24 Predictions for the Year 3000 by David Pearce

In response to the Quora question Looking 1000 years into the future and assuming the human race is doing well, what will society be like?, David Pearce wrote:


The history of futurology to date makes sobering reading. Prophecies tend to reveal more about the emotional and intellectual limitations of the author than the future. […]
But here goes…

Year 3000

1) Superhuman bliss.

Mastery of our reward circuitry promises a future of superhuman bliss – gradients of genetically engineered well-being orders of magnitude richer than today’s “peak experiences”.
Superhappiness?
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274778/

2) Eternal youth.

More strictly, indefinitely extended youth and effectively unlimited lifespans. Transhumans, humans and their nonhuman animal companions don’t grow old and perish. Automated off-world backups allow restoration and “respawning” in case of catastrophic accidents. “Aging” exists only in the medical archives.
SENS Research Foundation – Wikipedia

3) Full-spectrum superintelligences.

A flourishing ecology of sentient nonbiological quantum computers, hyperintelligent digital zombies and full-spectrum transhuman “cyborgs” has radiated across the Solar System. Neurochipping makes superintelligence all-pervasive. The universe seems inherently friendly: ubiquitous AI underpins the illusion that reality conspires to help us.
Superintelligence: Paths, Dangers, Strategies – Wikipedia
Artificial Intelligence @ MIRI
Kurzweil Accelerating Intelligence
Supersentience

4) Immersive VR.

“Magic” rules. “Augmented reality” of earlier centuries has been largely superseded by hyperreal virtual worlds with laws, dimensions, avatars and narrative structures wildly different from ancestral consensus reality. Selection pressure in the basement makes complete escape into virtual paradises infeasible. For the most part, infrastructure maintenance in basement reality has been delegated to zombie AI.
Augmented reality – Wikipedia
Virtual reality – Wikipedia

5) Transhuman psychedelia / novel state spaces of consciousness.

Analogues of cognition, volition and emotion as conceived by humans have been selectively retained, though with a richer phenomenology than our thin logico-linguistic thought. Other fundamental categories of mind have been discovered via genetic tinkering and pharmacological experiment. Such novel faculties are intelligently harnessed in the transhuman CNS. However, the ordinary waking consciousness of Darwinian life has been replaced by state-spaces of mind physiologically inconceivable to Homo sapiens. Gene-editing tools have opened up modes of consciousness that make the weirdest human DMT trip akin to watching paint dry. These disparate states-spaces of consciousness do share one property: they are generically blissful. “Bad trips” as undergone by human psychonauts are physically impossible because in the year 3000 the molecular signature of experience below “hedonic zero” is missing.
ShulginResearch.org
Qualia Computing

6) Supersentience / ultra-high intensity experience.

The intensity of everyday experience surpasses today’s human imagination. Size doesn’t matter to digital data-processing, but bigger brains with reprogrammed, net-enabled neurons and richer synaptic connectivity can exceed the maximum sentience of small, simple, solipsistic mind-brains shackled by the constraints of the human birth-canal. The theoretical upper limits to phenomenally bound mega-minds, and the ultimate intensity of experience, remain unclear. Intuitively, humans have a dimmer-switch model of consciousness – with e.g. ants and worms subsisting with minimal consciousness and humans at the pinnacle of the Great Chain of Being. Yet Darwinian humans may resemble sleepwalkers compared to our fourth-millennium successors. Today we say we’re “awake”, but mankind doesn’t understand what “posthuman intensity of experience” really means.
What earthly animal comes closest to human levels of sentience?

7) Reversible mind-melding.

Early in the twenty-first century, perhaps the only people who know what it’s like even partially to share a mind are the conjoined Hogan sisters. Tatiana and Krista Hogan share a thalamic bridge. Even mirror-touch synaesthetes can’t literally experience the pains and pleasures of other sentient beings. But in the year 3000, cross-species mind-melding technologies – for instance, sophisticated analogues of reversible thalamic bridges – and digital analogs of telepathy have led to a revolution in both ethics and decision-theoretic rationality.
Could Conjoined Twins Share a Mind?
Mirror-touch synesthesia – Wikipedia
Ecstasy : Utopian Pharmacology

8) The Anti-Speciesist Revolution / worldwide veganism/invitrotarianism.

Factory-farms, slaughterhouses and other Darwinian crimes against sentience have passed into the dustbin of history. Omnipresent AI cares for the vulnerable via “high-tech Jainism”. The Anti-Speciesist Revolution has made arbitrary prejudice against other sentient beings on grounds of species membership as perversely unthinkable as discrimination on grounds of ethnic group. Sentience is valued more than sapience, the prerogative of classical digital zombies (“robots”).
What is High-tech Jainism?
The Antispeciesist Revolution
‘Speciesism: Why It Is Wrong and the Implications of Rejecting It’

9) Programmable biospheres.

Sentient beings help rather than harm each other. The successors of today’s primitive CRISPR genome-editing and synthetic gene drive technologies have reworked the global ecosystem. Darwinian life was nasty, brutish and short. Extreme violence and useless suffering were endemic. In the year 3000, fertility regulation via cross-species immunocontraception has replaced predation, starvation and disease to regulate ecologically sustainable population sizes in utopian “wildlife parks”. The free-living descendants of “charismatic mega-fauna” graze happily with neo-dinosaurs, self-replicating nanobots, and newly minted exotica in surreal garden of edens. Every cubic metre of the biosphere is accessible to benign supervision – “nanny AI” for humble minds who haven’t been neurochipped for superintelligence. Other idyllic biospheres in the Solar System have been programmed from scratch.
CRISPR – Wikipedia
Genetically designing a happy biosphere
Our Biotech Future

10) The formalism of the TOE is known.
(details omitteddoes Quora support LaTeX?)

Dirac recognised the superposition principle as the fundamental principle of quantum mechanics. Wavefunction monists believe the superposition principle holds the key to reality itself. However – barring the epoch-making discovery of a cosmic Rosetta stone – the implications of some of the more interesting solutions of the master equation for subjective experience are still unknown.
Theory of everything – Wikipedia
M-theory – Wikipedia
Why does the universe exist? Why is there something rather than nothing?
Amazon.com: The Wave Function: Essays on the Metaphysics of Quantum Mechanics (9780199790548): Alyssa Ney, David Z Albert: Books

11) The Hard Problem of consciousness is solved.

The Hard Problem of consciousness was long reckoned insoluble. The Standard Model in physics from which (almost) all else springs was a bit of a mess but stunningly empirically successful at sub-Planckian energy regimes. How could physicalism and the ontological unity of science be reconciled with the existence, classically impossible binding, causal-functional efficacy and diverse palette of phenomenal experience? Mankind’s best theory of the world was inconsistent with one’s own existence, a significant shortcoming. However, all classical- and quantum-mind conjectures with predictive power had been empirically falsified by 3000 – with one exception.
Physicalism – Wikipedia
Quantum Darwinism – Wikipedia
Consciousness (Stanford Encyclopedia of Philosophy)
Hard problem of consciousness – Wikipedia
Integrated information theory – Wikipedia
Principia Qualia
Dualism – Wikipedia
New mysterianism – Wikipedia
Quantum mind – Wikipedia

[Which theory is most promising? As with the TOE, you’ll forgive me for skipping the details. In any case, my ideas are probably too idiosyncratic to be of wider interest, but for anyone curious: What is the Quantum Mind?]

12) The Meaning of Life resolved.

Everyday life is charged with a profound sense of meaning and significance. Everyone feels valuable and valued. Contrast the way twenty-first century depressives typically found life empty, absurd or meaningless; and how even “healthy” normals were sometimes racked by existential angst. Or conversely, compare how people with bipolar disorder experienced megalomania and messianic delusions when uncontrollably manic. Hyperthymic civilization in the year 3000 records no such pathologies of mind or deficits in meaning. Genetically preprogrammed gradients of invincible bliss ensure that all sentient beings find life self-intimatingly valuable. Transhumans love themselves, love life, and love each other.
https://www.transhumanism.com/

13) Beautiful new emotions.

Nasty human emotions have been retired – with or without the recruitment of functional analogs to play their former computational role. Novel emotions have been biologically synthesised and their “raw feels” encephalised and integrated into the CNS. All emotion is beautiful. The pleasure axis has replaced the pleasure-pain axis as the engine of civilised life.
An information-theoretic perspective on life in Heaven

14) Effectively unlimited material abundance / molecular nanotechnology.

Status goods long persisted in basement reality, as did relics of the cash nexus on the blockchain. Yet in a world where both computational resources and the substrates of pure bliss aren’t rationed, such ugly evolutionary hangovers first withered, then died.
http://metamodern.com/about-the-author/
Blockchain – Wikipedia

15) Posthuman aesthetics / superhuman beauty.

The molecular signatures of aesthetic experience have been identified, purified and overexpressed. Life is saturated with superhuman beauty. What passed for “Great Art” in the Darwinian era is no more impressive than year 2000 humans might judge, say, a child’s painting by numbers or Paleolithic daubings and early caveporn. Nonetheless, critical discernment is retained. Transhumans are blissful but not “blissed out” – or not all of them at any rate.
Art – Wikipedia
http://www.sciencemag.org/news/2009/05/earliest-pornography

16) Gender transformation.

Like gills or a tail, “gender” in the human sense is a thing of the past. We might call some transhuman minds hyper-masculine (the “ultrahigh AQ” hyper-systematisers), others hyperfeminine (“ultralow AQ” hyper-empathisers), but transhuman cognitive styles transcend such crude dichotomies, and can be shifted almost at will via embedded AI. Many transhumans are asexual, others pan-sexual, a few hypersexual, others just sexually inquisitive. “The degree and kind of a man’s sexuality reach up into the ultimate pinnacle of his spirit”, said Nietzsche – which leads to (17).

Object Sexuality – Wikipedia
Empathizing & Systematizing Theory – Wikipedia
https://www.livescience.com/2094-homosexuality-turned-fruit-flies.html
https://www.wired.com/2001/12/aqtest/

17) Physical superhealth.

In 3000, everyone feels physically and psychologically “better than well”. Darwinian pathologies of the flesh such as fatigue, the “leaden paralysis” of chronic depressives, and bodily malaise of any kind are inconceivable. The (comparatively) benign “low pain” alleles of the SCN9A gene that replaced their nastier ancestral cousins have been superseded by AI-based nociception with optional manual overrides. Multi-sensory bodily “superpowers” are the norm. Everyone loves their body-images in virtual and basement reality alike. Morphological freedom is effectively unbounded. Awesome robolovers, nights of superhuman sensual passion, 48-hour whole-body orgasms, and sexual practices that might raise eyebrows among prudish Darwinians have multiplied. Yet life isn’t a perpetual orgy. Academic subcultures pursue analogues of Mill’s “higher pleasures”. Paradise engineering has become a rigorous discipline. That said, a lot of transhumans are hedonists who essentially want to have superhuman fun. And why not?
https://www.wired.com/2017/04/the-cure-for-pain/
http://io9.gizmodo.com/5946914/should-we-eliminate-the-human-ability-to-feel-pain
http://www.bbc.com/future/story/20140321-orgasms-at-the-push-of-a-button

18) World government.

Routine policy decisions in basement reality have been offloaded to ultra-intelligent zombie AI. The quasi-psychopathic relationships of Darwinian life – not least the zero-sum primate status-games of the African savannah – are ancient history. Some conflict-resolution procedures previously off-loaded to AI have been superseded by diplomatic “mind-melds”. In the words of Henry Wadsworth Longfellow, “If we could read the secret history of our enemies, we should find in each man’s life sorrow and suffering enough to disarm all hostility.” Our descendants have windows into each other’s souls, so to speak.

19) Historical amnesia.

The world’s last experience below “hedonic zero” marked a major evolutionary transition in the evolutionary development of life. In 3000, the nature of sub-zero states below Sidgwick’s “natural watershed” isn’t understood except by analogy: some kind of phase transition in consciousness below life’s lowest hedonic floor – a hedonic floor that is being genetically ratcheted upwards as life becomes ever more wonderful. Transhumans are hyper-empathetic. They get off on each other’s joys. Yet paradoxically, transhuman mental superhealth depends on biological immunity to true comprehension of the nasty stuff elsewhere in the universal wavefunction that even mature superintelligence is impotent to change. Maybe the nature of e.g. Darwinian life, and the minds of malaise-ridden primitives in inaccessible Everett branches, doesn’t seem any more interesting than we find books on the Dark Ages. Negative utilitarianism, if it were conceivable, might be viewed as a depressive psychosis. “Life is suffering”, said Gautama Buddha, but fourth millennials feel in the roots of their being that Life is bliss.
Invincible ignorance? Perhaps.
Negative Utilitarianism – Wikipedia

20) Super-spirituality.

A tough one to predict. But neuroscience can soon identify the molecular signatures of spiritual experience, refine them, and massively amplify their molecular substrates. Perhaps some fourth millennials enjoy lifelong spiritual ecstasies beyond the mystical epiphanies of temporal-lobe epileptics. Secular rationalists don’t know what we’re missing.
https://www.newscientist.com/article/mg22129531-000-ecstatic-epilepsy-how-seizures-can-be-bliss/

21) The Reproductive Revolution.
Reproduction is uncommon in a post-aging society. Most transhumans originate as extra-uterine “designer babies”. The reckless genetic experimentation of sexual reproduction had long seemed irresponsible. Old habits still died hard. By year 3000, the genetic crapshoot of Darwinian life has finally been replaced by precision-engineered sentience. Early critics of “eugenics” and a “Brave New World” have discovered by experience that a “triple S” civilisation of superhappiness, superlongevity and superintelligence isn’t as bad as they supposed.
https://www.reproductive-revolution.com/
https://www.huxley.net/

22) Globish (“English Plus”).

Automated real-time translation has been superseded by a common tongue – Globish – spoken, written or “telepathically” communicated. Partial translation manuals for mutually alien state-spaces of consciousness exist, but – as twentieth century Kuhnians would have put it – such state-spaces tend to be incommensurable and their concepts state-specific. Compare how poorly lucid dreamers can communicate with “awake” humans. Many Darwinian terms and concepts are effectively obsolete. In their place, active transhumanist vocabularies of millions of words are common. “Basic Globish” is used for communication with humble minds, i.e. human and nonhuman animals who haven’t been fully uplifted.
Incommensurability – SEoP
Uplift (science_fiction) – Wikipedia

23) Plans for Galactic colonization.

Terraforming and 3D-bioprinting of post-Darwinian life on nearby solar systems is proceeding apace. Vacant ecological niches tend to get filled. In earlier centuries, a synthesis of cryonics, crude reward pathway enhancements and immersive VR software, combined with revolutionary breakthroughs in rocket propulsion, led to the launch of primitive manned starships. Several are still starbound. Some transhuman utilitarian ethicists and policy-makers favour creating a utilitronium shockwave beyond the pale of civilisation to convert matter and energy into pure pleasure. Year 3000 bioconservatives focus on promoting life animated by gradients of superintelligent bliss. Yet no one objects to pure “hedonium” replacing unprogrammed matter.
Interstellar Travel – Wikipedia
Utilitarianism – Wikipedia

24) The momentous “unknown unknown”.

If you read a text and the author’s last words are “and then I woke up”, everything you’ve read must be interpreted in a new light – semantic holism with a vengeance. By the year 3000, some earth-shattering revelation may have changed everything – some fundamental background assumption of earlier centuries has been overturned that might not have been explicitly represented in our conceptual scheme. If it exists, then I’ve no inkling what this “unknown unknown” might be, unless it lies hidden in the untapped subjective properties of matter and energy. Christian readers might interject “The Second Coming”. Learning the Simulation Hypothesis were true would be a secular example of such a revelation. Some believers in an AI “Intelligence Explosion” speak delphically of “The Singularity”. Whatever – Shakespeare made the point more poetically, “There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy”.

As it stands, yes, (24) is almost vacuous. Yet compare how the philosophers of classical antiquity who came closest to recognising their predicament weren’t intellectual titans like Plato or Aristotle, but instead the radical sceptics. The sceptics guessed they were ignorant in ways that transcended the capacity of their conceptual scheme to articulate. By the lights of the fourth millennium, what I’m writing, and what you’re reading, may be stultified by something that humans don’t know and can’t express.
Ancient Skepticism – SEoP

**********************************************************************

OK, twenty-four predictions! Successful prophets tend to locate salvation or doom within the credible lifetime of their intended audience. The questioner asks about life in the year 3000 rather than, say, a Kurzweilian 2045. In my view, everyone reading this text will grow old and die before the predictions of this answer are realised or confounded – with one possible complication.

Opt-out cryonics and opt-in cryothanasia are feasible long before the conquest of aging. Visiting grandpa in the cryonics facility can turn death into an event in life. I’m not convinced that posthuman superintelligence will reckon that Darwinian malware should be revived in any shape or form. Yet if you want to wake up one morning in posthuman paradise – and I do see the appeal – then options exist:
http://www.alcor.org/

********************************************************************
p.s. I’m curious about the credence (if any) the reader would assign to the scenarios listed here.

Why I think the Foundational Research Institute should rethink its approach

by Mike Johnson

The following is my considered evaluation of the Foundational Research Institute, circa July 2017. I discuss its goal, where I foresee things going wrong with how it defines suffering, and what it could do to avoid these problems.

TL;DR version: functionalism (“consciousness is the sum-total of the functional properties of our brains”) sounds a lot better than it actually turns out to be in practice. In particular, functionalism makes it impossible to define ethics & suffering in a way that can mediate disagreements.

I. What is the Foundational Research Institute?

The Foundational Research Institute (FRI) is a Berlin-based group that “conducts research on how to best reduce the suffering of sentient beings in the near and far future.” Executive Director Max Daniel introduced them at EA Global Boston as “the only EA organization which at an organizational level has the mission of focusing on reducing s-risk.” S-risks are, according to Daniel, “risks where an adverse outcome would bring about suffering on an astronomical scale, vastly exceeding all suffering that has existed on Earth so far.”

Essentially, FRI wants to become the research arm of suffering-focused ethics, and help prevent artificial general intelligence (AGI) failure-modes which might produce suffering on a cosmic scale.

What I like about FRI:

While I have serious qualms about FRI’s research framework, I think the people behind FRI deserve a lot of credit- they seem to be serious people, working hard to build something good. In particular, I want to give them a shoutout for three things:

  • First, FRI takes suffering seriously, and I think that’s important. When times are good, we tend to forget how tongue-chewingly horrific suffering can be. S-risks seem particularly horrifying.
  • Second, FRI isn’t afraid of being weird. FRI has been working on s-risk research for a few years now, and if people are starting to come around to the idea that s-risks are worth thinking about, much of the credit goes to FRI.
  • Third, I have great personal respect for Brian Tomasik, one of FRI’s co-founders. I’ve found him highly thoughtful, generous in debates, and unfailingly principled. In particular, he’s always willing to bite the bullet and work ideas out to their logical end, even if it involves repugnant conclusions.

What is FRI’s research framework?

FRI believes in analytic functionalism, or what David Chalmers calls “Type-A materialism”. Essentially, what this means is there’s no ’theoretical essence’ to consciousness; rather, consciousness is the sum-total of the functional properties of our brains. Since ‘functional properties’ are rather vague, this means consciousness itself is rather vague, in the same way words like “life,” “justice,” and “virtue” are messy and vague.

Brian suggests that this vagueness means there’s an inherently subjective, perhaps arbitrary element to how we define consciousness:

Analytic functionalism looks for functional processes in the brain that roughly capture what we mean by words like “awareness”, “happy”, etc., in a similar way as a biologist may look for precise properties of replicators that roughly capture what we mean by “life”. Just as there can be room for fuzziness about where exactly to draw the boundaries around “life”, different analytic functionalists may have different opinions about where to define the boundaries of “consciousness” and other mental states. This is why consciousness is “up to us to define”. There’s no hard problem of consciousness for the same reason there’s no hard problem of life: consciousness is just a high-level word that we use to refer to lots of detailed processes, and it doesn’t mean anything in addition to those processes.

Finally, Brian argues that the phenomenology of consciousness is identical with the phenomenology of computation:

I know that I’m conscious. I also know, from neuroscience combined with Occam’s razor, that my consciousness consists only of material operations in my brain — probably mostly patterns of neuronal firing that help process inputs, compute intermediate ideas, and produce behavioral outputs. Thus, I can see that consciousness is just the first-person view of certain kinds of computations — as Eliezer Yudkowsky puts it, “How An Algorithm Feels From Inside“. Consciousness is not something separate from or epiphenomenal to these computations. It is these computations, just from their own perspective of trying to think about themselves.

 

In other words, consciousness is what minds compute. Consciousness is the collection of input operations, intermediate processing, and output behaviors that an entity performs.

And if consciousness is all these things, so too is suffering. Which means suffering is computational, yet also inherently fuzzy, and at least a bit arbitrary; a leaky high-level reification impossible to speak about accurately, since there’s no formal, objective “ground truth”.

II. Why do I worry about FRI’s research framework?

In short, I think FRI has a worthy goal and good people, but its metaphysics actively prevent making progress toward that goal. The following describes why I think that, drawing heavily on Brian’s writings (of FRI’s researchers, Brian seems the most focused on metaphysics):

Note: FRI is not the only EA organization which holds functionalist views on consciousness; much of the following critique would also apply to e.g. MIRI, FHI, and OpenPhil. I focus on FRI because (1) Brian’s writings on consciousness & functionalism have been hugely influential in the community, and are clear enough *to* criticize; (2) the fact that FRI is particularly clear about what it cares about- suffering- allows a particularly clear critique about what problems it will run into with functionalism; (3) I believe FRI is at the forefront of an important cause area which has not crystallized yet, and I think it’s critically important to get these objections bouncing around this subcommunity.

Objection 1: Motte-and-bailey

Brian: “Consciousness is not a thing which exists ‘out there’ or even a separate property of matter; it’s a definitional category into which we classify minds. ‘Is this digital mind really conscious?’ is analogous to ‘Is a rock that people use to eat on really a table?’ [However,] That consciousness is a cluster in thingspace rather than a concrete property of the world does not make reducing suffering less important.”

The FRI model seems to imply that suffering is ineffable enough such that we can’t have an objective definition, yet sufficiently effable that we can coherently talk and care about it. This attempt to have it both ways seems contradictory, or at least in deep tension.

Indeed, I’d argue that the degree to which you can care about something is proportional to the degree to which you can define it objectively. E.g., If I say that “gnireffus” is literally the most terrible thing in the cosmos, that we should spread gnireffus-focused ethics, and that minimizing g-risks (far-future scenarios which involve large amounts of gnireffus) is a moral imperative, but also that what is and what and isn’t gnireffus is rather subjective with no privileged definition, and it’s impossible to objectively tell if a physical system exhibits gnireffus, you might raise any number of objections. This is not an exact metaphor for FRI’s position, but I worry that FRI’s work leans on the intuition that suffering is real and we can speak coherently about it, to a degree greater than its metaphysics formally allow.

Max Daniel (personal communication) suggests that we’re comfortable with a degree of ineffability in other contexts; “Brian claims that the concept of suffering shares the allegedly problematic properties with the concept of a table. But it seems a stretch to say that the alleged tension is problematic when talking about tables. So why would it be problematic when talking about suffering?” However, if we take the anti-realist view that suffering is ‘merely’ a node in the network of language, we have to live with the consequences of this: that ‘suffering’ will lose meaning as we take it away from the network in which it’s embedded (Wittgenstein). But FRI wants to do exactly this, to speak about suffering in the context of AGIs, simulated brains, even video game characters.

We can be anti-realists about suffering (suffering-is-a-node-in-the-network-of-language), or we can argue that we can talk coherently about suffering in novel contexts (AGIs, mind crime, aliens, and so on), but it seems inherently troublesome to claim we can do both at the same time.

Objection 2: Intuition duels

Two people can agree on FRI’s position that there is no objective fact of the matter about what suffering is (no privileged definition), but this also means they have no way of coming to any consensus on the object-level question of whether something can suffer. This isn’t just an academic point: Brian has written extensively about how he believes non-human animals can and do suffer extensively, whereas Yudkowsky (who holds computationalist views, like Brian) has written about how he’s confident that animals are not conscious and cannot suffer, due to their lack of higher-order reasoning.

And if functionalism is having trouble adjudicating the easy cases of suffering–whether monkeys can suffer, or whether dogs can— it doesn’t have a sliver of a chance at dealing with the upcoming hard cases of suffering: whether a given AGI is suffering, or engaging in mind crime; whether a whole-brain emulation (WBE) or synthetic organism or emergent intelligence that doesn’t have the capacity to tell us how it feels (or that we don’t have the capacity to understand) is suffering; if any aliens that we meet in the future can suffer; whether changing the internal architecture of our qualia reports means we’re also changing our qualia; and so on.

In short, FRI’s theory of consciousness isn’t actually a theory of consciousness at all, since it doesn’t do the thing we need a theory of consciousness to do: adjudicate disagreements in a principled way. Instead, it gives up any claim on the sorts of objective facts which could in principle adjudicate disagreements.

This is a source of friction in EA today, but it’s mitigated by the sense that

(1) The EA pie is growing, so it’s better to ignore disagreements than pick fights;

(2) Disagreements over the definition of suffering don’t really matter yet, since we haven’t gotten into the business of making morally-relevant synthetic beings (that we know of) that might be unable to vocalize their suffering.

If the perception of one or both of these conditions change, the lack of some disagreement-adjudicating theory of suffering will matter quite a lot.

Objection 3: Convergence requires common truth

Mike: “[W]hat makes one definition of consciousness better than another? How should we evaluate them?”

Brian: “Consilience among our feelings of empathy, principles of non-discrimination, understandings of cognitive science, etc. It’s similar to the question of what makes one definition of justice or virtue better than another.”

Brian is hoping that affective neuroscience will slowly converge to accurate views on suffering as more and better data about sentience and pain accumulates. But convergence to truth implies something (objective) driving the convergence- in this way, Brian’s framework still seems to require an objective truth of the matter, even though he disclaims most of the benefits of assuming this.

Objection 4: Assuming that consciousness is a reification produces more confusion, not less

Brian: “Consciousness is not a reified thing; it’s not a physical property of the universe that just exists intrinsically. Rather, instances of consciousness are algorithms that are implemented in specific steps. … Consciousness involves specific things that brains do.”

Brian argues that we treat conscious/phenomenology as more ‘real’ than it is. Traditionally, whenever we’ve discovered something is a leaky reification and shouldn’t be treated as ‘too real’, we’ve been able to break it down into more coherent constituent pieces we can treat as real. Life, for instance, wasn’t due to élan vital but a bundle of self-organizing properties & dynamics which generally co-occur. But carrying out this “de-reification” process on consciousness– enumerating its coherent constituent pieces– has proven difficult, especially if we want to preserve some way to speak cogently about suffering.

Speaking for myself, the more I stared into the depths of functionalism, the less certain everything about moral value became– and arguably, I see the same trajectory in Brian’s work and Luke Muehlhauser’s report. Their model uncertainty has seemingly become larger as they’ve looked into techniques for how to “de-reify” consciousness while preserving some flavor of moral value, not smaller. Brian and Luke seem to interpret this as evidence that moral value is intractably complicated, but this is also consistent with consciousness not being a reification, and instead being a real thing. Trying to “de-reify” something that’s not a reification will produce deep confusion, just as surely trying to treat a reification as ‘more real’ than it actually is will.

Edsger W. Dijkstra famously noted that “The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise.” And so if our ways of talking about moral value fail to ‘carve reality at the joints’- then by all means let’s build better ones, rather than giving up on precision.

Objection 5: The Hard Problem of Consciousness is a red herring

Brian spends a lot of time discussing Chalmers’ “Hard Problem of Consciousness”, i.e. the question of why we’re subjectively conscious, and seems to base at least part of his conclusion on not finding this question compelling— he suggests “There’s no hard problem of consciousness for the same reason there’s no hard problem of life: consciousness is just a high-level word that we use to refer to lots of detailed processes, and it doesn’t mean anything in addition to those processes.” I.e., no ‘why’ is necessary; when we take consciousness and subtract out the details of the brain, we’re left with an empty set.

But I think the “Hard Problem” isn’t helpful as a contrastive centerpiece, since it’s unclear what the problem is, and whether it’s analytic or empirical, a statement about cognition or about physics. At the Qualia Research Institute (QRI), we don’t talk much about the Hard Problem; instead, we talk about Qualia Formalism, or the idea that any phenomenological state can be crisply and precisely represented by some mathematical object. I suspect this would be a better foil for Brian’s work than the Hard Problem.

Objection 6: Mapping to reality

Brian argues that consciousness should be defined at the functional/computational level: given a Turing machine, or neural network, the right ‘code’ will produce consciousness. But the problem is that this doesn’t lead to a theory which can ‘compile’ to physics. Consider the following:

Imagine you have a bag of popcorn. Now shake it. There will exist a certain ad-hoc interpretation of bag-of-popcorn-as-computational-system where you just simulated someone getting tortured, and other interpretations that don’t imply that. Did you torture anyone? If you’re a computationalist, no clear answer exists- you both did, and did not, torture someone. This sounds like a ridiculous edge-case that would never come up in real life, but in reality it comes up all the time, since there is no principled way to *objectively derive* what computation(s) any physical system is performing.

I don’t think this is an outlandish view of functionalism; Brian suggests much the same in How to Interpret a Physical System as a Mind“Physicalist views that directly map from physics to moral value are relatively simple to understand. Functionalism is more complex, because it maps from physics to computations to moral value. Moreover, while physics is real and objective, computations are fictional and ‘observer-relative’ (to use John Searle’s terminology). There’s no objective meaning to ‘the computation that this physical system is implementing’ (unless you’re referring to the specific equations of physics that the system is playing out).”

Gordon McCabe (McCabe 2004) provides a more formal argument to this effect— that precisely mapping between physical processes and (Turing-level) computational processes is inherently impossible— in the context of simulations. First, McCabe notes that:

[T]here is a one-[to-]many correspondence between the logical states [of a computer] and the exact electronic states of computer memory. Although there are bijective mappings between numbers and the logical states of computer memory, there are no bijective mappings between numbers and the exact electronic states of memory.

This lack of an exact bijective mapping means that subjective interpretation necessarily creeps in, and so a computational simulation of a physical system can’t be ‘about’ that system in any rigorous way:

In a computer simulation, the values of the physical quantities possessed by the simulated system are represented by the combined states of multiple bits in computer memory. However, the combined states of multiple bits in computer memory only represent numbers because they are deemed to do so under a numeric interpretation. There are many different interpretations of the combined states of multiple bits in computer memory. If the numbers represented by a digital computer are interpretation-dependent, they cannot be objective physical properties. Hence, there can be no objective relationship between the changing pattern of multiple bit-states in computer memory, and the changing pattern of quantity-values of a simulated physical system.

McCabe concludes that, metaphysically speaking,

A digital computer simulation of a physical system cannot exist as, (does not possess the properties and relationships of), anything else other than a physical process occurring upon the components of a computer. In the contemporary case of an electronic digital computer, a simulation cannot exist as anything else other than an electronic physical process occurring upon the components and circuitry of a computer.

Where does this leave ethics? In Flavors of Computation Are Flavors of Consciousness, Brian notes that “In some sense all I’ve proposed here is to think of different flavors of computation as being various flavors of consciousness. But this still leaves the question: Which flavors of computation matter most? Clearly whatever computations happen when a person is in pain are vastly more important than what’s happening in a brain on a lazy afternoon. How can we capture that difference?”

But if Brian grants the former point- that “There’s no objective meaning to ‘the computation that this physical system is implementing’”– then this latter task of figuring out “which flavors of computation matter most” is provably impossible. There will always be multiple computational (and thus ethical) interpretations of a physical system, with no way to figure out what’s “really” happening. No way to figure out if something is suffering or not. No consilience; not now, not ever.

Note: despite apparently granting the point above, Brian also remarks that:

I should add a note on terminology: All computations occur within physics, so any computation is a physical process. Conversely, any physical process proceeds from input conditions to output conditions in a regular manner and so is a computation. Hence, the set of computations equals the set of physical processes, and where I say “computations” in this piece, one could just as well substitute “physical processes” instead.

This seems to be (1) incorrect, for the reasons I give above, or (2) taking substantial poetic license with these terms, or (3) referring to hypercomputation (which might be able to salvage the metaphor, but would invalidate many of FRI’s conclusions dealing with the computability of suffering on conventional hardware).

This objection may seem esoteric or pedantic, but I think it’s important, and that it ripples through FRI’s theoretical framework with disastrous effects.

 

Objection 7: FRI doesn’t fully bite the bullet on computationalism

Brian suggests that “flavors of computation are flavors of consciousness” and that some computations ‘code’ for suffering. But if we do in fact bite the bullet on this metaphor and place suffering within the realm of computational theory, we need to think in “near mode” and accept all the paradoxes that brings. Scott Aaronson, a noted expert on quantum computing, raises the following objections to functionalism:

I’m guessing that many people in this room side with Dennett, and (not coincidentally, I’d say) also with Everett. I certainly have sympathies in that direction too. In fact, I spent seven or eight years of my life as a Dennett/Everett hardcore believer. But, while I don’t want to talk anyone out of the Dennett/Everett view, I’d like to take you on a tour of what I see as some of the extremely interesting questions that that view leaves unanswered. I’m not talking about “deep questions of meaning,” but about something much more straightforward: what exactly does a computational process have to do to qualify as “conscious”?

 

 

There’s this old chestnut, what if each person on earth simulated one neuron of your brain, by passing pieces of paper around. It took them several years just to simulate a single second of your thought processes. Would that bring your subjectivity into being? Would you accept it as a replacement for your current body? If so, then what if your brain were simulated, not neuron-by-neuron, but by a gigantic lookup table? That is, what if there were a huge database, much larger than the observable universe (but let’s not worry about that), that hardwired what your brain’s response was to every sequence of stimuli that your sense-organs could possibly receive. Would that bring about your consciousness? Let’s keep pushing: if it would, would it make a difference if anyone actually consulted the lookup table? Why can’t it bring about your consciousness just by sitting there doing nothing?

To these standard thought experiments, we can add more. Let’s suppose that, purely for error-correction purposes, the computer that’s simulating your brain runs the code three times, and takes the majority vote of the outcomes. Would that bring three “copies” of your consciousness into being? Does it make a difference if the three copies are widely separated in space or time—say, on different planets, or in different centuries? Is it possible that the massive redundancy taking place in your brain right now is bringing multiple copies of you into being?

 

 

Maybe my favorite thought experiment along these lines was invented by my former student Andy Drucker.  In the past five years, there’s been a revolution in theoretical cryptography, around something called Fully Homomorphic Encryption (FHE), which was first discovered by Craig Gentry.  What FHE lets you do is to perform arbitrary computations on encrypted data, without ever decrypting the data at any point.  So, to someone with the decryption key, you could be proving theorems, simulating planetary motions, etc.  But to someone without the key, it looks for all the world like you’re just shuffling random strings and producing other random strings as output.

 

You can probably see where this is going.  What if we homomorphically encrypted a simulation of your brain?  And what if we hid the only copy of the decryption key, let’s say in another galaxy?  Would this computation—which looks to anyone in our galaxy like a reshuffling of gobbledygook—be silently producing your consciousness?

 

When we consider the possibility of a conscious quantum computer, in some sense we inherit all the previous puzzles about conscious classical computers, but then also add a few new ones.  So, let’s say I run a quantum subroutine that simulates your brain, by applying some unitary transformation U.  But then, of course, I want to “uncompute” to get rid of garbage (and thereby enable interference between different branches), so I apply U-1.  Question: when I apply U-1, does your simulated brain experience the same thoughts and feelings a second time?  Is the second experience “the same as” the first, or does it differ somehow, by virtue of being reversed in time? Or, since U-1U is just a convoluted implementation of the identity function, are there no experiences at all here?

 

Here’s a better one: many of you have heard of the Vaidman bomb.  This is a famous thought experiment in quantum mechanics where there’s a package, and we’d like to “query” it to find out whether it contains a bomb—but if we query it and there is a bomb, it will explode, killing everyone in the room.  What’s the solution?  Well, suppose we could go into a superposition of querying the bomb and not querying it, with only ε amplitude on querying the bomb, and √(1-ε2) amplitude on not querying it.  And suppose we repeat this over and over—each time, moving ε amplitude onto the “query the bomb” state if there’s no bomb there, but moving ε2 probability onto the “query the bomb” state if there is a bomb (since the explosion decoheres the superposition).  Then after 1/ε repetitions, we’ll have order 1 probability of being in the “query the bomb” state if there’s no bomb.  By contrast, if there is a bomb, then the total probability we’ve ever entered that state is (1/ε)×ε2 = ε.  So, either way, we learn whether there’s a bomb, and the probability that we set the bomb off can be made arbitrarily small.  (Incidentally, this is extremely closely related to how Grover’s algorithm works.)

 

OK, now how about the Vaidman brain?  We’ve got a quantum subroutine simulating your brain, and we want to ask it a yes-or-no question.  We do so by querying that subroutine with ε amplitude 1/ε times, in such a way that if your answer is “yes,” then we’ve only ever activated the subroutine with total probability ε.  Yet you still manage to communicate your “yes” answer to the outside world.  So, should we say that you were conscious only in the ε fraction of the wavefunction where the simulation happened, or that the entire system was conscious?  (The answer could matter a lot for anthropic purposes.)

To sum up: Brian’s notion that consciousness is the same as computation raises more issues than it solves; in particular, the possibility that if suffering is computable, it may also be uncomputable/reversible, would suggest s-risks aren’t as serious as FRI treats them.

Objection 8: Dangerous combination

Three themes which seem to permeate FRI’s research are:

(1) Suffering is the thing that is bad.

(2) It’s critically important to eliminate badness from the universe.

(3) Suffering is impossible to define objectively, and so we each must define what suffering means for ourselves.

Taken individually, each of these seems reasonable. Pick two, and you’re still okay. Pick all three, though, and you get A Fully General Justification For Anything, based on what is ultimately a subjective/aesthetic call.

Much can be said in FRI’s defense here, and it’s unfair to single them out as risky: in my experience they’ve always brought a very thoughtful, measured, cooperative approach to the table. I would just note that ideas are powerful, and I think theme (3) is especially pernicious if incorrect.

III. QRI’s alternative

Analytic functionalism is essentially a negative hypothesis about consciousness: it’s the argument that there’s no order to be found, no rigor to be had. It obscures this with talk of “function”, which is a red herring it not only doesn’t define, but admits is undefinable. It doesn’t make any positive assertion. Functionalism is skepticism- nothing more, nothing less.

But is it right?

Ultimately, I think these a priori arguments are much like people in the middle ages arguing whether one could ever formalize a Proper System of Alchemy. Such arguments may in many cases hold water, but it’s often difficult to tell good arguments apart from arguments where we’re just cleverly fooling ourselves. In retrospect, the best way to *prove* systematized alchemy was possible was to just go out and *do* it, and invent Chemistry. That’s how I see what we’re doing at QRI with Qualia Formalism: we’re assuming it’s possible to build stuff, and we’re working on building the object-level stuff.

What we’ve built with QRI’s framework

Note: this is a brief, surface-level tour of our research; it will probably be confusing for readers who haven’t dug into our stuff before. Consider this a down-payment on a more substantial introduction.

My most notable work is Principia Qualia, in which I lay out my meta-framework for consciousness (a flavor of dual-aspect monism, with a focus on Qualia Formalism) and put forth the Symmetry Theory of Valence (STV). Essentially, the STV is an argument that much of the apparent complexity of emotional valence is evolutionarily contingent, and if we consider a mathematical object isomorphic to a phenomenological experience, the mathematical property which corresponds to how pleasant it is to be that experience is the object’s symmetry. This implies a bunch of testable predictions and reinterpretations of things like what ‘pleasure centers’ do (Section XI; Section XII). Building on this, I offer the Symmetry Theory of Homeostatic Regulation, which suggests understanding the structure of qualia will translate into knowledge about the structure of human intelligence, and I briefly touch on the idea of Neuroacoustics.

Likewise, my colleague Andrés Gómez Emilsson has written about the likely mathematics of phenomenology, including The Hyperbolic Geometry of DMT Experiences, Tyranny of the Intentional Object, and Algorithmic Reduction of Psychedelic States. If I had to suggest one thing to read in all of these links, though, it would be the transcript of his recent talk on Quantifying Bliss, which lays out the world’s first method to objectively measure valence from first principles (via fMRI) using Selen Atasoy’s Connectome Harmonics framework, the Symmetry Theory of Valence, and Andrés’s CDNS model of experience.

These are risky predictions and we don’t yet know if they’re right, but we’re confident that if there is some elegant structure intrinsic to consciousness, as there is in many other parts of the natural world, these are the right kind of risks to take.

I mention all this because I think analytic functionalism- which is to say radical skepticism/eliminativism, the metaphysics of last resort- only looks as good as it does because nobody’s been building out any alternatives.

IV. Closing thoughts

FRI is pursuing a certain research agenda, and QRI is pursuing another, and there’s lots of value in independent explorations of the nature of suffering. I’m glad FRI exists, everybody I’ve interacted with at FRI has been great, I’m happy they’re focusing on s-risks, and I look forward to seeing what they produce in the future.

On the other hand, I worry that nobody’s pushing back on FRI’s metaphysics, which seem to unavoidably lead to the intractable problems I describe above. FRI seems to believe these problems are part of the territory, unavoidable messes that we just have to make philosophical peace with. But I think that functionalism is a bad map, that the metaphysical messes it leads to are much worse than most people realize (fatal to FRI’s mission), and there are other options that avoid these problems (which, to be fair, is not to say they have no problems).

Ultimately, FRI doesn’t owe me a defense of their position. But if they’re open to suggestions on what it would take to convince a skeptic like me that their brand of functionalism is viable, or at least rescuable, I’d offer the following:

Re: Objection 1 (motte-and-bailey), I suggest FRI should be as clear and complete as possible in their basic definition of suffering. In which particular ways is it ineffable/fuzzy, and in which particular ways is it precise? What can we definitely say about suffering, and what can we definitely never determine? Preregistering ontological commitments and methodological possibilities would help guard against FRI’s definition of suffering changing based on context.

Re: Objection 2 (intuition duels), FRI may want to internally “war game” various future scenarios involving AGI, WBE, etc, with one side arguing that a given synthetic (or even extraterrestrial) organism is suffering, and the other side arguing that it isn’t. I’d expect this would help diagnose what sorts of disagreements future theories of suffering will need to adjudicate, and perhaps illuminate implicit ethical intuitions. Sharing the results of these simulated disagreements would also be helpful in making FRI’s reasoning less opaque to outsiders, although making everything transparent could lead to certain strategic disadvantages.

Re: Objection 3 (convergence requires common truth), I’d like FRI to explore exactly what might drive consilience/convergence in theories of suffering, and what precisely makes one theory of suffering better than another, and ideally to evaluate a range of example theories of suffering under these criteria.

Re: Objection 4 (assuming that consciousness is a reification produces more confusion, not less), I would love to see a historical treatment of reification: lists of reifications which were later dissolved (e.g., élan vital), vs scattered phenomena that were later unified (e.g., electromagnetism). What patterns do the former have, vs the latter, and why might consciousness fit one of these buckets better than the other?

Re: Objection 5 (the Hard Problem of Consciousness is a red herring), I’d like to see a more detailed treatment of what kinds of problem people have interpreted the Hard Problem as, and also more analysis on the prospects of Qualia Formalism (which I think is the maximally-empirical, maximally-charitable interpretation of the Hard Problem). It would be helpful for us, in particular, if FRI preregistered their expectations about QRI’s predictions, and their view of the relative evidence strength of each of our predictions.

Re: Objection 6 (mapping to reality), this is perhaps the heart of most of our disagreement. From Brian’s quotes, he seems split on this issue; I’d like clarification about whether he believes we can ever precisely/objectively map specific computations to specific physical systems, and vice-versa. And if so— how? If not, this seems to propagate through FRI’s ethical framework in a disastrous way, since anyone can argue that any physical system does, or does not, ‘code’ for massive suffering, and there’s no principled way to derive any ‘ground truth’ or even pick between interpretations in a principled way (e.g. my popcorn example). If this isn’t the case— why not?

Brian has suggested that “certain high-level interpretations of physical systems are more ‘natural’ and useful than others” (personal communication); I agree, and would encourage FRI to explore systematizing this.

It would be non-trivial to port FRI’s theories and computational intuitions to the framework of “hypercomputation”– i.e., the understanding that there’s a formal hierarchy of computational systems, and that Turing machines are only one level of many– but it may have benefits too. Namely, it might be the only way they could avoid Objection 6 (which I think is a fatal objection) while still allowing them to speak about computation & consciousness in the same breath. I think FRI should look at this and see if it makes sense to them.

Re: Objection 7 (FRI doesn’t fully bite the bullet on computationalism), I’d like to see responses to Aaronson’s aforementioned thought experiments.

Re: Objection 8 (dangerous combination), I’d like to see a clarification about why my interpretation is unreasonable (as it very well may be!).

 


In conclusion- I think FRI has a critically important goal- reduction of suffering & s-risk. However, I also think FRI has painted itself into a corner by explicitly disallowing a clear, disagreement-mediating definition for what these things are. I look forward to further work in this field.

 

Mike Johnson

Qualia Research Institute


Acknowledgements: thanks to Andrés Gómez Emilsson, Brian Tomasik, and Max Daniel for reviewing earlier drafts of this.

Sources:

My sources for FRI’s views on consciousness:
Flavors of Computation are Flavors of Consciousness:
https://foundational-research.org/flavors-of-computation-are-flavors-of-consciousness/
Is There a Hard Problem of Consciousness?
http://reducing-suffering.org/hard-problem-consciousness/
Consciousness Is a Process, Not a Moment
http://reducing-suffering.org/consciousness-is-a-process-not-a-moment/
How to Interpret a Physical System as a Mind
http://reducing-suffering.org/interpret-physical-system-mind/
Dissolving Confusion about Consciousness
http://reducing-suffering.org/dissolving-confusion-about-consciousness/
Debate between Brian & Mike on consciousness:
https://www.facebook.com/groups/effective.altruists/permalink/1333798200009867/?comment_id=1333823816673972&comment_tracking=%7B%22tn%22%3A%22R9%22%7D
Max Daniel’s EA Global Boston 2017 talk on s-risks:
https://www.youtube.com/watch?v=jiZxEJcFExc
Multipolar debate between Eliezer Yudkowsky and various rationalists about animal suffering:
https://rationalconspiracy.com/2015/12/16/a-debate-on-animal-consciousness/
The Internet Encyclopedia of Philosophy on functionalism:
http://www.iep.utm.edu/functism/
Gordon McCabe on why computation doesn’t map to physics:
http://philsci-archive.pitt.edu/1891/1/UniverseCreationComputer.pdf
Toby Ord on hypercomputation, and how it differs from Turing’s work:
https://arxiv.org/abs/math/0209332
Luke Muehlhauser’s OpenPhil-funded report on consciousness and moral patienthood:
http://www.openphilanthropy.org/2017-report-consciousness-and-moral-patienthood
Scott Aaronson’s thought experiments on computationalism:
http://www.scottaaronson.com/blog/?p=1951
Selen Atasoy on Connectome Harmonics, a new way to understand brain activity:
https://www.nature.com/articles/ncomms10340
My work on formalizing phenomenology:
My meta-framework for consciousness, including the Symmetry Theory of Valence:
http://opentheory.net/PrincipiaQualia.pdf
My hypothesis of homeostatic regulation, which touches on why we seek out pleasure:
http://opentheory.net/2017/05/why-we-seek-out-pleasure-the-symmetry-theory-of-homeostatic-regulation/
My exploration & parametrization of the ‘neuroacoustics’ metaphor suggested by Atasoy’s work:
http://opentheory.net/2017/06/taking-brain-waves-seriously-neuroacoustics/
My colleague Andrés’s work on formalizing phenomenology:
A model of DMT-trip-as-hyperbolic-experience:
https://qualiacomputing.com/2017/05/28/eli5-the-hyperbolic-geometry-of-dmt-experiences/
June 2017 talk at Consciousness Hacking, describing a theory and experiment to predict people’s valence from fMRI data:
https://qualiacomputing.com/2017/06/18/quantifying-bliss-talk-summary/
A parametrization of various psychedelic states as operators in qualia space:
https://qualiacomputing.com/2016/06/20/algorithmic-reduction-of-psychedelic-states/
A brief post on valence and the fundamental attribution error:
https://qualiacomputing.com/2016/11/19/the-tyranny-of-the-intentional-object/
A summary of some of Selen Atasoy’s current work on Connectome Harmonics:
https://qualiacomputing.com/2017/06/18/connectome-specific-harmonic-waves-on-lsd/

Qualia Computing at Consciousness Hacking (June 7th 2017)

I am delighted to announce that I will be presenting at Consciousness Hacking in San Francisco on 2017/6/7 (YMD notation).

Consciousness Hacking (CoHack) is an extremely awesome community that blends a genuine interest in benevolence, scientific rationality, experiential spirituality, self-experimentation, and holistic wellbeing together with an unceasing focus on consciousness. Truth be told, CohHack is one of the reasons why I love living in the Bay Area.

Here are the relevant event links: Eventbrite, FacebookMeetup.

And the event description:


What would happen if a bliss technology capable of inducing a constant MDMA-like state of consciousness with no negative side effects were available? What makes an experience good or bad? Is happiness a spiritual trick, or is spirituality a happiness trick?

At this month’s speaker presentation, Consciousness Hacking invites Data Science Engineer, Andrés Gómez Emilsson to discuss current research, including his own, concerning the measurement of bliss, how blissful brain states can be induced, and what implications this may have on quality of life and our relationship with the world around us.

Emilsson’s research aims to create a mathematical theory of the pleasure-pain axis that can take information about a person’s brain at a given point in time and return the approximate (or even true) level of happiness and suffering for that person. Emilsson will explore two dimensions that have been studied in affective neuroscience for decades:

  • Arousal: how much energy and activation a given emotion has
  • Valence: the “feel good or feel bad” dimension of emotion

If the purpose of life is to feel happy and to make others happy, then figuring out how valence is implemented in the brain may take us a long way in that direction. Current approaches to valence, while helpful, usually don’t address the core of the problem (ie. usually just measuring the symptoms of pleasure such as the neurotransmitters that trigger it, brain regions, positive reinforcement, etc. rather than getting at the experience of pleasure itself).

A real science of valence would not only be able to integrate and explain why the things people report as pleasurable are pleasant, it would also make a precise, empirically falsifiable hypothesis about whether arbitrary brain states will feel good or bad. This is what Emilsson aims to do.

You will take away:

  • An understanding about the current scientific consensus on the nature of happiness in the brain, and why it is incomplete
  • A philosophical case for both the feasibility and desirability of a world devoid of intense suffering
  • A new candidate mathematical formula that can be used to predict the psychological wellbeing of a brain at a given point in time
  • An argument for why bliss technology that puts us in a constant MDMA-like state of consciousness with no negative side effects is likely to become available within the next two to five decades
  • The opportunity to network with other people who are serious about figuring out the meaning of life through introspection and neuroscience

About our speaker:

Andrés Gómez Emilsson was born in México City in 1990. From an early age, he developed an interest in philosophy, mathematics, and science, leading him to compete nationally and internationally in Math and Science Olympiads. At 16, his main interest was mathematics, but after an unexpected “mystical experience”, he turned his attention to consciousness and the philosophical problems that it poses. He studied Symbolic Systems with an Artificial Intelligence concentration at Stanford, and later finished a masters in Computational Psychology at the same university. During his time at Stanford he co-founded the Stanford Transhumanist Association and became good friends with transhumanist philosopher David Pearce, taking on the flag of the Hedonistic Imperative (HI). In order to pursue the long-term goals of HI, his current primary intellectual interest is to reverse-engineer the functional, biochemical and/or quantum signatures of pure bliss.

He is currently working at a Natural Language Processing company in San Francisco, creating quantitative measures of employee happiness, productivity, and ethics at companies, with the long-term intent of creating a consciousness research institute that’s also a great place to work for (i.e. one in which employees are happy, productive, and ethical). In his free time he develops psychophysical tools to study the computational properties of consciousness.

Schedule:

6:30: Check in, snacks

6:45: Structured schmoozing

6:55: Event intro and meditation

7:00: Andrés Gómez Emilsson

7:50: Break

8:00: Break-out Sessions (small group discussion)

9:00: Break-out Recap

9:15: Closing meditation

About our venue:

ECO-SYSTM is a dynamic community of creative professionals, startups, and freelancers, founded on the idea that entertainment, creativity and business can come together to offer a truly unique work experience for Bay Area professionals. Check out membership plans here: http://eco-systm.com/


 

Their Scientific Significance is Hard to Overstate

I think it’s hard to overstate the cognitive significance of major psychedelics for the future of sentience. But it’s also hard to convey why these agents can be valuable tools of investigation to academics who have never tried them. I know distinguished drug-naive philosophers of mind (and transhumanists) who are certain that psychedelia can’t be significant – and it would be irresponsible to urge them to put their assumptions to the test. Perhaps the best I can do is offer an analogy. Imagine an ultra-intelligent tribe of congenitally blind extraterrestrials. Their ignorance of vision and visual concepts is not explicitly represented in their conceptual scheme. To members of this hypothetical species, visual experiences wouldn’t be information-bearing any more than a chaotic drug-induced eruption of bat-like echolocatory experiences would be information-bearing to us. Such modes of experience have never been recruited to play a sensory or signaling function. At any rate, some time during the history of this imaginary species, one of the tribe discovers a drug that alters his neurochemistry. The drug doesn’t just distort his normal senses and sense of self. It triggers what we would call visual experiences: vivid, chaotic in texture and weirder than anything the drug-taker had ever imagined. What can the drug-intoxicated subject do to communicate his disturbing new categories of experiences to his tribe’s scientific elite? If he simply says that the experiences are “ineffable”, then the sceptics will scorn such mysticism and obscurantism. If he speaks metaphorically, and expresses himself using words from the conceptual scheme grounded in the dominant sensory modality of his species, then he’ll probably babble delirious nonsense. Perhaps he’ll start talking about messages from the gods or whatever. Critically, the drug user lacks the necessary primitive terms to communicate his experiences, let alone a theoretical understanding of what’s happening. Perhaps he can attempt to construct a rudimentary private language. Yet its terms lack public “criteria of use”, so his tribe’s quasi-Wittgensteinian philosophers will invoke the (Anti-)Private Language Argument to explain why it’s meaningless. Understandably, the knowledge elite are unimpressed by the drug-disturbed user’s claims of making a profound discovery. They can exhaustively model the behaviour of the stuff of the physical world with the equations of their scientific theories, and their formal models of mind are computationally adequate. The drug taker sounds psychotic. Yet from our perspective, we can say the alien psychonaut has indeed stumbled on a profound discovery, even though he has scarcely glimpsed its implications: the raw materials of what we would call the visual world in all its glory.

 

Anyhow, I worry that our own predicament resembles in more extreme form the hubris of the blind super-rationalists I describe above. In fact, intellectually, I worry far more about my ignorance of other modes of conscious existence than I do my cognitive biases or deficiencies of reasoning within ordinary waking consciousness. Sure, I’d love to know the master equation of a unified field theory. I’d love even more to know what it’s like to inhabit a world of echolocation like a bat – and to understand the indescribable weirdness of LSD, DMT or Salvia. It transpires that ordinary waking and dreaming consciousness are just two among numerous wholly or partially incommensurable realms of sentience. What we call waking consciousness was doubtless a fitness-enhancing adaptation in the ancestral environment of adaptation. But it occupies only a tiny fraction of experiential state-space. Our ignorance is all the more insidious because it is not explicitly represented in our conceptual scheme. From the inside, a dreamer has little insight into the nature of a dream, even in rare moments of “lucid dreaming”; and I fear this may be true of ordinary waking consciousness too. Unfortunately, the only way to even partially apprehend the nature of radically altered states is by first-person investigation, i.e. to instantiate the neurochemical substrates of the states in question. If drug-naive, you can’t fruitfully read about them. Compare how (ostensibly) trivial is the difference in the gene expression signature of neurons mediating phenomenal colour and sound. Who knows what further categories of experience other “trivial” bimolecular variations will open up, not to speak of more radical neurochemical changes? Thousands of scholarly philosophy papers and books have been written on consciousness in recent years by drug-naive academics. Psychedelic researchers worry that too many of them evoke Aristotelean scholasticism, whereas what we need is a post-Galilean experimental science of consciousness. Perhaps the nearest I come to an intellectual hero is psychedelic chemist Alexander Shulgin, whose pioneering methodology is described in PiHKAL. Alas, Shulgin doesn’t yet occupy a prominent place in the transhumanist pantheon.

 

It’s worth stressing that taking psychedelics is not a fast-track passport to either happiness or wisdom. If you take the kappa opioid agonist Salvinorin A found in Salvia divinorum, for instance, you might easily have a waking nightmare. And the experience may easily be unintelligible rather than illuminating. Even in a society of sighted people and a rich visually-based conceptual scheme, it takes years for a congenitally blind person who is surgically granted the gift of sight to master visual literacy. So understanding the implications of radically altered states may well take millennia. I’d hazard a guess and say comprehension will take millions of years and more. Either way, our descendants may be not just superintelligent but supersentient – blessed with the capacity to shift between a multitude of radically different modes of consciousness whose only common ingredient is the molecular signature of bliss. Posthuman mastery of reward circuitry will let them safely explore psychedelia in a way most humans beings don’t dare. Yes, it’s prudent for us to play safe; but in consequence our consciousness may be comparatively shallow and one-dimensional. Mine is today.

 
David Pearce‘s response to a question during an H+ interview (Autumn 2009)

Raising the Table Stakes for Successful Theories of Consciousness

What should we expect out of a theory of consciousness?

For a scientific theory of consciousness to have even the slightest chance at being correct it must be able to address- at the very least– the following four questions*:

  1. Why consciousness exists at all (i.e. “the hard problem“; why we are not p-zombies)
  2. How it is possible to experience multiple pieces of information at once in a unitary moment of experience (i.e. the phenomenal binding problem; the boundary problem)
  3. How consciousness exerts the causal power necessary to be recruited by natural selection and allow us to discuss its existence (i.e. the problem of causal impotence vs. causal overdetermination)
  4. How and why consciousness has its countless textures (e.g. phenomenal color, smell, emotions, etc.) and the interdependencies of their different values (i.e. the palette problem)

In addition the theory must be able to generate experimentally testable predictions. In Popper’s sense the theory must make “risky” predictions. In a Bayesian sense the theory must be able to generate predictions that have a much higher likelihood given that the theory is correct versus not so that the a posteriori probabilities of the different hypotheses are substantially different from their priors once the experiment is actually carried out.

As discussed in a previous article most contemporary philosophies of mind are unable to address one or more of these four problems (or simply fail to make any interesting predictions). David Pearce’s non-materialist physicalist idealism (not the schizophrenic word-salad that may seem at first) is one of the few theories that promises to meet this criteria and makes empirical predictions. This theory addresses the above questions in the following way:

(1) Why does consciousness exist?

Consciousness exists because reality is made of qualia. In particular, one might say that physics is implicitly the science that studies the flux of qualia. This would imply that in fact all that exists is a set of experiences whose interrelationships are encoded in the Universal Wavefunction of Quantum Field Theory. Thus we are collapsing two questions (“why does consciousness arise in our universe?” and “why does the universe exist?”) into a single question (“why does anything exist?”). More so, the question “why does anything exist?” may ultimately be solved with Zero Ontology. In other words, all that exists is implied by the universe having literally no information whatsoever. All (apparent) information is local; universally we live in an information-less quantum Library of Babel.

(2) Why and how is consciousness unitary?

Due to the expansion of the universe the universal wavefunction has topological bifurcations that effectively create locally connected networks of quantum entanglement that are unconnected to the rest of reality. These networks meet the criteria of being ontologically unitary while having the potential to hold multiple pieces of information at once. In other words, Pearce’s theory of consciousness postulates that the world is made of a large number of experiences, though the vast majority of them are incredibly tiny and short-lived. The overwhelming bulk of reality is made of decohered micro-experiences which are responsible for most of the phenomena we see in the macroscopic world ranging from solidity to Newton’s laws of motion.

A few of these networks of entanglement are us: you, right now, as a unitary “thin subject” of experience, according to this theory, are one of these networks (cf. Mereological Nihilism). Counter-intuitively, while a mountain is in some sense much bigger than yourself, at a deeper level you are bigger than the biggest object you will find in a mountain. Taking seriously the phenomenal binding problem we have to conclude that a mountain is for the most part just made of fields of decohered qualia, and thus, unlike a given biologically-generated experience, it is not “a unitary subject of experience”. In order to grasp this point it is necessary to contemplate a very extreme generalization of Empty Individualism: not only is it that every moment of a person’s experience is a different subject of experience, but the principle applies to every single network of entanglement in the entire multiverse. Only a tiny minority of these have anything to do with minds representing worlds. And even those that participate in the creation of a unitary experience exist within an ecosystem that gives rise to an evolutionary process in which quintillions of slightly different entanglement networks compete in order to survive in the extreme environments provided by nervous systems. Your particular experience is an entanglement network that evolved in order to survive in the specific brain state that is present right now. In other words, macroscopic experiences are the result of harnessing the computational power of Quantum Darwinism by applying it to a very particular configuration of the CNS. Brain states themselves encode Constraint Satisfaction Problems with the networks of electric gradients across firing neurons in sub-millisecond scales instantiating constraints whose solutions are found with sub-femtosecond quantum darwinism.

(3) How can consciousness be causally efficacious?

Consciousness exerts its causal power by virtue of being the only thing that exists. If anything is causal at all, it must, in the final analysis, be consciousness. No matter one’s ultimate theory of causality, assuming that physics describes the flux of qualia, then what instantiates such causality has to be this very flux.

Even under Eternalism/block view of the universe/Post-Everettian QM you can still meaningfully reconstruct causality in terms of the empirical rules for statistical independence across certain dimensions of fundamental reality. The dimensions that have time-like patterns of statistical independence will subjectively be perceived as being the arrows of time in the multiverse (cf. Timeless Causality).

Now an important caveat with this view of the relationship between qualia and causality is that it seems as if at least a weak version of epiphenomenalism must be true. The inverted spectrum thought experiment (ironically usually used in favor of the existence of qualia) can be used to question the causal power of qualia. This brings us to the fourth point:

(4) How do we explain the countless textures of consciousness?

How and why does consciousness have its countless textures and what determines its interrelationships? Pearce anticipates that someday we will have a Rosetta Stone for translating patterns of entanglement in quantum fields to corresponding varieties of qualia (e.g. colors, smells, sounds, etc.). Now, admittedly it seems far fetched that the different quantum fields and their interplay will turn out to be the source of the different qualia varieties. But is there something that in principle precludes this ontological correspondence? Yes, there are tremendous philosophical challenges here, the most salient of which might be the “being/form boundary”. This is the puzzle concerning why states of being (i.e. networks of entangled qualia) would act a certain way by virtue of their phenomenal character in and of itself (assuming its phenomenal character is what gives them reality to begin with). Indeed, what could possibly attach at a fundamental level the behavior of a given being and its intrinsic subjective texture? A compromise between full-fledged epiphenomenalism and qualia-based causality is to postulate a universal principle concerning the preference for full-spectrum states over highly differentiated ones. Consider for example how negative and positive electric charge “seek to cancel each other out”. Likewise, the Quantum Chromodynamics of quarks inside protons and neutrons works under a similar but generalized principle: color charges seek to cancel/complement each other out and become “white” or “colorless”. This principle would suggest that the causal power of specific qualia values comes from the gradient ascent towards more full-spectrum-like states rather than from the specific qualia values on their own.  If this were to be true, one may legitimately wonder whether hedonium and full-spectrum states are perhaps one and the same thing (cf. Valence structuralism). In some way this account of the “being/form boundary” is similar to process philosophy,  but unlike process philosophy, here we are also taking mereological nihilism and wavefuction monism seriously.

However far-fetched it may be to postulate intrinsic causal properties for qualia values, if the ontological unity of science is to survive, there might be no other option. As we’ve seen, simple “patterns of computation” or “information processing” cannot be the source of qualia, since nothing that isn’t a quantum coherent wavefunction actually has independent existence. Unitary minds cannot supervene on decohered quantum fields. Thus the various kinds of qualia have to be searched for in networks of quantum entanglement; within a physicalist paradigm there is nowhere else for them to be.

Alternative Theories

I am very open to the possibility that other theories of consciousness are able to address these four questions. I have yet to see any evidence of this, though. But, please, change my mind if you can! Does your theory of consciousness rise to the challenge?


* This particular set of criteria was proposed by David Pearce (cf. Qualia Computing in Tucson). I would agree with him that these are crucial questions; indeed they make up the bare minimum that such a theory must satisfy. That said, we can formulate more comprehensive sets of problems to solve. An alternative framework that takes this a little further can be found in Michael Johnson’s book Principia Qualia (Eight Problems for a New Science of Consciousness).

The Tyranny of the Intentional Object

> Rats, of course, have a very poor image in our culture. Our mammalian cousins are still widely perceived as “vermin”. Thus the sight of a blissed-out, manically self-stimulating rat does not inspire a sense of vicarious happiness in the rest of us. On the contrary, if achieving invincible well-being entails launching a program of world-wide wireheading – or its pharmacological and/or genetic counterparts – then most of us will recoil in distaste.
> Yet the Olds’ rat, and the image of electronically-triggered bliss, embody a morally catastrophic misconception of the landscape of options for paradise-engineering in the aeons ahead. For the varieties of genetically-coded well-being on offer to our successors needn’t be squalid or self-centered. Nor need they be insipid, empty and amoral à la Huxley’s Brave New World. Our future modes of well-being can be sublime, cerebral and empathetic – or take forms hitherto unknown.
> Instead of being toxic, such exotically enriched states of consciousness can be transformed into the everyday norm of mental health. When it’s precision-engineered, hedonic enrichment needn’t lead to unbridled orgasmic frenzy. Nor need hedonic enrichment entail getting stuck in a wirehead rut. This is partly because in a naturalistic setting, even the crudest dopaminergic drugs tend to increase exploratory behaviour, will-power and the range of stimuli an organism finds rewarding. Novelty-seeking is normally heightened. Dopaminergics aren’t just euphoriants: they also enhance “incentive-motivation”. On this basis, our future is likely to be more diverse, not less.
> Perhaps surprisingly too, controlled euphoria needn’t be inherently “selfish” – i.e. hedonistic in the baser, egoistic sense. Non-neurotoxic and sustainable analogues of empathogen hug-drugs like MDMA (“Ecstasy“) – which releases a lot of extra serotonin and some extra dopamine – may potentially induce extraordinary serenity, empathy and love for others. An arsenal of cognitive enhancers will allow us be smarter too. For feeling blissful isn’t the same as being “blissed-out”.
Wirehead Hedonism vs Paradise Engineering by David Pearce

Direct realism is the view that we can perceive “directly” the world around us. A direct realist may say things like “the color red is a property of objects” and “red is a frequency of light”. Contrast this view with representative/indirect realism, which posits that we all live in private world simulations that (for evolutionary reasons) accurately depict some of the important properties of our environment having to do with survival and reproduction but do not depict the environment as it truly is. A representative realist may say that “red is one of the underlying phenomenal parameters that furbishes the walls of my own private world simulation.” It so happens that the qualia of red is often triggered by such and such frequencies of light, but blind people with synesthesia of the sound-color variety can experience phenomenal red upon hearing certain notes anyway. We can indeed dissociate the medium as well as the sensory apparatus that usually triggers a given qualia variety from the qualia variety in and of itself.

Whereas direct realism about perception can be weakened with philosophy and psychedelia, most people are indeed direct realists about valence (i.e. the pleasure-pain axis) for their entire lives. To be a direct realist about valence is to believe that the only way for you to be happy is to experience the triggers that in the past have usually seemed like the source of positive and negative states. Valence- how good an experience feels- is a property of experiences, but these experiences are implemented in such a way that pleasure appears to come from outside rather than from within. Thus, a kid may conceptualize a clown as the personification of evil, and think of a chocolate bar as an object made of tiny particles of pure deliciousness. The experiential horizon, of course, is ultimately still within the bounds of the simulation, but we are so immersed in our minds and its value systems that at times it is hard to understand that what ends up triggering our states of wellbeing is programmable and somewhat arbitrary.

A direct realist about valence may say something like “the soup is delicious” and mean it full heartedly in a literal sense. Someone who is not a direct realist about valence would say that “your world simulation happens to get more pleasant when you are sipping the soup” not that “the soup, in and of itself, is delicious”. The direct realist about valence may insist that it is in fact the soup- out there in the real world- that has the property of “deliciousness” and that if others do not like the soup they are merely having a perceptual problem. The truth of the deliciousness of the soup, the direct realist claims, does not leave room for personal opinion. Of course few people are this extreme and bite the bullet of their implicit metaphysical intuitions. But a subtler version of this kind of realism does seem to permeate throughout the vast majority of human activities and rituals. To illustrate how direct realism about valence can influence one’s worldview let me introduce you to:

Sandy the Dog!

Sandy is a Golden Retriever that loves life and sand. He does not know why sand is so awesome, but he doesn’t care because it doesn’t matter, for all he knows “sand is awesome” is a brute fact of existence. He wonders whether the similarity between his name and his passion means that they were born for each other, but other than that he has no clue as to why sand and him partner so well. Other than this odd passion of his, Sandy has a normal life as a domestic dog; he responds to the same range of rewards as your typical Golden Retriever. He loves being pet by his owner, playing fetch and eating delicious food really fast. He is in generally good health, too.

Of all the wonderful things that Sandy knows about, nothing makes him happier than going to the beach. For Sandy the beach is the most beautiful thing in the universe because it is the maximum expression of sand. You wouldn’t believe how excited he gets when he approaches the beach. Then how incredibly meaningful it seems to him to finally get to touch the sand, and how happy and relaxed he ends up feeling after playing with the sand for a while.

For the sake of the argument let us say that Sandy’s life is strictly better than the life of most comparable dogs. His love for sand enriches his life rather than detracts from it (or so he would claim). The beach gives him a place to truly enjoy life to the maximum without hurting anyone (including himself) or missing out on other nice things about life. Now please take a moment and consider whether you think Sandy should be allowed to enjoy sand so much.

Now let’s talk about Sandy’s history. Sandy loves sand because his owner put a tiny implant in his brain’s pleasure centers programmed to activate the areas for liking and wanting when Sandy is in the proximity of sand.

Sandy is unaware of the truth, but does it matter? To him sand is what truly matters. The fact that what he is actually after is states of high-valence completely eludes him. The implementation of his reward architecture is opaque from his point of view.

Could it be that we all are under a similar spell, albeit a more complex one? The point to highlight here is that like Sandy, both you and I chase positive valence even when we don’t know that we are doing so. Our world simulations work so well that they hide the true nature of our goals, even to ourselves.

A side issue worth mentioning is that some people might react to this scenario by saying that we are robbing Sandy of his agency. But are we not all already enslaved by our evolutionarily ancient preference architecture? One can certainly argue that if we are going to improve Sandy’s life we should do so in a way that also increases his autonomy. Good point. But how do we increase his autonomy without increasing his intelligence? In the case of sapient beings, there are good reasons to request that people do not mess with one’s preference architecture without one’s knowledge. But for sentient non-sapient beings like dogs and pre-linguistic toddlers, there is a good case for leaving the hedonic recalibration up to a competent adult with its best interests in mind.

Beyond Turing: A Solution to the Problem of Other Minds Using Mindmelding and Phenomenal Puzzles

Here is my attempt at providing an experimental protocol to determine whether an entity is conscious.

If you are just looking for the stuffed animal music video skip to 23:28.


Are you the only conscious being in existence? How could we actually test whether other beings have conscious minds?

Turing proposed to test the existence of other minds by measuring their verbal indistinguishability from humans (the famous “Turing Test” asks computers to pretend to be humans and checks if humans buy the impersonations). Others have suggested the solution is as easy as connecting your brain to the brain of the being you want to test.

But these approaches fail for a variety of reasons. Turing tests can be beaten by dream characters and mindmelds might merely work by giving you a “hardware upgrade”. There is no guarantee that the entity tested will be conscious on its own. As pointed out by Brian Tomasik and Eliezer Yudkowsky, even if the information content of your experience increases significantly by mindmelding with another entity, this could still be the result of the entity’s brain working as an exocortex: it is completely unconscious on its own yet capable of enhancing your consciousness.

In order to go beyond these limiting factors, I developed the concept of a “phenomenal puzzle”. These are problems that can only be solved by a conscious being in virtue of requiring inner qualia operations for their solution. For example, a phenomenal puzzle is to arrange qualia values of phenomenal color in a linear map where the metric is based on subjective Just Noticeable Differences.

To conduct the experiment you need:

  1. A phenomenal bridge (e.g. a biological neural network that connects your brain to someone else’s brain so that both brains now instantiate a single consciousness).
  2. A qualia calibrator (a device that allows you to cycle through many combinations of qualia values quickly so that you can compare the sensory-qualia mappings in both brains and generate a shared vocabulary for qualia values).
  3. A phenomenal puzzle (as described above).
  4. The right set and setting: the use of a proper protocol.

Here is an example protocol that works for 4) – though there may be other ones that work as well. Assume that you are person A and you are trying to test if B is conscious:

A) Person A learns about the phenomenal puzzle but is not given enough time to solve it.
B) Person A and B mindmeld using the phenomenal bridge, creating a new being AB.
C) AB tells the phenomenal puzzle to itself (by remembering it from A’s narrative).
D) A and B get disconnected and A is sedated (to prevent A from solving the puzzle).
E) B tries to solve the puzzle on its own (the use of computers not connected to the internet is allowed to facilitate self-experimentation).
F) When B claims to have solved it A and B reconnect into AB.
G) AB then tells the solution to itself so that the records of it in B’s narrative get shared with A’s brain memory.
H) Then A and B get disconnected again and if A is able to provide the answer to the phenomenal puzzle, then B must have been conscious!

To my knowledge, this is the only test of consciousness for which a positive result is impossible (or maybe just extremelly difficult?) to explain unless B is conscious.

Of course B could be conscious but not smart enough to solve the phenomenal puzzle. The test simply guarantees that there will be no false positives. Thus it is not a general test for qualia – but it is a start. At least we can now conceive of a way to know (in principle) whether some entities are conscious (even if we can’t tell that any arbitrary entity is). Still, a positive result would completely negate solipsism, which would undoubtedly be a great philosophical victory.