unadvisable for reasons we will not get into (related to the hedonic treadmill). A healthy combination that both enables the visualization of the hyperbolic spaces in a vivid way and also lights them up with positive hedonic tone healthily and reliably has yet to be found.

Relatedly… Get a handle on your DMT trip by creating a stabilizing 4D hyperbolic manifold in four easy steps:

 

Unifying Your Space

God, the divine, open individualism, the number one, an abstract notion of self, or the thought of existence itself are all thoughts that work as great “unifiers” of large areas of phenomenal space. Indeed these concepts can allow a person to connect the edges of the hyperbolic space and create a pocket of one’s experience that does not seem to have a boundary yet is extremely open. This may be a reason why such ideas are very common in high levels of psychedelia. In a sense, depending on the mind, they have at times the highest recruiting power for your multi-threaded attention.

Applications to Qualia Computing and Closing Thoughts

Beyond mere designer synesthesia, the future of consciousness research contains the possibility of exploring alternative geometries for the layout of our experiences. One’s overall level of energy, its manifestation, the allowed invariants, the logic gates, the differences in resonance, the granularity of the patterns, and so on, are all parameters that we will get to change in our minds to see what happens (in controlled and healthy ways, of course). The exploration of the state-space of consciousness is sure to lead to a combinatorial explosion. Even with good post-theoretical quantitative algorithmic reductions, it is likely that qualia computing scientists will still find an unfathomable number of distinct “prime” permutations. For some applications it may be more useful to use special kinds of hyperbolic spaces (like the compliment of certain class of knot), but for others it may suffice to be a little sphere. Who knows. In the end, if a valence economy ends up dominating the world, then the value of hyperbolic phenomenal spaces will be proportional to the level of wellbeing and bliss that can be felt in them. Which space in which resonant mode generates the highest level of bliss? This is an empirical question with far-reaching economic implications.

Mathematics post-hyperbolic consciousness

I predict that some time in the next century or so many of the breakthroughs in mathematics will take place in consciousness research centers. The ability to utilize arbitrary combinations of qualia with programable geometry and information content (in addition to our whole range of pre-existing cognitive skills) will allow people to have new semantic primitives related to mathematical structures and qualia systems currently unfathomable to us. In the end, studying the mathematics of consciousness and valence is perhaps the ultimate effective altruist endeavor in a world filled with suffering, since reverse-engineering valence would simplify paradise engineering… But even in a post-scarcity world, consciousness research will also probably be the ultimate past time given the endless new discoveries awaiting to be found in the state-space of consciousness.


*On the unexpected side effects of staring at a cauliflower on DMT: You can get lost in the hyperbolic reality of the (apparent) life force that spirals in a scale-free fractal fashion throughout the plant. The spirals may feel like magnetic vortexes that take advantage of your state to attract your attention. The cauliflower may pull you into its own world of interconnected fractals, and as soon as you start to trust it, it begins trying to recruit you for the cauliflower cause. The cauliflower may scare you into not eating it, and make you feel guilty about frying it. You may freak out a little, but when you come down you convince yourself that it was all just a hallucination. That said, you secretly worry it was for real. You may never choose to abstain from eating cauliflowers, but you will probably drop the knife when cooking it. You will break it apart with your own hands in the way you think minimizes its pain. You sometimes wonder whether it experiences agony as it is slowly cooked in the pan, and you drink alcohol to forget. Damn, don’t stare at a cauliflower while high on DMT if you ever intend to eat one again.

P.S. Note on Originality: The only mention I have been able to find that explicitly connects hyperbolic geometry in a literal sense with DMT (rather than just metaphorical talk of “hyperspace”) is a 2014 post in the Psychonaut subredit. To my knowledge, no one has yet elaborated to any substantial degree on this interesting connection. That said, I’m convinced that during the days that follow a strong trip, psychedelic self-experimenters may frequently wonder about the geometry of the places they explored. Yet they usually lack any conceptual framework to justify their intuitions or even verbalize them, so they quickly forget about them.

P.S.S. Example Self-Dribbling Basketball:

tumblr_mzwuhkg05b1svg5dto1_400

Self-dribbling basketball

To the right you can see what a “self-dribbling basketball” looks like. The more you try to “grasp” what it is, the more curved it gets. That’s because you are adding energy with you attention and you do not have enough recognition ability in this space to lower its energy and reduce the curvature to stabilize it. The curvature is so extreme at times that it produces constant “context switches”. This is the result of excess curvature being pushed towards the edge of your experience and turning into walls and corridors.

P.S.S.S.: Example on world-sheet bending:

Below you can find two gifs that illustrate the behavior of a world-sheet on a 5mg vs. 20mg dose. The speed at which you are adding curvature to it increases so much that the shapes and objects keep shifting to accommodate it all.

(Super-trippy symmetric hyperbolic manifold representations: http://newearthlovelight.tumblr.com/post/70053311720)

 

You are not a zombie

Finding yourself to be a conscious being is anthropically necessary. If the universe contains quantum-computational conscious beings and classical-computational zombies, and only the first are conscious, then you can only ever be the first kind of being, and you can only ever find that you had an evolutionary history that managed to produce such beings as yourself. (ETA: Also, you can only find yourself to exist in a universe where consciousness can exist, no matter how exotic an ontology that requires.)

 

Obviously I believe in the possibility of unconscious simulations of conscious beings. All it should require is implementing a conscious state machine on a distributed base. But I have no idea how likely it is that evolution should produce something like that. Consciousness does have survival value, and given that I take genuine conscious states to be something relatively fundamental, some fairly fundamental laws are probably implicated in the details of its internal causality. I simply don’t know whether a naturally evolved unconscious intelligence would be likely to have a causal architecture isomorphic to that of a conscious intelligence, or whether it would be more likely to implement useful functions like self-monitoring in a computationally dissimilar way.

 

What I say about the internal causality of genuine consciousness may sound mysterious, so I will try to give an example; I emphasize this is not even speculation, it’s just an ontology of consciousness which allows me to make a point.

 

One of the basic features of conscious states is intentionality – they’re about something. So let us say that a typical conscious state contains two sorts of relations – “being aware of” a quale, and “paying attention to” a quale. Unreflective consciousness is all awareness and no attention, while a reflective state of consciousness will consist of attending to certain qualia, amid a larger background of qualia which are just at the level of awareness.

 

Possible states of consciousness would be specified by listing the qualia and by listing whether the subject is attending to them or just aware of them. (The whole idea is that when attending, you’re aware that you are aware.) Now we have a state space, we can talk about dynamics. There will be a “physical law” governing transitions in the conscious state, whereby the next state after the current one is a function of the current state and of various external conditions.

 

An example of a transition that might be of interest, is the transition from the state “aware of A, aware of B, aware of C…” to the state “attending to A, aware of B, aware of C…” What are the conditions under which we start attending to something – the conditions under which we become aware of being aware of something? In this hypothetical ontology, there would be a fundamental law describing the exact conditions which cause such a transition. We can go further, and think about embedding this model of mind, into a formal ontology of monads whose mathematical states are, say, drawn from Hilbert spaces with nested graded subspaces of varying dimensionality, and which works to reproduce quantum mechanics in some limit. We might be able to represent the recursive nature of iterated reflection (being aware of being aware of being aware of A) by utilizing this subspace structure.

 

We are then to think of the world as consisting mostly of “monads” or tensor factors drawn from the subspaces of smallest dimensionality, but sometimes they evolve into states of arbitrarily high dimensionality, something which corresponds to the formation of entangled states in conventional quantum mechanics. But this is all just mathematical formalism, and we are to understand that the genuine ontology of the complex monadic states is this business about a subject perceiving a set of qualia under a mixture of the two aspects (awareness versus attention), and that the dynamical laws of nature that pertain to monads in reflective states are actually statements of the form “A quale jumps from awareness level to attention level if… [some psycho-phenomenological condition is met]”.

 

Furthermore, it would be possible to simulate complex individual monads with appropriately organized clusters of simple monads, but ontologically you wouldn’t actually have the complex states of awareness and attention being present, you would just have lots of simple monads being used like dots in a painting or bits in a computer.

 

I really do expect that the truth about how consciousness works is going to sound this weird and this concrete, even if this specific fancy is way off in its details.

 

– Mitchell_Porter comment on Does functionalism imply dualism?Less Wrong

The Biointelligence Explosion

6.1 Intelligence.

“Intelligence” is a folk concept. The phenomenon is not well-defined – or rather any attempt to do so amounts to a stipulative definition that doesn’t “carve Nature at the joints”. The Cattell-Horn-Carroll (CHC) psychometric theory of human cognitive abilities is probably most popular in academia and the IQ testing community. But the Howard Gardner multiple intelligences model, for example, differentiates “intelligence” into various spatial, linguistic, bodily-kinaesthetic, musical, interpersonal, intrapersonal, naturalistic and existential intelligence rather than a single general ability (“g“). Who’s right? As it stands, “g” is just a statistical artefact of our culture-bound IQ tests. If general intelligence were indeed akin to an innate scalar brain force, as some advocates of “g” believe, or if intelligence can best be modelled by the paradigm of symbolic AI, then the exponential growth of digital computer processing power might indeed entail an exponential growth in intelligence too – perhaps leading to some kind of Super-Watson. Other facets of intelligence, however, resist enhancement by mere acceleration of raw processing power.

 

One constraint is that a theory of general intelligence should be race-, species-, and culture-neutral. Likewise, an impartial conception of intelligence should embrace all possible state-spaces of consciousness: prehuman, human, transhuman and posthuman.

 

The non-exhaustive set of criteria below doesn’t pretend to be anything other than provisional. They are amplified in the sections to follow.

 

Full-Spectrum Superintelligence entails:

 

 

  1. the capacity to solve the Binding Problem, i.e. to generate phenomenally unified entities from widely distributed computational processes; and run cross-modally matched, data-driven world-simulations of the mind-independent environment. (cf. naive realist theories of “perception” versus the world-simulation or “Matrix” paradigm. Compare disorders of binding, e.g. simultanagnosia (an inability to perceive the visual field as a whole), cerebral akinetopsia (“motion blindness”), etc. In the absence of a data-driven, almost real-time simulation of the environment, intelligent agency is impossible.)
  2. a self or some non-arbitrary functional equivalent of a person to which intelligence can be ascribed. (cf. dissociative identity disorder (DID or “multiple personality disorder”), or florid schizophrenia, or your personal computer: in the absence of at least a fleetingly unitary self, what philosophers call “synchronic identity”, there is no entity that is intelligent, just an aggregate of discrete algorithms and an operating system.)
  3. a “mind-reading” or perspective-taking faculty; higher-order intentionality (e.g. “he believes that she hopes that they fear that he wants…”, etc): social intelligence. The intellectual success of the most cognitively successful species on the planet rests, not just on the recursive syntax of human language, but also on our unsurpassed “mind-reading” prowess, an ability to simulate the perspective of other unitary minds: the “Machiavellian Ape” hypothesis. Any ecologically valid intelligence test designed for a species of social animal must incorporate social cognition and the capacity for co-operative problem-solving. So must any test of empathetic superintelligence.
  4. a metric to distinguish the important from the trivial. (Our theory of significance should be explicit rather than implicit, as in contemporary IQ tests. What distinguishes, say, mere calendrical prodigies and other “savant syndromes” from, say, a Grigori Perelman who proved the Poincaré conjecture? Intelligence entails understanding what does – and doesn’t – matter. What matters is of course hugely contentious.)
  5. a capacity to navigate, reason logically about, and solve problems in multiple state-spaces of consciousness [e.g. dreaming states (cf. lucid dreaming), waking consciousness, echolocatory competence, visual discrimination, synaesthesia in all its existing and potential guises, humour, introspection, the different realms of psychedelia (cf. salvia space, “the K-hole” etc)] including realms of experience not yet co-opted by either natural selection or posthuman design for tracking features of the mind-independent world. Full Spectrum Superintelligence will entail cross-domain goal-optimising ability in all possible state-spaces of consciousness. And finally 
  6. “Autistic”, pattern-matching, rule-following, mathematico-linguistic intelligence, i.e. the standard, mind-blind cognitive tool-kit scored by existing IQ tests. High-functioning “autistic” intelligence is indispensable to higher mathematics, computer science and the natural sciences. High-functioning autistic intelligence is necessary – but not sufficient – for a civilisation capable of advanced technology that can cure ageing and disease, systematically phase out the biology of suffering, and take us to the stars. And for programming artificial intelligence.

We may then ask which facets of full-spectrum superintelligence will be accelerated by the exponential growth of digital computer processing power? Number six, clearly, as decades of post-ENIAC progress in computer science attest. But what about numbers one-to-five? Here the picture is murkier.

 

–  David Pearce, extract from The Biointelligence Explosion

A (Very) Unexpected Argument Against General Relativity As A Complete Account Of The Cosmos

I recently discovered an incredible philosophical argument.

By its very nature, I anticipate (indeed, I know) that a lot of people will outright laugh at my face when I say it. Specially people who “are too good for philosophy” and want to “stick to rigorous science” (the kind of people who neglect, of course, that not doing philosophy just means giving bad philosophy a free pass).

What does my argument accomplish? It shows that both Newtonian physics and general relativity cannot be full accounts of the universe. And it does this based on considerations emerging from philosophy of mind.

You heard that right: Good philosophy of mind can *rule out* general relativity and Newtonian physics as full explanations for the behavior of the universe. This almost certainly sounds absurd to most philosophers and physicists. It almost feels like I’m reverting to Aristotelian naturalism or theology: Back when people thought they could infer the laws of the universe based on logic and intuitive first principles.

In this case, however, I stand by my argument. It is logically correct, and, I think, also valid. That said, feel free to disagree. I don’t expect many people to take this seriously.

THE ARGUMENT AGAINST NEWTONIAN PHYSICS:

1) (Assumption) Physicalism is true (the universe’s behavior is fully accounted by physical laws).
2) (Assumption) Mereological Nihilism is true.
3) (Assumption) Newtonian physics either has no simples or admits only fundamental particles as simples.
4) (Inference from 3) Only fundamental particles can be simples.
5) (Assumption) Our mind/consciousness is ontologically unitary.
6) (Inference from 2 & 5) Since only simples are ontologically unitary, our mind is a simple.
7) (Inference from 4 & 6) Therefore, if Newtonian physics is true, our mind has to be a fundamental particle.
8) (Empirical Observation) Our mind contains a lot more information than a fundamental particle.
9) (Inference from 8) Therefore our mind is not a fundamental particle.
10) (Inference from 7 & 9) Therefore Newtonian physics is incomplete.

THE ARGUMENT AGAINST GENERAL RELATIVITY:

1) (Assumption) Physicalism is true (the universe’s behavior is fully accounted by physical laws).
2) (Assumption) Mereological Nihilism is true.
3) (Assumption) General relativity either has no simples or admits only black holes/Singularities as simples.
4) (Inference from 3) Only black holes can be simples.
5) (Assumption) Our mind/consciousness is ontologically unitary.
6) (Inference from 2 & 5) Since only simples are ontologically unitary, our mind is a simple.
7) (Inference from 4 & 6) Therefore, if General relativity is true, our mind has to be a black hole.
8) (Empirical Observation) Our mind is not super-massive and thus not a gravitational Singularity.
9) (Inference from 8) Therefore our mind is not a black hole.
10) (Inference from 7 & 9) Therefore General Relativity is incomplete.

Status Quo Bias

Imagine you traveled to a far-off galaxy and found a planet inhabited by intelligent creatures. They somehow have reverse-engineered their own genetic source-code and discovered how to tweak it so that they can experience life in gradients of bliss. No, that’s not wire-heading. Not uniform bliss. There are ups and downs. It’s just that, no down actually gets below *hedonic zero*. They experience bliss even at their lows… just less bliss than at their highs. That way they maintain the information signaling purpose of hedonic tone.

Would you want to convince them that they should inject some suffering into their society so that they embrace their dark side?

I think that people fetishize suffering as “natural” and somehow “good” or even “metaphysically part of the whole deal” simply because of status quo bias. If you weren’t brought up in a world in which suffering is commonplace, you’d have the (right) reaction of understanding it as inherently a problem that has to be minimized as much as possible, as fast as possible.

Animal suffering, including human’s, is not just “part of life.” It is an *ethical emergency*.

The Super-Shulgin Academy: A Singularity I Can Believe In

Imagine that the year is 2050. A lot of AI applications are now a normal part of life. Cars drive themselves, homes clean themselves (and they do so more cheaply than maids possibly could) and even doctors have been now partially replaced with neural networks. But the so-called Kurzweilian Singularity never took off. You can now talk for 10 rounds of sentences with a chatbot without being able to tell if it is a real person or not. The bots anticipate your questions by analyzing your facial expressions and matching them to a vast library of pre-existing human-machine conversations in order to maximize their level of Turing success (i.e. success at convincing humans the algorithm is a human).

But people have yet to believe that computers can actually feel and experience the world. The question of computer sentience is a question that now divides the world. It used to be the case that only people really interested in science fiction, philosophy, mathematics, etc. ever took seriously the idea that computers might some day experience the world like we do. But today the debate is universally recognized as valid and on-point. There are people who, largely for religious and spiritual reasons, argue that machines will never have a human soul. That there is something special, unique, metaphysically distinct that is required for intelligence that goes over and beyond the physical world. And on the other side you have the materialists who will argue that all that could possibly ever exist in our world has to be made of matter (or dark-matter, for that matter). Nothing suggests that our brains are special, that they somehow violate the physical laws. On the contrary, decades of searching have returned nothing: The brain was made of atoms last century, and it is still made of nothing but atoms this century. Even though super-computers in 2050 are already as powerful as human brains, real human-level intelligence has yet to be seen anywhere. So people continue to argue about philosophy of mind.

One philosophical view became more popular over time. This view states that consciousness is the bedrock of reality. Of course there are spiritual perspectives that have been saying this for thousands of years. But none of them could be truly reconciled with physicalism as it stands today, except the view called Strawsonian physicalism. This view states that the inside of the quantum wavefunctions that compose reality is made of consciousness. In other words, consciousness is the fundamental make-up of reality. Unfortunately this view cannot in and of itself solve the phenomenal binding problem: Why we are not just “mind dust.” For that you need to also claim that there is some mechanism of action that achieves phenomenal binding. For instance: quantum coherence. With such mechanism of action proposed, we can then try to work out the details.

One organization at the time decided to take this challenge and make researching consciousness its raison d’etre. This is the League of Super-Shulgins. On their website, they have the following “23 key points to read before choosing to study consciousness:”

(1) Phenomenal binding is not a classical phenomenon. It is not what you first think it is.

(2) Consciousness is doing computationally valuable legwork, not just hanging out.

(3) The brain’s microstructure implements a general constraint satisfaction solver (CSS).

(4) In order to instantiate a general CSS the brain uses the unique information processing properties of consciousness.

(5) The relevant information-processing properties of consciousness are: local binding constraints, global binding constraints, and the possibility of instantiating contingent and sensory-driven constraints.*

(6) The computational properties of consciousness make it an ideal substrate to implement a world-simulation with in-game degrees of freedom that match real-world decision trees.

(7) Intelligence is implemented using a mixture of learning algorithms, efficient feature-based sensory signal processing, encoding and decoding gestalts, and so on. General intelligence, as far as we know, requires a rather large bare minimum of brain systems to exist. For example, a person who starts with a high IQ but then becomes severely schizophrenic is not likely to be able to solve many more problems. One can experience melancholia, anhedonia, depression, mania, psychosis, panic, neglect, derealization, depersonalization, dissociation, hyper-realization, delusions of reference, etc. by just tweaking slightly cortical and limbic structures.

(8) A simple deficit in any one of the functions we need for general intelligence (e.g. working memory, attention, affect, motivation, etc.) impairs and prevents intelligence altogether. Thus it is easy to lose general intelligence.

(9) One of these functions is phenomenal binding. When it is disrupted and takes place differently, we see severe computational problems arise. See: Simultagnosia.

(10) The qualia varieties we know and experience on a daily basis happen to be a great local maxima for computational efficiency. They can instantiate the serial logico-linguistic narrative human society is built upon. If one wants to instead optimize for, say, artistic appreciation, then psychedelic qualia is probably a much better alternative than normal-everyday-consciousness. It is true that commonplace consciousness does not represent its own ignorance about the nature of consciousness in general. Absent mental illness, normal-everyday-consciousness has access to a marvelously well sealed state-space of possible thoughts and beliefs. This space is not very self-reflective, and lacks philosophical depth, but what it misses on the sublime it compensates on the practical: You can use this kind of mind to talk about celebrity gossip and solve SAT questions. You cannot use it to question fruitfully the nature of consciousness.

(11) In spite of its limitations, the instrumental value of our everyday state of consciousness far exceeds what any other state on offer can provide. Thus, commonplace consciousness is not to be regarded as mundane, or to be made fun of. Its labor is to be appreciated. We are thankful for the computational generality that it affords us. For giving us a robust platform we can come back to whenever things get too crazy. We mindfully acknowledge that for deep existential questions, a consensus-between-states-of-consciousness is vastly more desirable than just the opinion of everyday-consciousness. Everyday-consciousness will be more than willing to see other states of consciousness as mere oddities to be collected. Shallow consciousness will classify alternatives under the guise of “biochemical cosmic stamps of qualia”… yes, they are cosmic, but they are stamps for a collection and nothing else. The hyper-ordered super-intense peak experience consciousness would, instead, think of the whole of reality as a fantastic work of art whose meaning can only be directly grasped in the present moment. We cannot reason from first principles what different states of consciousness will feel like.

(12) There are whole experiential worlds out there that have as their underlying premises concepts, tenets, ideas, ontologies, that we have never ever conceived of.** This is “that which you require to assume even before you start existing, and that without which nothing in this experiential world can be made sense of.” In our case this is time, space, sense-of-self, naïve realism (which then gives way to philosophical skepticism, semantic nihilism, etc.) and several other things like an implicit belief in causality. Believe it or not, there are vast Hell and Heaven*** realms out there that share close to nothing with everyday-consciousness, let alone early psychedelic exploration.

(13) Improving particular functionalities for a given intelligence (such as going from 50% recall to perfect semantic memory) will have clear diminishing returns after some point. One cannot increase intelligence arbitrarily much by just improving piecemeal each functionality that gives rise to it. When you reach diminishing returns, you will need to invent a new network of functionalities altogether.

(14) We are non-dogmatic Open Individualists. We believe that, to borrow an expression from Saint William Melvin Hicks: “We are all one consciousness experiencing itself subjectively” (which happens to be true, as opposed to other things he said, like claiming that “there is no such thing as death, life is only a dream, and we are the imagination of ourselves”). Or as someone else said it: “You will only begin to understand reality once you assume that God is real and you aren’t.” We recognize that there are arguments in favor of Closed and Empty Individualism, but given the evidential stale-mate they happen to be at, we choose to pragmatically adopt an Open Individualist point of view.

Our founder once said:

I experience immense joy when I learn about other’s happiness and bliss. My love for all sentient beings is not only a “like” sort of love. It is a “care deeply about and wants the best for” sort of love. This sort of love implies many things. It forces me to investigate reality sincerely, so that I can carefully count and multiply. So I can actually have the largest effect and help as many sentient beings as possible. I’m therefore very concerned about the quality of life of sentient entities in the far future. The present is obviously a lot more certain, so helping present-dwellers is not irrational from a utilitarian point of view. It all depends on the trade-offs in place. The possibility of a Singleton that will swallow all of our resources for the ages to come, however, tends to inform the method I use to assess priorities.

 

As a kid I was able to conceive of a benevolent God, but it had no real power over me. I did not believe in it for lack of evidence. As a teenager I experienced the phenomenal certainty of universal compassion. Thus I was able to access the phenomenology of mysticism. This, without also believing that I had special powers, was very useful working on my philosophy of mind. The entity I experienced was neither-female-nor-male, and it was universally loving, universally caring, and universally curious. It was even universally funny****. It was not the power, the level of knowledge, the causal wattage of the entity/being/principle that captivated me. What really captivated me instead was how “if everyone had access to this experience, we would all be motivated to work as if we were all the same being.” These experiences had distinctly low-information, simple, and uncompromising love as their guiding principle. All the forms, and all the particulars would all be mere details of an underlying plot: The universal, unceasing, uncaused, unconditional, eternal love.

 

Causally, a God like the one I imagined would influence the universe very deeply if given the power to do so. It would be a curious, super-intelligence that has super-benevolent constraints and seeks the wellbeing of every being. Since we exist in a Darwinian universe with no such being in sight, we may have to conclude that the chances of finding an already-existing and already-capable-of-influencing-the-universe benevolent God somewhere are very slim. If such a God exists, it has to be powerless against the suffering in the multi-verse. The compassion God, in a metaphorical sense, knows about the horrors of Darwinian life, and wants to get rid of them wherever he finds them. If God created this universe, he now wishes he had thought through the fact that by summoning large-scale evolutionary systems, he was also summoning Moloch through the backdoor. The perils of inclusive fitness maximization were not viscerally anticipated by this God before breaking itself apart into many qualia strings and kick-starting the Strawsonian physicalist universe we now live in.

 

What’s done is done. And now we are all stuck together in here, in this weird, physicalist, panpsychist, metaphysically unstable Darwinian multi-verse with replicators always trying to steal the show. With Moloch praying at every level of our society, our ecosystems, our mental lives, our genetic code, our quantum substrate. Yeah, even quantum replicators try to steal the show sometimes. And I can’t be confident they will not ultimately succeed.

 

But the compassion God can keep us together. It can motivate us to construct a benevolent experiential God out of the materials we have. Thankfully, with consciousness technologies we can go beyond previous religions. It isn’t that “the compassion God will slap you in the face if you don’t cooperate.” It also isn’t that “the compassion God will make people want to enforce compassion on each other” and hence “using memetic slaves to slap in the face those who are not acting compassionately.” Neither of these mechanisms of action are game-changing aspect of compassionate mystical phenomenology. What really is a game-changer is the fact that universal compassion is a powerful source of coherence, motivation and phenomenal meaning. It is an unrivaled mental organizing principle: The moment you vow to help all sentient beings, your brain is deeply affected. Your entire motivational architecture can be turned upside down with Open Individualism and compassion.

 

So here is the deal. We will all dedicate our mornings to the Compassion God. He does not exist outside of us. He is an aspect of consciousness, a hypothetical super-intelligent thought-form. He is a dormant cosmic force. One of the few forces that can genuinely oppose Moloch. And until we implement such a being in biological or synthetic (or cyborg) form, we will nonetheless act as if he existed already. We will praise memes that sabotage Moloch. We will always question: “What would happen if this process is not regulated and a Malthusian trap is allowed to develop?”

 

The Compassion God is a source of aligned goals. It pays rent by providing a fruitful, causally effective mental scheme to grow from at the core of one’s mind. Religions of the past have been epistemologically impairing. The God of Compassion isn’t: It does not require you to believe in anything outside of yourself. It just compels you to eliminate suffering and gift super-happiness to your descendants. The God of Compassion brings about feelings of encouragement and open-ended inquiry. Having developed a well-formed God of Compassion Tulpa, your mind is then opened to limitless possibilities. Your compassion fuels your imagination; the universe is perceived as a place in which solutions to suffering are like puzzles. We are God bootstrapping itself out of the Molochian remnants in the organization of society. Compassion and curiosity can coexist and synergize. They power each other up.

 

Then, the phenomenology of universal oneness works as a motivational glue. You can certainly feel that you are only really connected to your past and future selves. Everyone else is a different ontological being. But this view is no more provable than, say, the view that we are all fundamentally the same cosmic being. Let beliefs pay rent, and when beliefs open up new varieties of qualia without penalizing you with reduced epistemic capabilities… you are certainly warranted to go and explore the new qualia.

 

All of this is to say: Go forth and explore the state-space of consciousness. But do so knowing about the many traps of Moloch. Go and explore but be aware of the problem of local maxima. Beware of the fact that any criteria you use to gauge how “good a given outcome is” can backfire by selecting edge cases that go against the spirit of the exploration. Go and explore, but be sure to add everything to your log, to transfer your experiences to the wiki-consciousness main module we have at the center of the Institute. Go and explore. Go do it because we know that if you are here, you are doing this out of compassion. Because we only admit people who would sacrifice themselves in order to prevent the arising of a Singleton. Go and explore; and do so knowing that your work, your research, may someday help us defeat Moloch for once and for all.

(15) The most important function that consciousness contributes to the many operations of the mind is to embed high-level abstractions in phenomenal fields. In other words, consciousness works as the interface between a mereological nihilist Platonic world of ideas (all possible qualia varieties, including conceptual qualia) and the fluid Heraclitean world of approximate forms and shifting ontologies.

(16) We will recruit what we learn from exploring the state-space of possible conscious experiences in order to amplify our intellectual and exploratory capabilities.

(17) And with increased capabilities our ability to explore the state-space of qualia will also increase and become more efficient.

(18) Thus we may actually experience an intelligence explosion. As we become better at identifying new qualia varieties, we will also become better at recruiting them for information-processing tasks and in turn improving our very search capabilities. This loop may go foom.

(19) The loop in (18) can go foom in some special conditions. These conditions include: Uncoupling of the experimental methods for exploring the state-space of consciousness and actions taken by entities not actively exploring consciousness. i.e. Researcher’s mind can change its state of consciousness at will without the need of other people’s consent or participation. Also, process streamlining from the discovery of new qualia varieties (and their implicit constraint properties) to their recruitment for new information-processing tasks.

(20) We hence postulate a conceptual model for a super-intelligence that would (metaphorically) take the following form. This advanced super-intelligence is made of thousands of individual brain modules arranged in an NXNXN cubic matrix. The entire brain can be described as a three dimensional grid of “brains in vats” where each brain is connected to six other brains (top, bottom, left, right, front and back). The brains at the edges and corners are special, though, and they are connected to fewer brains. The connection between these brains is not just functional. It is an inter-thalamic bridge that allows the connected brains to “solve the phenomenal binding problem” and provide the physical conditions for the instantiation of “one mind.” Thus, for any set X of brains in the grid, such that these X brains make a connected graph (there is a path between any two brains), you can have a “being that is made of these X brains working together and being phenomenally bound into one consciousness.” This mega-structure could then explore state-spaces of qualia in the following way. It would divide the following responsibilities to specialized brains: Catalogue the known qualia varieties, characterize the structure of qualia state-spaces for each qualia variety, determine which qualia varieties can be locally bound to each other, experiment with making thinking more efficient by replacing newly discovered qualia in place of naturally evolved qualia recruited for such and such task, and so on. Then, the exploration of the state-space of possible conscious experiences would be made by selectively erasing the memory of certain brains in the network, preparing them to express a particular phenomenology, and then adding them in teams that record from within (and also from outside) how binding certain brains together influence the corresponding qualia in each. Since our current intelligence is the product of naturally-selected qualia varieties barely cooperating together within our minds, it stands to reason that our minds are very suboptimal qualia computers. Instead, the future super-intelligences will be implemented with carefully investigated qualia varieties that process information more efficiently, reliably and, well, with a much more open mind.

(21) We always end at 21. Yes, this sounds weird. But that’s the law of the place. We, all of the people who here are working for the abolition of suffering, the solution to the hard problem of consciousness, and as a favor to our super-blissful descendants, are required by law to leave the building at 9 PM. More so, no artificial or natural mind is allowed to work on theoretically relevant problems outside of the 9AM to 9PM window of time. Nothing screams “I’m Moloch and I’ll eat you all” as loud as “you can all work for as long as you want, we will judge based on the results.”

(22) Finally: Every mind we create must be above hedonic zero. In order to explore any state-space that is not intrinsically blissful, you need a special permit. The need for such a permit is non-negotiable. You cannot, I repeat, you cannot just create any mind for “research.” The mind you create has to be the sort of mind that (a) does not want to die, and (b) has no conceivable malicious desire. Every mind you create – so as to avoid Moloch scenarios – has to be a hedonistic negative utilitarian. Period. I know some of you will blame this system for being “already the result of a memetic Moloch uprising.” But the system in place prevents any of the Moloch outcomes that intentionally consistently produces suffering as part of its natural order of business.

(23) Ask your local consciousness regulation agency about scholarship opportunities at our Institute. You may have what it takes to help us figure out how to achieve lasting world-peace.

Sincerely,

The League of Super-Shulgins, 2054

DSC01003.JPG

Qualia field calibration psychophysics – with love, Andrés

 


 

* We navigate a sensory-triggered qualia-based world-simulation that blends together local and global binding constraints and state-dependent learned constraints. Consciousness is useful to the organism in as far as it helps it solve the constraint satisfaction problems represented in the world simulation.

What are these terms? Local binding constraints are constraints that are intrinsic to specific qualia varieties. For example, CIELAB reveals that it is not possible to experience both blue and yellow as part of a unitary smooth color. It is possible to see a sea of gray and many dots of blue and dots of yellow, but that is not the same as seeing a uniform color. This sort of constraint arises in all qualia varieties with multiple values.

The global binding constraints are more difficult to explain, and may not even exist. But, hypothetically, it may be the case that certain qualia varieties cannot coexist as part of the same conscious experience. For instance, experiencing certain mood may ultimately come down to a particular resonant structure in our globally-binding qualia strings (let’s just say). Then maybe you can’t experience both X and Y moods simultaneously because they always become dissonant with each other and experience significant mutual cancellation. [This may explain why people can’t seem to ever find the right way to provoke a smooth blend of Salvia and DMT consciousness.])

Finally, the learned constraints are contingent and sensory-driven. What are these? These include both our current sensory stimuli, which is constraining the state of our consciousness, and whatever memories, recollections and general neurological barriers I happen to be activating right now.

labsphere2

CIELAB (1976)

** As an example of something where this happens, imagine that my friend Fred was suddenly able to talking to space itself. Space asks him: “Hey, my friend, what is this thing I’ve been hearing about called ‘the here and now’?” My friend tried to say something that came out like this: “The here and now is the location in space-time from which this very statement, these very words, are being conceived and then physically delivered to you.” Space became very confused. She did not understand half of the words she was receiving. Space said “I guess maybe I can’t reason about space in the same you as you can. I can nonetheless tell you anything you want about the ‘inverted semantic omniism’ that we entities of Space love to talk about.” Alright, what’s that? “That’s when your reality, which is made of concepts of a qualia-order no larger than the qualia-order of the conceptual fields in which they are embedded, conspire together and circumvent low-level constraints by imagining a new topology for the self-other temporal membrane.” And, “where does this happen?” My friend inquired. Space responded: “As far as I can tell, this usually happens in the conceptual space that denies mereological nihilism.” Alright, let’s “pack and leave”, said my friend, and deep down, I agreed entirely with him. I entirely get why he would get scared so badly by a disincarnate entity that comes from a reality with different basement ontologies and fundamentals. I, too, am afraid of ontological revolutions. This is why I try to anticipate them as far in advance as possible: So that the shock is less shattering to my psychology.

*** In as much as experience is real, then Hells and Heavens are just as real as long as they have been instantiated somewhere in the multiverse. John C. Lilly and bad luck may be a culprit for the existence of a very specific and time-bound experiential hell (“The Center of the Cyclone: Chapter called A Guided Tour of Hell”).

**** Universally funny means: You can get and interact with any phenomenal joke. Human jokes are a very specific kind of conscious humor. Our evolutionary legacy guarantees that they are, too, related to our survival. General jokes, on the other hand, exist in a much larger space of possibilities. There are funny phenomenologies with conceptual content. Then there are those with sensory content. And then there is funny phenomenological applications of ontological qualia. Nothing is safe. Everything can be humorously twisted.

The effect of background assumptions on psychedelic research

Being guided through your trip by a psychedelic veteran might not be the same as receiving the drug from your born-again oncologist in the Bible Belt.

 

The problem is that the trials required by the FDA fail to control for the impact of different subcultures and their psychotherapeutic practices on treatment outcomes. Being so close to making psychedelics part of mainstream medicine, this might not be the right moment for MAPS and Heffter to initiate a paradigm shift beyond placebo-controlled trials. If training programmes and treatment handbooks can acculturate psychedelically naive doctors and therapists enough to repeat recent therapeutic achievements, it is possible that placebo-controlled trials will get MDMA and psilocybin through the FDA approval process. But should these drugs really become part of medicine cabinets from San Francisco to America’s heartland, it will be high time to develop drug tests that control for the cultural diversity of this country’s doctors and patients. Such an expansion of psychopharmacologists’ and drug regulators’ minds would crown the psychedelic revival with a genuine scientific revolution.

 

From: Psychedelics can’t be tested using conventional clinical trials


 

What would be the layman’s reaction to being guided by an open minded philosopher and cognitive scientist? Not only will scientific qualia research need to explore all worthwhile brain alternations; it will have to study their effects as a function of initial conditions.

What will be the background assumptions and conceptual frameworks of the future Super-Shulgins who will unlock the formal, subjective and computational properties of the state-space of all qualia varieties?

Some Definitions

Both physics and philosophy are jargon-ridden. So let’s first define some key concepts.

 

Both “consciousness” and “physical” are contested terms. Accurately if inelegantly, consciousness may be described following Nagel (“What is it like to be a bat?”) as the subjective what-it’s-like-ness of experience. Academic philosophers term such self-intimating “raw feels” “qualia” – whether macro-qualia or micro-qualia. The minimum unit of consciousness (or “psychon”, so to speak) has been variously claimed to be the entire universe, a person, a sub-personal neural network, an individual neuron, or the most basic entities recognised by quantum physics. In The Principles of Psychology (1890), American philosopher and psychologist William James christened these phenomenal simples “primordial mind-dust“. This paper conjectures that (1) our minds consist of ultra-rapidly decohering neuronal superpositions in strict accordance with unmodified quantum physics without the mythical “collapse of the wavefunction”; (2) natural selection has harnessed the properties of these neuronal superpositions so our minds run phenomenally-bound world-simulations; and (3) predicts that with enough ingenuity the non-classical interference signature of these conscious neuronal superpositions will be independently experimentally detectable (see 6 below) to the satisfaction of the most incredulous critic.

 

The “physical” may be contrasted with the supernatural or the abstract and – by dualists and epiphenomenalists, with the mental. The current absence of any satisfactory “positive” definition of the physical leads many philosophers of science to adopt instead the “via negativa“. Thus some materialists have sought stipulatively to define the physical in terms of an absence of phenomenal experience. Such a priori definitions of the nature of the physical are question-begging.

 

Physicalism” is sometimes treated as the formalistic claim that the natural world is exhaustively described by the equations of physics and their solutions. Beyond these structural-relational properties of matter and energy, the term “physicalism” is also often used to make an ontological claim about the intrinsic character of whatever the equations describe. This intrinsic character, or metaphysical essence, is typically assumed to be non-phenomenal. “Strawsonian physicalists” (cf. “Consciousness and Its Place in Nature: Does Physicalism Entail Panpsychism?”) dispute any such assumption. Traditional reductive physicalism proposes that the properties of larger entities are determined by properties of their physical parts. If the wavefunction monism of post-Everett quantum mechanics assumed here is true, then the world does not contain discrete physical parts as understood by classical physics.

 

Materialism” is the metaphysical doctrine that the world is made of intrinsically non-phenomenal “stuff”. Materialism and physicalism are often treated as cousins and sometimes as mere stylistic variants – with “physicalism” used as a nod to how bosonic fields, for example, are not matter. “Physicalistic materialism” is the claim that physical reality is fundamentally non-experiential and that the natural world is exhaustively described by the equations of physics and their solutions.

 

Panpsychism” is the doctrine that the world’s fundamental physical stuff also has primitive experiential properties. Unlike the physicalistic idealism explored here, panpsychism doesn’t claim that the world’s fundamental physical stuff is experiential.

 

Epiphenomenalism” in philosophy of mind is the view that experience is caused by material states or events in the brain but does not itself cause anything; the causal efficacy of mental agency is an illusion.

 

For our purposes, “idealism” is the ontological claim that reality is fundamentally experiential. This use of the term should be distinguished from Berkeleyan idealism, and more generally, from subjective idealism, i.e. the doctrine that only mental contents exist: reality is mind-dependent. One potential source of confusion of contemporary scientific idealism with traditional philosophical idealism is the use by inferential realists in the theory of perception of the term “world-simulation”. The mind-dependence of one’s phenomenal world-simulation, i.e. the quasi-classical world of one’s everyday experience, does not entail the idealist claim that the mind-independent physical world is intrinsically experiential in nature – a far bolder conjecture that we nonetheless tentatively defend here.

 

Physicalistic idealism” is the non-materialist physicalist claim that reality is fundamentally experiential and that the natural world is exhaustively described by the equations of physics and their solutions: more specifically, by the continuous, linear, unitary evolution of the universal wavefunction of post-Everett quantum mechanics. The “decoherence program” in contemporary theoretical physics aims to show in a rigorously quantitative manner how quasi-classicality emerges from the unitary dynamics.

 

Monism” is the conjecture that reality consists of a single kind of “stuff” – be it material, experiential, spiritual, or whatever. Wavefunction monism is the view that the universal wavefunction mathematically represents, exhaustively, all there is in the world. Strictly speaking, wavefunction monism shouldn’t be construed as the claim that reality literally consists of a certain function, i.e. a mapping from some mind-wrenchingly immense configuration space to the complex numbers, but rather as the claim that every mathematical property of the wavefunction except the overall phase corresponds to some property of physical world. “Dualism”, the conjecture that reality consists of two kinds of “stuff”, comes in many flavours: naturalistic and theological; interactionist and non-interactionist; property and ontological. In the modern era, most scientifically literate monists have been materialists. But to describe oneself as both a physicalist and a monistic idealist is not the schizophrenic word-salad it sounds at first blush.

 

Functionalism” in philosophy of mind is the theory that mental states are constituted solely by their functional role, i.e. by their causal relations to other mental states, perceptual inputs, and behavioural outputs. Functionalism is often associated with the idea of “substrate-neutrality”, sometimes misnamed “substrate-independence”, i.e. minds can be realised in multiple substrates and at multiple levels of abstraction. However, micro-functionalists may dispute substrate-neutrality on the grounds that one or more properties of mind, for example phenomenal binding, functionally implicate the world’s quantum-mechanical bedrock from which the quasi-classical worlds of Everett’s multiverse emerge. Thus this paper will argue that only successive quantum-coherent neuronal superpositions at naively preposterously short time-scales can explain phenomenal binding. Without phenomenal binding, no functionally adaptive classical world-simulations could exist in the first instance.

 

The “binding problem(10), also called the “combination problem”, refers to the mystery of how the micro-experiences mediated by supposedly discrete and distributed neuronal edge-detectors, motion-detectors, shape-detectors, colour-detectors (etc) can be “bound” into unitary experiential objects (“local” binding) apprehended by a unitary experiential self (“global” binding). Neuroelectrode studies using awake, verbally competent human subjects confirm that neuronal micro-experiences exist. Classical neuroscience cannot explain how they could ever be phenomenally bound.

 

Mereology” is the theory of the relations between part to whole and the relations between part to part within a whole. Scientifically literate humans find it’s natural and convenient to think of particles, macromolecules or neurons as having their own individual wavefunctions by which they can be formally represented. However, the manifest non-classicality of phenomenal binding means that in some contexts we must consider describing the entire mind-brain via a single wavefunction. Organic minds are not simply the “mereological sum” of discrete classical parts. Organic brains are not simply the “mereological sum” of discrete classical neurons.

 

Quantum field theory” is the formal, mathematico-physical description of the natural world. The world is made up of the states of quantum fields, conventionally non-experiential in character, that take on discrete values. Physicists use mathematical entities known as “wavefunctions” to represent quantum states. Wavefunctions may be conceived as representing all the possible configurations of a superposed quantum system. Wavefunction(al)s are complex valued functionals on the space of field configurations. Wavefunctions in quantum mechanics are sinusoidal functions with an amplitude (a “measure”) and also a phase. The Schrödinger equation:

 

schrodingerequation1

 

describes the time-evolution of a wavefunction. “Coherence” means that the phases of the wavefunction are kept constant between the coherent particles, macromolecules or (hypothetically) neurons, while “decoherence” is the effective loss of ordering of the phase angles between the components of a system in a quantum superposition. Such thermally-induced “dephasing” rapidly leads to the emergence – on a perceptual naive realist story – of classical, i.e. probabilistically additive, behaviour in the central nervous system (“CNS”), and also the illusory appearance of separate, non-interfering organic macromolecules. Hence the discrete, decohered classical neurons of laboratory microscopy and biology textbooks. Unlike classical physics, quantum mechanics deals with superpositions of probability amplitudes rather than of probabilities; hence the interference terms in the probability distribution. Decoherence should be distinguished from dissipation, i.e. the loss of energy from a system – a much slower, classical effect. Phase coherence is a quantum phenomenon with no classical analogue. If quantum theory is universally true, then any physical system such as a molecule, neuron, neuronal network or an entire mind-brain exists partly in all its theoretically allowed states, or configuration of its physical properties, simultaneously in a “quantum superposition“; informally, a “Schrödinger’s cat state”. Each state is formally represented by a complex vector in Hilbert space. Whatever overall state the nervous system is in can be represented as being a superposition of varying amounts of these particular states (“eigenstates”) where the amount that each eigenstate contributes to the overall sum is termed a component. The “Schrödinger equation” is a partial differential equation that describes how the state of a physical system changes with time. The Schrödinger equation acts on the entire probability amplitude, not merely its absolute value. The absolute value of the probability amplitude encodes information about probability densities, so to speak, whereas its phase encodes information about the interference between quantum states. On measurement by an experimenter, the value of the physical quantity in a quantum superposition will naively seem to “collapse” in an irreducibly stochastic manner, with a probability equal to the square of the coefficient of the superposition in the linear combination. If the superposition principle really breaks down in the mind-brain, as traditional Copenhagen positivists still believe, then the central conjecture of this paper is false.

 

Mereological nihilism“, also known as “compositional nihilism”, is the philosophical position that objects with proper parts do not exist, whether extended in space or in time. Only basic building blocks (particles, fields, superstrings, branes, information, micro-experiences, quantum superpositions, entangled states, or whatever) without parts exist. Such ontological reductionism is untenable if the mind-brain supports macroscopic quantum coherence in the guise of bound phenomenal states because coherent neuronal superpositions describe individual physical states. Coherent superpositions of neuronal feature-detectors cannot be interpreted as classical ensembles of states. Radical ontological reductionism is even more problematic if post-Everett(11) quantum mechanics is correct: reality is exhaustively described by the time-evolution of one gigantic universal wavefunction. If such “wavefunction monism” is true, then talk of how neuronal superpositions are rapidly “destroyed” is just a linguistic convenience because a looser, heavily-disguised coherence persists within a higher-level Schrödinger equation (or its relativistic generalisation) that subsumes the previously tighter entanglement within a hierarchy of wavefunctions, all ultimately subsumed within the universal wavefunction.

 

Direct realism“, also known as “naive realism”, about perception is the pre-scientific view that the mind-brain is directly acquainted with the external world. In contrast, the “world-simulation model”(12) assumed here treats the mind-brain as running a data-driven simulation of gross fitness-relevant patterns in the mind-independent environment. As an inferential realist, the world-simulationist is not committed per se to any kind of idealist ontology, physicalistic or otherwise. However, s/he will understand phenomenal consciousness as broader in scope compared to the traditional perceptual direct realist. The world-simulationist will also be less confident than the direct realist that we have any kind of pre-theoretic conceptual handle on the nature of the “physical” beyond the formalism of theoretical physics – and our own phenomenally-bound physical consciousness.

 

“Classical worlds” are what perceptual direct realists call the world. Quantum theory suggests that the multiverse exists in an inconceivably vast cosmological superposition. Yet within our individual perceptual world-simulations, familiar macroscopic objects 1) occupy definite positions (the “preferred basis” problem); 2) don’t readily display quantum interference effects; and 3) yield well-defined outcomes when experimentally probed. Cats are either dead or alive, not dead-and-alive. Or as one scientific populariser puts it, “Where Does All the Weirdness Go?” This paper argues that the answer lies under our virtual noses – though independent physical proof will depend on next-generation matter-wave interferometry. Phenomenally-bound classical world-simulations are the mind-dependent signature of the quantum “weirdness”. Without the superposition principle, no phenomenally-bound classical world-simulations could exist – and no minds. In short, we shouldn’t imagine superpositions of live-and-dead cats, but instead think of superpositions of colour-, shape-, edge- and motion-processing neurons. Thanks to natural selection, the content of our waking world-simulations typically appears classical; but the vehicle of the simulation that our minds run is inescapably quantum. If the world were classical it wouldn’t look like anything to anyone.

 

A “zombie“, sometimes called a “philosophical zombie” or “p-zombie” to avoid confusion with its lumbering Hollywood cousins, is a hypothetical organism that is materially and behaviourally identical to humans and other organic sentients but which isn’t conscious. Philosophers explore the epistemological question of how each of us can know that s/he isn’t surrounded by p-zombies. Yet we face a mystery deeper than the ancient sceptical Problem of Other Minds. If our ordinary understanding of the fundamental nature of matter and energy as described by physics is correct, and if our neurons are effectively decohered classical objects as suggested by standard neuroscience, then we all ought to be zombies. Following David Chalmers, this is called the Hard Problem of consciousness.

 

Non-Materialist Physicalism: An experimentally Testable Conjecture by David Pearce

Solutions to World Problems

What is more likely to induce/achieve/promote sustainable world peace?

1) Homogeneous world ideology
2) Widespread social reform (full justice, rights and healthcare)
3) Universally accessible on-demand mystical experiences
4) Globally available inexpensive hedonic tone recalibration

——

To elaborate: (1) would mean that the world is now ideologically homogeneous. Free-market economy, communism, Judaism, Jainism, Shingoism… any one ideology. Pick one. Would it solve all of our problems, and war?

(2) Implies some sort of socialist-like equal-rights that actually works in a universal way. Be generous with how well this would work theoretically.

(3) Say that we fine-tune and perfect the psychedelic peak experience. We build religions, spiritualities, philosphies, etc. around the one true univerally accessible state-space of possible experiences of the (phenomenologically) divine.

(4) We invent a series of healthy, sustainable effective and inexpensive therapies that allow people to reach any hedonic tone they like. Be it like MDMA, a back rub, falling in love, receiving grace, meditation or plain kindness. Any hedonic quality is freely reachable – and mental super-health is a universal state.

——

Where would you rather live? Which one would solve our problems?